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A SECOND ORDER APPROXIMATION FOR THE 
INVERSE OF THE DISTRIBUTION FUNCTION 
OF THE SAMPLE MEAN 

JORGE M. AREVALILLO 

The classical quantile approximation for the sample mean, based on the central limit 
theorem, has been proved to fail when the sample size is small and we approach the tail of 
the distribution. In this paper we will develop a second order approximation formula for 
the quantile which improves the classical one under heavy tails underlying distributions, 
and performs very accurately in the upper tail of the distribution even for relatively small 
samples. 

1. INTRODUCTION 

Since the appearance of H.E. Daniels' paper: "Saddlepoint Approximations in 
Statistics" [3] a great deal of literature has been written on this topic. 

Until now all efforts have been focused on finding different approaches that yield 
to Daniels' approximation of the sample mean density, trying to extend them to the 
multivariate case and evaluating new ones for tail probabilities; but little research 
has been developed to look into sample mean quantile expansions. 

This is very interesting for us, since it has a great deal of applications in statistical 
testing. We aim to invert one of these tail probability expansions in order to get a 
quantile approximation and therefore a second order expansion for the critical value 
of the test. 

The paper is organized in four sections. In Section 2 we deal with an approxima
tion formula for the solution of the saddlepoint equation. This expression is used in 
Section 3 in order to get a new formulation for the tail probability saddlepoint ap
proximation. Its inversion, by means of an inversion technique used in [2], is achieved 
in Section 4 and will yield to a second order approximation for the quantile of the 
sample mean distribution. We will finish the paper by displaying some numerical 
examples which will shed light on the analytical results. 
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2. AN APPROXIMATION FOR THE SOLUTION OF SADDLEPOINT 
EQUATION 

Let X be a random variable with distribution function, F(x), absolutely continuous 
with respect to Lebesgue measure and density function f(x). Suppose X has moment 
generating function M(\) = J eXxf(x) dx, finite in an interval (—r, 5) , r > 0 , s > 0; 
this suffices to guarantee the existence of all the moments and cumulants of the 
distribution. 

Let K(\) = logM(A) be the cumulant generating function of X\ we will denote 
the mean of X by /x, the variance by a2 and the cumulants by kj : j > 1, where 
ki = /x and k2 = o2. 

Suppose Xi, X2y • • •, Xn is a random sample of X; we can deduce a saddlepoint 
approximation for the tail probability, thus for 

P(Zn >x)= P(X > x) where Zn = ( X ~ -")>/" a n d ^ = fjL+^m 
cr >jn 

If we start from Daniels' saddlepoint approximation for the sample mean density 
[3] and use Laplacian expansion [7] (see Chapter 3, Section 3.1), as outlined in [5], 
we will get a large deviation approximation for the tail probability given by 

n[K(X)-Xx] 
P(Zn >x)= P(X >x)= 6 + 0 ( n " 3 / 2 ) , (1) 

\yj27rnK"(\) 

with A satisfying the saddlepoint equation 

K'(\) = x = „ + ??=. (2) 
y/n 

A high order large deviation expansion for the tail probability is deduced in [1]; 
we have considered in (1) the first term of this expansion. 

Some assumptions on the cumulant generating function are established in [3] 
(Section 6), so that (2) has a unique real root. These assumptions, for the general 
case of a distribution with support (a, b) : —00 < a < 6 < 00, are given by 

lim K'(\) = a, lim ^ ( A ) = & 
A—•—r A—>s 

and guarantee the existence of a unique real solution of the saddlepoint equation for 
every x within (a, 6). 

We will get an approximation of equation (2) solution by means of a one step 
Newton-Raphson method. Since -^'(A) = \i + a2\ + 0(A2) = [i + f^, it is natural 

that we use as a starting point An = ^ 3 ^ ; this point will yield to an approximation 

ofAgivenbyA = Ao + - ^ 0 - . 

Expanding the previous quotient, we get 
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^ 2 + ^ + ^ + 0(n-3/2) ^ n n3/2 

with a, = f, 02 = - * j £ and a3 = ^ - * £ . 

Since K'(\) - If'(A) = 0(n~2), we can conclude that A - A = 0(n~2) and 
therefore 

A = -7= + — + -T7T + 0(n z). (3) 

3. A NEW FORMULATION FOR THE TAIL PROBABILITY SADDLEPOINT 
APPROXIMATION 

In this section we aim to get a new formulation for (1) that incorporates the results 
of the previous one. We will face up the task in three steps: The first one will 
deal with an approximation formula for n[K(\) — Ax]; the second one is devoted to 

develop an analogous formula for \\JnK"(\). We will finally mix up the preceding 
results in order to obtain an expansion for the quotient, thus for the tail probability. 

3.1. Phase I 

Taylor expansion of K(\) — Ax yields to 

, , , ? * C t 0" %9 fee-? C/ X(J x C X(J G2 C9 fee? 

^ ( A ) - A x = ^ A + - A ^ + - A 3 + . . - A ( / , + - ^ ) = - A - ^ + T A ^ + - A 3 + . . . . 

Therefore 

K(X) - Xx = ~ (J2 aiti-i'2 + 0(n~2) J + y ( £ ^rT^ + O(n"2) j 

3 
3̂ í p -i/2 , r\í -2\\ , 4̂ 

+ f ( £ °<n" i /2+°(n"2) J + i ( £ a*n" i /2+°(n"2) J + • • • • 
If we replace a i , 02,03 by its values from (3) and gather together the terms of the 

same order we will get 

*<*> - ** • - s + ^ + ;? (& -10 + °<n"6/2'-
where the coefficients of - - = in the expansion of K(\) — Ax have been grouped 

together to obtain a 0(n~bl2) remainder. 
Hence 
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r r ^ / t x C i ST2 1 k$X3 1 fk^X4 koXA\ _ , o/2v / J X 

n[R"(A) - Ax] = - - + - - - - - + - (--: - - £ _ J + 0(n 3 / 2 ) . (4) 

3.2. Phase II 

Considering that 

ir'(A) = (72 + fc3A + ^ A 2 + ..-

= a2 + k3 (J2ain-H
2 + 0(n~

2)\ + y (£°«""i/2 + °(n~2)) +-* 

we will get an expansion for y K"(\) in powers of n"1!2, that is to say: y K"(\) = 
-Z^o bin~xl2, where the unknown coefficients are deduced by comparisons between 
the terms of the same order from -f-~"(A) expansion and 

K"(A) = ( f > - f / 2 ) . 

For example, to obtain the values of 60,61 and b2, we need comparisons up to the 
n _ 1 power; in this way we will get the following equations: 

— b2 = o2 

— 2&o&i = £301 

— 26062 + b\ = k3a2 + ^a\ 

from which 60 = a, h = §»§ and 62 =
 ki*2 Zkl** 2a1 a i l v l v - ~~ 4 o ^ %o* 

These values and those from (3), lead to an expansion for \yK"(\): 

Xy/~~~^ (J2ain-i/
2 + 0(n-

2)\ {j^b^H2 +0(n~
3/2)\ 

= —-=• + - (b0a2 + aibi) + ------- (axb2 + a2bi + a3b0) + 0(n~2) 
\Jn n n*iz 

Therefore 
XJnK"(X) = Cl + 2* + 2 . + 0(n"3 /2) , (5) 

v \/n n 

where c\ = x, c2 = 0 and c3 = | ^ r - - ^ 
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3.3. Phase III 

Including (4) and (5) into (1) we will get 

« I ) B p ( ^ ^ + l($£-^)+0(»-V»)) 
P(* £ * > " ( C l + g+0(n-^)) " + ° ( " ' >• 

Expanding the quotient P ^ g ) in powers of n"1!2: P ^ | ^ = ]>_^0 ̂ n"*!2, we 
get 

/ 1 k3x
3 1 /fc4x

4 fc|x4. _, _3/2A e X p ( ^ 6 ^ + n(24^-t5-) + 0(n"2)j 

= 1 + ( ^ ^ + ^ - ^ ) + 0 ( " - 3 / J ) ) 

+ K n ^ + ^ - ! £ > + 0 ( " - 3 / 2 ) ) 2 

= ( c i + ? + 0 ( n -3 , , )^ + * + ^ + ...). 

Comparisons between terms of the same order lead to the following equations: 

— cid0 = 1 

- ^ 1 = ^ 

- c3do + Cld2 = ̂  + | ^ - ^ 

which allow us to determine do,di,d2 : 

A X A k 3 x 2 

rf0 = - , " i = — — 
X OCT6 

Therefore 

&ndd> = ê{i>-x3+x) + {i;-x) 

P(Zn >x)=P(X>x) = *W+ ^ M + - - - - - + 0(n-W), (6) 
x yjn n 

with d1 (x) = & £ and d2(x) = £ (-f - x3 + x) + fo ( £ - x) . 
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4. A SECOND ORDER APPROXIMATION FOR THE QUANTILE 

If we put P(x) = ^ + ^ W * ) + ^ 2 ( a ) , then (6) can be written as follows: 

P(Zn >x) = P(X >x) = P(x) + 0(n~3'2) 

so that, a certain significance level a will almost satisfy that 

f>(„\ ^x) _ <Hx)di(x) _ <rfoW-r) , . 
P(x) = ~T + ~T + 1 = a- (7) 

x y/n n 
Proper inversion of (7) will allow us to find an approximation formula for the 

quantile x. This approximation will be deduced using the inversion technique from 
[2] together with the following lemma, which is a consequence of an inequality 
from [4]. 

L e m m a . If <£ and (j) are the distribution and density functions of the standard 
normal law, then 

1 - $(x) = -^ - - (1 + o(l)) as x -> oo. 
x 

In our framework x is in the upper tail of the distribution. It then stands to reason 
that x is large enough, so -——- may be replaced by 1 — $(x) in (7). This will perform 
very accurately when a is small enough, at least for heavy tails distributions, as will 
be shown in Section 5. 

Under these conditions, (7) can be replaced by 

P(X) = i-^(X)+MdM+m^i=a. {8) 
v yjn n 

Prom now on, we will focus on inverting (8). 

Assume that x = za + ^U + ^-\ with za = $ _ 1 ( 1 - a). 
y/n n v ' 

To begin with, we will expand P(X > x) in a Taylor series at za: 

i - #(«,) + *<.) ( ^ + *&.) + <t>(Za) (-i + =**M+£ 

+ -*«d2(za) + ď2(Za)\ = ^ 
n J 

Ы 

which implies that 

di(za) | d2(za) | / + d[(za) - Zgd^zg) + d'2(za) - zad2(za)\ _ ^ x + . . . = Q 

y/n n \ y/n n J 

If we replace x - za by ]CSi ^ n " * ^ 2 *n *he previous expression and compare the 
terms of the same order from both members of the equality, we get 

t\ =di(za). 
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Consequently 

X = ZQ + Щ2І + 0(П-1) 
y/П 

and the desired second order quantile approximation for the quantile x will be 

xa aza adx(za) _ 3 / 2 kzz\ 
x = / i + —= =fi + —= + VO(n */z) with di(za) = —-f-. (9) 

\/n y n n ocr'3 

5. NUMERICAL EXAMPLES 

In this section we will display some numerical examples which will allow us to com
pare the normal approximation with ours. 

5.1. Example I 

The following tables show for different significance levels, a, the values of the ex
act quantile, the normal quantile approximation and the second order quantile ap
proximation, as well as the relative errors under an exponential distribution with 
parameter 1. 

We have chosen small sample sizes for better comparisons between normal and 
second order approximations. 

n = 3 

a e n s erl er2 

0.050 2.098598 1.949657 2.250273 7.097176 7.227433 

0.045 2.146482 1.978838 2.298213 7.810149 7.068842 

0.040 2.199636 2.010759 2.351304 8.586726 6.895139 

0.035 2.259446 2.046107 2.410887 9.442098 6.702567 

0.030 2.327936 2.085877 2.478919 10.398028 6.485714 

0.025 2.408229 2.131586 2.558414 11.487423 6.236336 

0.020 2.505535 2.185732 2.654386 12.763828 5.940916 

0.015 2.629565 2.252902 2.776157 14.324157 5.574748 

0.010 2.801982 2.343118 2.944439 16.376432 5.084146 

0.005 3.091264 2.487156 3.224366 19.542436 4.305761 

e = exact quantile, n = normal approximation, s = second order approximation, 
erl = 100 * |e - n\/e and er2 = 100 * |e - s\/e. 

Note that as we approach the upper tail of the distribution, the normal approx
imation based on central limit theorem breaks down, giving large relative errors: 
16.37% or 19.54 %, in comparison with the relative errors given by the second order 
approximation: 5%, 4.3%. 
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n = 7 

a e n s eгl eг2 

0.050 1.691768 1.621696 1.750532 4.141935 3.473493 

0.045 1.718931 1.640800 1.777675 4.545307 3.417487 

0.040 1.748959 1.661697 1.807645 4.989381 3.355450 

0.035 1.782599 1.684838 1.841172 5.484197 3.285824 

0.030 1.820935 1.710873 1.879320 6.044231 3.206342 

0.025 1.865636 1.740797 1.923723 6.691526 3.113527 

0.020 1.919480 1.776244 1.977096 7.462245 3.001610 

0.015 1.987625 1.820217 2.044469 8.422491 2.859922 

0.010 2.081516 1.879277 2.136986 9.715943 2.664903 

0.005 2.237096 1.973572 2.289519 11.779753 2.343351 

er 

= exact quantile, n = normal approximation, s = second order approximation, 

1 = 100 * |e - n\/e and er2 = 100 * |e - s\/e. 

n = 11 

a e n s eгl er2 

0.050 1.542020 1.495942 1.577928 2.988126 2.328679 

0.045 1.562393 1.511182 1.598284 3.277722 2.297204 

0.040 1.584875 1.527852 1.620728 3.597961 2.262174 

0.035 1.610012 1.546312 1.645797 3.956522 2.222653 

0.030 1.638597 1.567081 1.674274 4.364506 2.177277 

0.025 1.671850 1.590951 1.707359 4.838875 2.123941 

0.020 1.711795 1.619229 1.747043 5.407564 2.059141 

0.015 1.762186 1.654307 1.797013 6.121874 1.976355 

0.010 1.831334 1.701420 1.865417 7.093961 1.861083 

0.005 1.945257 1.776642 1.977699 8.668021 1.667758 

e = exact quantile, n = normal approximation, s = second order approximation, 

erl = 100 * |e - n\/e and er2 = 100 * |e - s\/e. 

Note that, n increase reduces the relative errors corresponding to the normal 
and second order approximations; however the former remains larger than the later. 
In fact, we have thought that such differences are quite appreciable for heavy tails 
distributions. It would be an interesting task, analyzing them with respect to a 
tailing order, i.e. Loh order that is alluded in [6]. 
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5.2. Example II 

This example shows the accuracy of the normal and second order approximations 
when the underlying distribution is a Xi distribution. Small sample sizes have been 
tried in order to make the differences between both approximations clear. 

We will use the same notation as in the previous examples; the results are dis
played in the following tables. 

n = 3 

а e n s erl er2 

0.050 2.604909 2.343017 2.944249 10.05378 13.026939 

0.045 2.683162 2.384286 3.023036 11.13892 12.666941 

0.040 2.770390 2.429429 3.110518 12.30733 12.277265 

0.035 2.868982 2.479419 3.208979 13.57846 11.850768 

0.030 2.982429 2.535662 3.321747 14.97999 11.377231 

0.025 3.116135 2.600304 3.453961 16.55354 10.841216 

0.020 3.279136 2.676879 3.614187 18.36634 10.217636 

0.015 3.488344 2.771871 3.818381 20.53904 9.461144 

0.010 3.781622 2.899455 4.102098 23.32774 8.474565 

0.005 4.279385 3.103156 4.577577 27.48595 6.968099 

n = 5 

а e n s erl er2 

0.050 2.214100 2.040297 2.401036 7.849817 8.442997 

0.045 2.268461 2.072264 2.455513 8.648901 8.245807 

0.040 2.328866 2.107231 2.515885 9.516874 8.030443 

0.035 2.396911 2.145953 2.583689 10.470077 7.792427 

0.030 2.474924 2.189518 2.661170 11.531886 7.525319 

0.025 2.566500 2.239590 2.751785 12.737591 7.219332 

0.020 2.677645 2.298905 2.861289 14.144509 6.858452 

0.015 2.819559 2.372486 3.000391 15.856143 6.413498 

0.010 3.017254 2.471312 3.192898 18.094029 5.821286 

0.005 3.349920 2.629097 3.513750 21.517615 4.890561 
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n = 7 

a e n ' s erl er2 

0.050 2.009591 1.879211 2.136882 6.487898 6.334151 

0.045 2.052663 1.906228 2.179978 7.133887 6.202441 

0.040 2.100435 1.935781 2.227676 7.839050 6.057851 

0.035 2.154143 1.968507 2.281176 8.617606 5.897153 

0.030 2.215584 2.005326 2.342220 9.489947 5.715693 

0.025 2.287538 2.047645 2.413498 10.486950 5.506370 

0.020 2.374632 2.097775 2.499478 11.658933 5.257513 

0.015 2.485490 2.159962 2.608466 13.097145 4.947746 

0.010 2.639330 2.243485 2.758904 14.997912 4.530476 

0.005 2.896820 2.376839 3.008734 17.950073 3.863326 

Observe that for very small significance levels, corresponding to quantiles far 
away in the upper tail of the distribution, the second order approximation is more 
accurate than the normal; see table for n = 5 in which the relative errors are 5.82 % 
against 18.09% for a = 0.010. But as a increases we move away the tail, and the 
differences between both approximations become smaller; in some cases the normal 
approximation is more accurate than ours (see the relative errors of the first table 
for a = 0.050). 

However, if we load the upper tail of the distribution, that is to say if we increase 
the degrees of freedom of the x2 , (9) will become more accurate than the central 
limit approximation for every significance level. The next example, which considers 
a xl distribution, corroborates this assertion. 

5.3. Example III 

n = 3 

a e n s erl er2 

0.050 8.331920 8.003078 8.604310 3.946774 3.269232 

0.045 8.461816 8.095359 8.734108 4.330719 3.217893 

0.040 8.605376 8.196301 8.877390 4.753715 3.160981 

0.035 8.766149 8.308081 9.037641 5.225418 3.097051 

0.030 8.949302 8.433844 9.219929 5.759758 3.024005 

0.025 9.162787 8.578388 9.432046 6.377957 2.938613 

0.020 9.419822 8.749615 9.686923 7-rl 14854 2.835522 

0.015 9.744951 8.962025 10.00853 8.034177 2.704814 

0.010 10.19263 9.247311 10.44995 9.274570 2.524571 

0.005 10.93377 9.702799 11.17722 11.258457 2.226562 
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ii L=5 

а e n s erl er2 

0.050 7.530496 7.326174 7.686913 2.713251 2.077126 

0.045 7.624566 7.397654 7.780904 2.976056 2.050456 

0.040 7.728328 7.475844 7.884498 3.266997 2.020739 

0.035 7.844286 7.562429 8.000165 3.593151 1.987166 

0.030 7.976076 7.659844 8.131495 3.964761 1.948564 

0.025 8.129292 7.771808 8.284002 4.397490 1.903114 

0.020 8.313214 7.904440 8.466824 4.917161 1.847788 

0.015 8.545037 8.068971 8.696877 5.571250 1.776941 

0.010 8.862821 8.289953 9.011539 6.463719 1.678000 

0.005 9.385578 8.642773 9.527426 7.914327 1.511336 

ìi = 7 

а e n s erl er2 

0.050 7.114550 6.965976 7.223647 2.088304 1.533440 

0.045 7.191100 7.026388 7.300138 2.290498 1.516289 

0.040 7.275443 7.092470 7.384365 2.514941 1.497122 

0.035 7.369585 7.165647 7.478316 2.767289 1.475400 

0.030 7.476439 7.247978 7.584872 3.055738 1.450335 

0.025 7.600478 7.342605 7.708458 3.392851 1.420704 

0.020 7.749119 7.454699 7.856403 3.799392 1.384466 

0.015 7.936089 7.593754 8.042258 4.313650 1.337799 

0.010 8.191725 7.780518 8.295936 5.019786 1.272155 

0.005 8.610682 8.078705 8.710600 6.178102 1.160399 

The three preceding tables display the quantile approximation under a xl distribu
tion. Observe that the relative errors have decreased for both the normal and second 
order approximation, with the former always higher than the later. 
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