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STATISTICAL INFERENCE FOR FAULT DETECTION: 
A COMPLETE ALGORITHM 
BASED ON KERNEL ESTIMATORS 

PlOTR KULCZYCKI 

This article presents a new concept for a statistical fault detection system, including the 
detection, diagnosis, and prediction of faults. Theoretical material has been collected to 
provide a complete algorithm making possible the design of a usable system for statistical 
inference on the basis of the current value of a symptom vector. The use of elements of 
artificial intelligence enables self-correction and adaptation to changing conditions. The 
mathematical apparatus is founded on the methodology of testing statistical hypotheses, 
and on kernel estimators; the theoretical aspects have been documented by mathematical 
theorems. The work is oriented towards the problem of fault detection in dynamic systems 
under automatic control, but the basic formula is of a universal nature and can be used in 
a broad range of applications, including those outside the scope of engineering. 

1. I N T R O D U C T I O N 

The increasing capabilities and universality of the computer installations used in 
contemporary technical devices have created conditions conducive to the rapid de­
velopment of methods to detect faults appearing in systems working in the real-time 
regime. Indeed, it can now safely be stated tha t the construction of more and 
more robust systems, with an increased level of security against the consequences of 
any breakdowns tha t may occur, is the third stage - following the classic feedback 
control technique and optimal control - in the development of automat ic control 
engineering. Although fault detection plays a superordinate role in the hierarchy of 
the individual layers of control, from the perspective of total system utility it has 
proven most advantageous to adapt the methodology used in this respect to the con­
ditions prevailing in the lower layers. The result in practice is an enormous, indeed 
excessive heterogeneity of concepts used in the design of fault detection systems 
[2 ,5 ,9 ,14 ,18,24] . Among the most universal are statistical methods. These very 
often consist in generating a certain group of variables tha t characterize the s ta te of 
technical performance of the device, and then making a statistical inference, on the 
basis of their current values, as to whether or not the device is working properly, 
and in the event of a negative response, what is the nature of the malfunction. 
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The present paper provides all the material needed to design a universal statistical 
inference system, including: 

1. detection of faults, i.e. the discovery that a malfunction has occurred in the 
system under supervision; 

2. diagnosis of faults, which means the recognition of the malfunction; 

3. prediction of faults, referring to the anticipation of the risk that a malfunction 
will occur in the immediate future (along with its presumed classification). 

The idea for the system to be proposed here is based on the procedures of mathe­
matical statistics, with particular emphasis on the methodology of kernel estimators. 
Elements of artificial intelligence are also used, based on the neural networks tech­
nique, for purposes of self-correction and adaptation. The following sections provide 
a full set of formulas defining the structure and the detailed form of the functions 
and parameter values, which consequently enable the efficient design of a usable 
fault detection system, without the need for laborious particularized research. 

2. FORMULATION OF THE PROBLEM 

In the statistical inference system here investigated, one assumes the successive avail­
ability for measurement of the so-called symptom vector Z, that is, a finite number 
of variables whose current values and/or relations among its individual coordinates 
would be dependent on the technical state of the system under supervision. It is 
a prerequisite, then, that both proper operating conditions and any type of diag­
nosed fault be associated with the most highly diversified value sets and/or relations 
among the coordinates of this vector. (The detailed form of these sets and relations 
need not be known a priori: its identification is an integral part of the procedure here 
proposed.) The particular coordinates of the symptom vector Z may be coordinates 
of control, state and response, the current values of the measurable parameters, and 
a range of other quantities that are characteristic for the given device (e. g. its out­
put capacity, temperature, fuel consumption, etc.), as well as their functions (e.g. 
differences, powers, etc.). 

The current measurements of the values of the symptom vector Z will be the 
basis for statistical inference, conducted by testing the hypotheses: 

Ho - proper system operation (1) 

in the event of detection, as well as 

Hk - the occurrence of the fcth type of fault (2) 

for the diagnosis of a finite number (k = 1,2,... ,d) of its differentiable types. It 
should be emphasized that the range of malfunctions that can be discovered during 
detection is not limited to the set of faults subject to diagnosis. The following 
assumptions are accepted: 

(A) Z denotes an n-dimensional discrete stochastic process defined on the proba­
bility space (ft, S, P) and the set N \ {0}; 
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(B) in either case, whether under proper operating conditions or when any type of 
fault to be diagnosed is occurring, the process Z has stationary one-dimensional 
distributions (though they may be different for each case); 

(C) the bounded mapping / 0 : Mn -» [0,oo) of the class C2, with bounded second 
derivative, constitutes the density function of the distribution of the random 
variables Z(-,j) for j G IN \ {0}, when the system is operating properly; 

(D) the bounded mapping /& : Mn -r [0, oo) (k = 1,2,.. . , d) of the class C2, with 
bounded second derivatives, represents the density function of the distribution 
of the random variables Z(-,j) for j G 1N\ {0}, whenever the kth type of fault 
to be diagnosed occurs. 

Assumption (B) implies that for every j G IN \ {0} the random variables Z(-,j) have 
identical distributions. Moreover, if / : Mn -» M denotes a Borelian function, then 
this fact also concerns the stochastic process Y = f o Z, i. e. for any j G IN \ {0} 
the distributions of the random variables Y(-,j) are the same. 

3. A REVIEW OF THE ESTIMATORS APPLIED 

3.1. Kernel estimator of density function 

Let the n-dimensional random variable X be given, whose distribution has the den­
sity function / . Its kernel estimator / : Mn —> [0, oo) is calculated on the basis of 
the m-element simple random sample xi ,X2, . . . ,-Cm- acquired experimentally from 
the variable X, and is defined in its basic form by the formula 

/w-j^I^O-r1). (3) 
1=1 x ' 

where the function K : Mn -> [0,oo), which is Borelian, radially symmetrical rel­
ative to zero, and has a weak global maximum at this point, fulfills the condition 
fMn K(x) dx = 1 and is called the kernel, whereas the positive coefficient h is known 
as the smoothing parameter. The form of the kernel K and the value of the smooth­
ing parameter h is selected most often on the basis of the criterion of the minimum 
mean square error. In that case one assumes additionally the condition f E C2, and 
the boundedness of the functions / and / " . 

It turns out that the form of the function K has no essential importance from the 
statistical point of view, and for that reason it becomes possible, in selecting this 
function, to take into account primarily the desired properties of the kernel obtained, 
e. g. the class of regularity, the boundedness or unboundedness of the support, or 
other features essential in the case of a particular problem. In practice, the normal 
kernel 

K(x) = (27T)-n/2e-U*ll2/2 (4) 

is in general use. The estimator obtained by its application is of the class C°° and 
furthermore takes on positive values. 
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Fixing the value of the smoothing parameter h is of vital importance for the qual­
ity of the estimator obtained. In practice one uses a criterion whose implementation 
can be reduced to the formula 

'-(•£) 
l / (n+4) 

(5) 

whereas for normal kernel (4): 

C = STT (6) 

In particular applications the linear transformation X = RY is used, while most 
often the diagonal version of the matrix R is sufficient: 

{ \fV&r(Xi) when i = j 

n h J- (7) 

0 when i 7= j , 
where Var(Xi) denotes the variance of the ith coordinate of the random variable X. 
In a similar manner, positive results can be gained from the so-called modification 
of the smoothing parameter, which is performed as follows: 

(A) the kernel estimator / is specified in accordance with the scheme presented 
earlier; 

(B) the modifying parameters Si > 0 (i = 1,2,. . . , m) of the form 

-(¥)' 
are calculated, where most often p = —1/2, while s~ is the geometric mean of the 
numbers / ( x i ) , / ( a ^ ) , . . . , f(xm), given by the logarithmic equation 

m 

log(S~) = m - 1 ^ l o g ( / ( x i ) ) ; (9) 
i=l 

(C) the kernel estimator is defined, which, after taking into account linear trans­
formation as well, ultimately assumes the form 

'to = -Z^t $*{*•''-£?). do) 
Definition (3) is a particular case of formula (10), where R is a unit matrix and 
p = 0 , which implies S{ = 1. A primary advantage of the modification procedure, in 
addition to the considerable improvement of the statistical quality of the estimator, 
is its greatly reduced sensitivity to strongly conditioned - in the case of kernel 
estimators - fixing of the value of the parameter h. Thus the approximate formula 
(5) most often proves in practice to be entirely sufficient. 
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Finally, the last parameter that needs to be determined is the size of the sample 
m, and in particular its dependency on the dimension of the tested random variable 
n. Table 1 shows the minimum sizes of the sample m* needed to assure 10 % precision 
at point zero for the normal standard distribution. These values should be treated 
as an absolute minimum; however, thanks to the capabilities of current computer 
systems and the automation of metrological processes, the rapidly rising minimum 
sample size need not constitute an essential barrier in contemporary applications, 
even when the dimension of the tested random variable approaches 10. 

Table 1. 

n m* 
1 4 
2 19 
3 67 
4 223 
5 768 

n m* 
6 2790 
7 10700 
8 43700 
9 187000 
10 842000 

If the value of the parameter h is made dependent on the size of the sample m, 
in such a way that 

( i i ) 

(12) 

lim h = 0 
rn—ïoo 

lim mhn = 
ra—>oo 

OO, 

the estimator thus obtained is strongly consistent at every point of continuity of 
the function / , which means that at these points the value of the estimator f(x) 
is convergent with probability 1 to the estimated value f(x)} From the statistical 
point of view, then, the largest possible sample size is desirable, though in practice 
a certain compromise is necessary, taking into account the calculational aspects, 
especially time limitations. 

Ultimately formulas (3) - (10) provide a full set of rules enabling the specification 
of the kernel estimator of the density function of the n-dimensional random variable. 
A broader discussion of the issues presented in the foregoing section, including also 
the general forms of dependencies (5) and (7), can be found in [6,20,23,25], 

3.2. Kernel estimator of distribution function 

The mapping F : M —> [0,1] given as F(x) = J2 f(y) dy constitutes the natural 
kernel estimator of the distribution function of the real random variable X. When 
the kernel K has the primitive function 7, that is I(x) = J^ K(y) dy, then after 
the application of the linear transformation and the modification of the smoothing 
parameter, this estimator takes on the form 

*4|'(w)' (13) 

*In the case of kernel estimators, properties of an asymptotic nature are of fundamental impor­
tance, since these estimators are typically used when the random sample is of large size. 
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If condition (11) is fulfilled, then this estimator is strongly consistent. In the case 
of the estimator of the distribution function, the exponential kernel 

*M = (TT^p <1 4> 
can be recommended, since its primitive function has the convenient form 

'<*> = T T ^ <1 5> 
and fulfills all the conditions formulated here. The parameter c required in formula 
(5) is here . 

c=Zr?2- (16) 
7Г 7/2 

A more detailed discussion of estimator (13), along with a proof of its strong con­
sistency, can be found in [16]. 

3.3. Kernel estimator of quantile 

The term quantile of the r th order of the real random variable X, provided that 
0 < r < 1, is used for any number q G 1R fulfilling the equation F(q) = r, where 
F designates the distribution function. The quantile divides the space of the values 
of the random variable X into two subsets, (—oo,r/] and [g, oo), such that their 
probabilities are r and 1 — r, respectively. On the basis of dependence (13), the 
kernel estimator of the quantile of the rth order, denoted by q, can be given as a 
solution of the equation m 

s g < w ) " (17) 

When the kernel K is positive, and condition (11) is fulfilled, then this estimator is 
strongly consistent. Here also, exponential kernel (14) is recommended. These issues, 
along with the relevant proofs, were introduced in [16]; the statistical properties are 
described in [11]. A review of differing concepts can be found in [19,22]. 

3.4. Statistical forecasting (trend estimation) 

The quantity whose future values are the object of statistical prognostic investigation 
is treated as a discrete real stochastic process Y. If at the moment j one has at hand 
a sequence of values of the process Y empirically obtained for 1,2,... j j , known as 
"observations" and denoted by 2/1,2/2, ••• ,2/j, then by making use of the available 
statistical methodology it is possible to calculate the forecast ys^ i.e., the estimator 
of the value of the stochastic process Y for the moment j + s, while the parameter 
s € N \ {0} is called the anticipation of the forecast. In a case where the object of 
interest is not the strict calculation of the future values of the process Y, but rather 
only the identification of the trend of the changes, then the classic linear regression 
method [1] is the basic mathematical tool. In such case the forecast y? is obtained 
from the formula 

1 
Уj - c i —s 

(18) 
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where 

(19) 

(20) 

(21) 

while the constant w G (0,1] is known as the deactualization parameter. After the 
next observation yj+i has been obtained at the moment j ' + 1, the forecast can be 
updated by means of the formulas 

Cj = Djldi 

Dj = ][><= 
k=0 

1 -k' 
-k k2 

j - 1 
d3 = Y^wkУj~k 

1 
-k 

Уj+i rт 

° i + l 
ì - 1 Cj+i - D^dj+ij 

(22) 

(23) 

while the matrices Dj and dj are changed in accordance with the dependencies 

Dj+1 = Dj+wJ } . ~i ] (24) 

dj+i = w dj+ \ yj+i. (25) 

The specification of a concrete value for the anticipation parameter s essentially 
results from the application conditions; it should be recalled, however, that as its 
value increases, the forecast obtained becomes less precise. In practice the deactu­
alization parameter w is assumed in such a way that w G [0,8; 0,99], and there is a 
particular preference for w = 0,95. A decrease in this value improves the likelihood 
that the model will adapt to changes taking place, but it also increases its sensitivity 
to interference; the opposite would result from increasing the value of the parameter 

The number of available observations should be no less than 15. w 
A review of statistical forecasting methodology can be found in [1,26]. 

4. DESIGNING A STATISTICAL INFERENCE SYSTEM 

4.1. Diagnosis of faults 

Diagnosis is accomplished by successively testing a finite number of the hypotheses 
H\, H2,..., Hdy stating the occurrence of the assumed types of faults, as against the 
same alternative hypothesis .Ho, representing proper operating conditions; in other 
words, diagnosis will consist in the independent testing of the truth of d pairs of 
hypotheses, of the form Hk versus Ho. Accordingly, for any fixed k = 1,2,. . . , d, let 
the following random samples be given, composed from the experimentally obtained 
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values of the symptom vector Z\ 

z\, z2 » • • • ? zmk - in the event of the occurrence of the kth type 

of fault to be diagnosed (26) 

z\, z2 ? • • • ? ^m0 ~ f° r P r o P e r operating conditions (27) 

and 

Z(u,j) - the current value (at the moment j) of the symptom vector. (28) 

The procedure for accepting the hypothesis Hk or Ho will now be presented. The 
statistic Sk \ tt x IN \ {0} -> [0, oo) will be considered, as defined by the formula 

" Sk(u,j) = fk(Z(uJ)), (29) 

where the Borelian mapping fk \ Mn -> [0, oo) denotes the density function of the 
one-dimensional distributions of the symptom vector Z assuming the occurrence of 
the A:th type of fault to be diagnosed. (A detailed description of the specification 
procedure of the kernel estimator of this function is presented in Section 3.1.) The 
form of the statistic when defined in this way makes it possible to identify possible 
changes involving not only the values of the individual coordinates of the symptom 
vector, but also, and especially, the complex relations that occur among them. For 
any fixed value j , representing the corresponding moment in time, the value of the 
statistic Sk can be referred to the probability that the current value of the symptom 
vector will occur under the condition that the A:th type of fault to be diagnosed has 
appeared. Thus low values for this statistic are an indication in favor of accepting 
the hypothesis -Ho, i-e. this should happen along with the relation 

where 

In the opposite case, if 

for 

Sk(u,j)eAk, (30) 

Ak = (-oo, a*]. (31) 

Sk(uJ)eBk (32) 

Bk=M\Ak, (33) 

then the hypothesis Hk should be accepted. In order to calculate the critical value 
ak the basic formula for statistical decision theory, the Bayes rule, has been used [3]. 
In Appendix A it is shown that if sk > 0 and b* > 0 denote the losses resulting from 
non-detection of the A:th type of fault and from the corresponding false alarm, re­
spectively, then the optimal critical value ak in the sense of this rule can be obtained 
from the criterion 

Ffkoz\0(«k) + ±F/koZlk(ak) = l, (34) 

where FfkOz\0 J FfkQz\k denote the distribution functions of the random variables 
fk o Z for proper operating condition and the occurrence of the kth type of fault to 
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be diagnosed, respectively. In practice, the functions fk and FfkoZ\0, FfkoZ\h are 
available only in the form of the corresponding estimators fk, Ft oZ, , Ft oZ< , and 
therefore dependence (34) takes on the form of the following equation: 

4 o Z | 0 (&*) + ^/fhoZ\h (&*) = 1. (35) 

while its argument dk constitutes an estimator of the quantity a&. Appendix B 
contains a theorem stating that if the values of the smoothing parameters are made 
dependent on the samples sizes in such a way that the conditions (11)-(12) are 
fulfilled, then this estimator is strongly consistent, which indicates the formal cor­
rectness of the fault diagnosis procedure proposed here. If the left side of dependence 
(35) is treated as the function gk : M —> M of the variable dk, then applying crite­
rion (35) one should find the solution of the equation gk[dk) = 1. In that case, the 
following formulas are true: 

lim gk(dk) = 0 (36) 
afc-> —oo 

lim gk(ak) = 1 + ̂ >1. (37) 

The function gk is continuous, which results from the continuity of the kernel esti­
mator of the distribution function. Taken together with conditions (36)-(37), this 
states the existence of a solution for equation (36). If the kernel K with positive 
values is used in estimating the distribution function, then the function gk is further­
more strictly increasing, which implies the uniqueness of this solution, and makes it 
possible to apply effective numerical procedures; in particular, this solution can be 
calculated using the Newton method [7] as the limit of the sequence { ^ } / = 1 defined 
by the formulas 

d\ = 0 (38) 

a?* = &[ + * "F/fcoZ|flfk) ^ ^ ^ l ^ ( a i ) 6*1 = 1,2,. . . , (39) 

where the denotations fs oZi , fs oZ. additionally introduced here constitute the 

density functions of the random variables fk°Z for proper operating conditions 
and the occurrence of the fcth type of fault to be diagnosed, respectively (note that 
the estimator of the density function constitutes a derivative of the estimator of the 
distribution function). 

Since the random variables fk°Z take on only positive values, then the primitive 
function I can be slightly modified to 7* given as 

( 0 for x < 0 

'•<*>={ ̂  tor ,2 0 . • <«> 
in which case the kernel estimators of the distribution function have the support of 
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the form [0, oo), adequate to this situation. The derivative of this kernel is then 

(41) 
1-I(0) 

and the kernel modified in this way should be used to calculate the estimators of the 
density functions required in algorithm (38)-(39). 

The procedure leading to the acceptance of the hypothesis Hk or H0 thus consists 
of three phases. To begin with, random samples (26) - (27) should be obtained 
experimentally, while in the first case it may become necessary to simulate the 
conditions of the occurrence of the given type of diagnosed fault. The second step 
involves calculating, on the basis of these samples, the elements of the decision­
making process: the functions /&, and therefore the statistic Sk and the critical 
value cik. Finally, the third phase - the only one performed in real time - leading to 
the acceptance of the hypothesis H0 or Hk consists merely in inserting the current 
value of symptom vector (28) to formula (29) and then determining whether relation 
(30) or (32) is true. 

4.2. Detection of faults 

The detection of faults will depend on using the current values of the symptom 
vector to test successively the hypothesis stating that the system under supervision 
is operating properly. In view of the assumed full spectrum of malfunctions to be 
detected, implying significant non-specificity of the possible alternative hypothesis 
and the probability of an error of the second kind, a test of significance has been 
designed for the needs of detection, according to the principles of the Neyman-
Pearson theory [8]. Once again, statistical random samples will be used, as defined 
for the needs of diagnosis by formulas (27) and (28). If the distribution functions of 
the random variables from which these samples originate are denoted by F0 and G, 
then the hypothesis H0 stating their identity is to be tested: 

H0:G = F0. (42) 

It has been assumed that from the practical point of view this formal form is equiva­
lent to expression (1), which describes the applicational aspects. Thus the detection 
procedure presented below constitutes a test of consistency in the situation when 
one of the samples is one-element; the statistical properties of such a test have been 
presented in [13]. 

Just as in the case of diagnosis, the verification procedure will be divided here 
into three phases: experimental acquisition of random sample (27), calculation on 
that basis of the statistic and the critical set, and finally, testing the hypothesis H0 

while the system is in operation, based on the current value of symptom vector (28). 
The statistic S0 : £1 x IN \ {0} -> [0, oo) applied for this purpose is defined by the 
formula 

SoM) = fo(Z(u,j)), (43) 

while the Borelian mapping f0 : Mn -» [0, oo) denotes the density function of the one-
dimensional distributions of the symptom vector Z in the case of proper operation of 
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the system under supervision (for the specification of its kernel-estimator, see Section 
3.1). The assumed form of the statistic makes it possible to recognize the changes 
taking place both in the individual coordinates of the symptom vector and in their 
mutual relations. The value of this statistic is associated with the probability of the 
occurrence of the current symptom vector under proper operating conditions, which 
implies the left-sided form of the critical set 

A0 = (-00,00], (44) 

where the critical value a0 is calculated in such as way as to fulfill the condition 

Ffooz\0 (oo) = <*o (45) 

for the fixed level of significance ao £ (0,1) representing the probability of an error 
of the first kind, which in this case means a false alarm. The critical value a0 can 
thus be estimated by using the quantile of the order a0 of the distribution of the 
random variables / 0 o Z(-,j) under proper operating conditions. Ultimately, if 

So(u,j)eAo, (46) 

then it should be inferred that the hypothesis .Ho stating the proper operation of 
the system is false, whereas when 

SoM)$Ao (47) 

there is no basis to reject this hypothesis. 
In statistical practice the density function /o and the distribution function FfooZ\0 

are replaced by their estimators /o and Ff oZ. ; thus dependence (45) can be written 
in the form of the equation 

Ffooz\0 (a<>) = ao, (48) 

while its solution do constitutes an estimator of the quantity ao from criterion (45). 
In Appendix C it is shown that if the values of the smoothing parameters are made 
dependent on the samples sizes in such a way as to guarantee the fulfillment of 
conditions (11)-(12), then this estimator is strongly consistent. This proves the 
formal correctness of the fault detection procedure presented here. 

A useful concept for calculating the value of the quantile estimator, and thus the 
quantity ao, was presented in Section 3.3. In practice, if one uses a positive kernel 
K, this value may be calculated by means of the Newton method [7] as the limit of 
the sequence {do}f=1 defined by the formulas: 

oJ = 0 (49) 

fij+i = a u + * ° * ' V ° ' farl = l , 2 , . . . . (50) 
4 o Z | 0 (%) 

Here, also, in view of the fact that the random variable f0oZ takes on positive 
values, one should use a modified version of the kernel and its primitive funtion 
defined by formulas (41) and (40). 
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Thanks to the similarity of the mathematical apparatus used for detection and 
diagnosis, specialized procedures can be used in the latter case in order to reinforce 
the detection test, which is universal and thus less conveniently conditioned. Namely, 
the procedures for diagnosis will be much more effective in discovering the type of 
fault assigned to them than the detection test, which does not make use of detailed 
characterizations of the conditions for the occurrence of these faults. It will be 
advantageous, then, to introduce for the needs of detection the modified hypothesis 
#0 of the form 

H* = H0A - Hi A - H2 A . . . A - Hfc, (51) 

which in practice means that the proper operation of the supervised system would be 
confirmed by a positive result from the verification of the hypothesis H0 (previously 
the detection concept) and negative results from diagnosis tests. From the theoretical 
point of view, this change does not introduce any new elements, since the rejection of 
the hypotheses Hk tested in the course of diagnosis would be equivalent to accepting 
the alternative hypothesis H0, and so ~ Hk = H0. In practice, on the other hand, 
this modification increases the effectiveness of the detection system. 

For purposes of detection a test of significance has been designed. The result of 
such a test can only be the rejection of the hypothesis H0, but no decision is made 
whether to accept it. From the perspective of application this is of no essential 
importance, since both accepting and not rejecting the hypothesis H0 produce in 
practice the same result: taking no action. There is, however, a certain drawback 
in the absence of the possibility to fix the level of significance a0 by comparing 
the economic consequences of errors of the first and second kind. However, the 
hypothesis H0, verified in the course of detection, is likewise an alternative hypothesis 
for the diagnosis tests; thus the value of the parameter a0 may be compared with 
the constants (3k ~ the probability of an error of the second kind for the &th test of 
diagnosis. Ultimately, as a preliminary estimate it is proposed to assume 

a0 = min (3k, (52) 
k=i,...,d 

due to the previously mentioned lesser effectiveness of the universal detection test. 
Any possible increase in value (52) improves the sensitivity of the detection system, 
but at the cost of a greater number of false alarms; a reduction produces the opposite 
effect. The parameters /?*. can easily be calculated in the course of solving equations 
(35), with due regard for the fact that the value of the first factor on its left side is 
equal to 1 — fik • 

4.3. Pred iction of faults 

The idea of the prediction system involves successively analyzing the evolution of 
the symptom vector and making inferences on the basis as to the possibility that 
improper operating conditions will occur in the future. Both the mere appearance 
of a fault (the scope of detection) and the particular types subject to diagnosis 
are predicted. The methodology used combines elements of the theory of testing 
hypotheses applied in Sections 4.1 and 4.2 for purposes of detection and diagnosis 
with statistical forecasting (Section 3.4). The object of verification is the supposition 
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that the values of the statistics So and Si, 52 , . . . , Sd defined by dependencies (43) 
and (29) will belong in the future to the sets .Ao and A\, A<i,..., Ad or B\, B<i,..., H<j, 
given by formulas (44) and (31) or (33). 

Accordingly, let so € iV\{0} represent the anticipation with which the appearance 
of a system fault (in the detection sense) is predicted. Treating at the moment 
j e N\ {0} the previous values of the statistic So: 

SO(LJ,1),SO(U,2),...,SO(UJ,J) (53) 

as the observations 2/i>2/2> • • • ,2/j (see Section 3.4), one can calculate the forecast 2/j0, 
which represents the estimator of the statistic So for the moment j + so- Therefore, 
if there occurs the relation 

»;° € Ao, (54) 

then it should be supposed that in the future the hypothesis .Ho will be false, or 
more precisely, it can be inferred that in so time units a fault will appear. In the 
opposite case, when 

V? i Ao, (55) 

there is no basis to reject the judgment that the supervised device will be operating 
properly in s0 time units. 

Similarly, for each k = 1,2,..., d let the parameter Sk € -5V \ {0} represent the 
anticipation with which the occurrence of the kth. type of diagnosed fault is predicted. 
At any moment j G W \ {0} the past values of the statistic S*.: 

Sk(u,l),Sk(u,2),...,Sk(uj,j), (56) 

are treated in the forecasting process as the observations 2/1,2/2, • • • ,2/j- Calculating 
the forecast y^k for the anticipation s* , one obtains the estimator of the statistic 
Sk for the moment j + Sk- Therefore, if the relation 

y'i" e Bk (57) 

appears, then the future truth of the hypothesis Hk is expected, and therefore one 
infers that in Sk time units the fcth type of fault to be diagnosed will occur. In the 
opposite case, i. e. when 

v? e Ak, (58) 

that supposition should be rejected. 
The concept of the modified hypothesis Ho, as described by formula (51), can be 

transposed to the problem of fault prediction in a natural way. 
The realization of the idea of prediction presented above ultimately requires, in 

the general case, separate predicting of the value d + 1 of the stochastic processes: 
one regarding the appearance of a system fault (detection) and d associated with 
the particular types to be diagnosed. The choice of a particular forecasting method 
is determined by the specific factors conditioning the problem of fault prediction, 
calculating speed, and the possibility of updating data within the procedure used. 
On the other hand, it is not so much the actual precision of the forecast that most 
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matters for fault prediction, but only correct trend identification. Under such con­
ditions, the classic regression method, even in its basic form, turns out to be partic­
ularly well suited to the problem of fault prediction. In Section 3.4 formulas were 
presented enabling the calculation of the forecasts yj° and yj 1, y j 2 , . . . , y?d for this 
method, whereas what follows will discuss the specific aspects of the choice of an­
ticipation and deactualization parameters, and of the minimum number of available 
observations. 

The choice of values for the anticipation parameters Sk results from the technolog­
ical conditions of the system under supervision. In practice this means choosing the 
minimum time needed to stop the device, or at least to change the working regime in 
a matter appropriate to the type of fault forecasted. The postulate of minimization 
is formulated with regard to the precision of the forecast. If the modified hypothesis 
(51) is used, then it is advisable to introduce the boundary 

Sk < 8o for k = 1,2,...,d. (59) 

The value of the deactualization parameter can be chosen according to the uni­
versal rules presented in Section 3.4. The natural conditions surrounding the fault 
prediction process, where the essence of the phenomena being analyzed often consists 
in dramatic changes taking place in the supervised system, while the technological 
conditions require relatively large anticipation, may nevertheless require difficult 
compromises. 

Finally, as mentioned in Section 3.4, the minimum number of available observa­
tions should be no less than 15. The system proposed here presents no particular 
difficulties in meeting that requirement. It can easily be rendered that the number 
of available observations was equal to the number of values of the symptom vector Z 
obtained for proper operating conditions (27). Since in practice the dimension of this 
vector is always greater than 1, according to the data shown in Table 1 the necessary 
number of values to be obtained exceeds even 15 by several orders of magnitude. 

5. SELF-CORRECTION 

The kernel estimators technique, on the basis of which the methodology for the 
statistical inference system here designed has been developed, also enables the in­
troduction of effective self-correction, which makes it possible to significantly im­
prove the quality of this system. The concept of self-correction is based on elements 
of artificial intelligence, specifically neural networks. The procedure will consist of 
two phases: one performed off-line before the system begins operation, and one on­
line, in reaction to erroneous indications during the supervision processes, which are 
unavoidable in practice. 

The kernel estimators of the density function (10) and distribution function (13) 
can be generalized to the forms 

f™ mhndet(R) hmtH^niř) (60) 
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kžщI{îӣ£)' 
г=l x ' 

F{x) = 

when the non-negative coefficients W{ (i = 1,2,..., m) fulfill the condition 

771 

m. 

(бi) 

(62) 

In making the appropriate choice of their values, one should give preference to those 
kernels which have the greatest impact on proper system indications, while the sig­
nificance of those which prevailed in erroneous decision-making can be gradually 
eliminated. This corresponds to the learning process in a neural network. A com­
parison of basic forms (10) and (13) with generalized versions (60) and (61) indicates 
that Wi = 1 should be accepted as the initial values. 

The first phase is carried out off-line, on the basis of data obtained in the form 
of random samples (26) and (27). 

In the case of the diagnosis of the kth type of fault, the combination of formulas 
(26) - (33) implies that the fulfillment of the condition 

fk(zj) < аk for any j = 1,2,. . . ,m k , (63) 

is an indication of an error of the first kind, i. e. neglecting this type of fault, whereas 
the relation 

fk(^) > ak for any j = 1,2,...,m 0, (64) 

constitutes an error of the second kind, that is, a false alarm. In both cases one can 
introduce a change in the coefficients Wi, denoted for the fcth type of diagnosed fault 
as wf, altering the significance of particular kernels depending on their impact on 
the appearance of an error. Thus for each index j at which condition (63) is fulfilled, 
the auxiliary values wl? are defined as 

/ 

WІ = wЧ 1 + 

w i Kk (V4 \ 
PҺ 

Ztfr*>(v&) 
whereas in the case of every j at which (64) is true: 

for every i = 1,2,. ,mк, (65) 

/ 
WІ = wf 1 - Rľ кк 

(щ1 zk-zк 

— * 1 — 

Pk 

\ Sifr* (^W 
for every i = 1,2,..., mk, (66) 

where Kk,hk, Rk, sf or s^ denote the kernel, the smoothing parameter, the transfor­
mation matrix, and the modifying parameters, respectively, used in the construction 
of the estimators associated with the &th type of fault, while the positive exponent 
pk states the intensity of the changes. As a preliminary value it is proposed to accept 

pk =logmk; (67) 
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reducing or enlarging this value decreases or increases the intensity of the changes, 
respectively. The coefficients wf must be normalized in order to assure condition 
(64). Finally, one obtains the altered coefficients wf according to the formula 

~k 
TT1 It) 

wi = HT^- f o r e v e r y < = 1 , 2 , . . . , mfc. (68) 

Y,wi 
i=i 

After these have been specified, one should recalculate the critical values a*, on the 
basis of criterion (35), using kernel estimators in generalized forms (60)-(61). The 
above procedure can be repeated until the sum of errors of the first and second kind 
for the elements of random samples (26) and (27) has stabilized. 

In the case of detection,.the fulfillment of the relation 

ZoO*?) < ao for any i = 1,2,. . . , ra0 (69) 

indicates an error of the first kind. As above, it is possible to alter the coefficients 
Wi, denoted in the case of detection as w*-. For every index j at which condition 
(69) is fulfilled, one defines 

«)? = «;? 
7J5^-^o(R0

lffcf) 

V £ R f Ko(R° ~^t)j 

Po 

for every i = 1,2,. . . , rao, (70) 

where Ko, h0) RQ, S^ or s? mean the kernel, the smoothing parameter, the transfor­
mation matrix, and the modifying parameters, respectively, used in the construction 
of the estimators for detection; and after normalization 

w°i=l^- for every i = 1,2 mo, (71) 

1=1 

while, as before, it is proposed to accept initially 

p0 = logra0. (72) 

The number of repetitions of the above procedure for detection should be the maxi­
mum among the number of repetitions postulated previously for the individual types 
of faults to be diagnosed. After each repetition the altered value should be calculated 
for the level of significance ao-

The second phase of the self-correction is performed on-line, on the basis of the 
current value of the symptom vector. This is done according to the scheme presented 
above, while in the event that an error occurs, the current value of the symptom 
vector (28) is inserted into the appropriate place in the elements of random samples 
(26) and (27) in order to check conditions (63)-(64) and (69). In view of the 
likely incidental nature of such an event, it is not necessary to update the levels of 
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significance. For this same reason one may recommend at least doubling exponents 
(67) and (72). If the deactualization parameters used in forecasts are other than one, 
the prediction algorithm on its own accord adjusts itself to the on-line self-correction 
procedure. 

The concept presented above for the self-correction of the system designed in Sec­
tions 3 and 4 makes it possible to eliminate off line the non-representative elements 
obtained in random samples (26)-(27), and adapt on line to changing conditions. 

6. EXPERIMENTAL VERIFICATION 

The proper operation of the statistical inference system worked out in this paper has 
been verified experimentally. The supervised object was a mechanical system, sub­
jected to a robust time-optimal control [10,12,15,17], whose dynamics are described 
by the differential inclusion 

meH(y(t)Mt),t) + u(t), (73) 

where y expresses the position of the object, u is a control with values limited to the 
interval [—1,1], and the function H represents a multi-valued discontinuous model 
of resistance to motion in the form 

H(y(t),y(t),t) =v(y(t),y(t),t)G(y(t)), (74) 

while v denotes a continuous mapping, and G is a piecewise continuous function, 
additionally multivalued at the points of discontinuity. In the event that resistance 
to motion is omitted, i. e. when H = 0, inclusion (73) is reducible to a differential 
equation expressing Newton's second law of dynamics. This is a problem of funda­
mental importance in the control of industrial manipulators and robots. The random 
time-optimal control takes on the values +1 or —1, depending on where among the 
distinguished sets the system state is located; for details see [10,12,15,17]. The 
symptom vector was assumed in the following form: 

Z(-) = 
KOI 
\H(-)\ 

m\ J 
(75) 

and therefore its coordinates designate successively the absolute values of control, 
resistance to motion, and velocity. Diagnosis consisted in recognizing two assumed 
types of faults. The first was assumed to be the reduction of the maximum absolute 
value of the admissible control by the value Au G [0,1], which in practice indicates 
a fault in the drive system. The second type of diagnosed fault was taken to be an 
increase in resistance to motion (its values are strongly dependent on velocity); in 
practice, this would indicate that the displacement mechanisms are malfunctioning. 
Thus the first type of fault to be diagnosed entailed recognizing changes in the value 
of a single coordinate of the symptom vector, while the second involved the relations 
among particular coordinates. In order to calculate the values of the detection and 
diagnosis parameters, it was assumed that ai /bi = a2/b2 = 50, whereas in the 
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case of prediction the anticipation parameters came to 100, and the deactualization 
parameters were 0,98 (prediction of detection) and 0,95 (prediction of diagnosis). 
The remaining quantities were generated in accordance with the suggestions made 
in Sections 3 - 5 . 

The results of these experiments verified the concept presented in this paper and 
confirmed the proper functioning of the statistical inference system here designed. 
In cases where the manifesting symptoms were abrupt, the malfunction of the device 
was promptly discovered and correctly recognized within the scope of detection and 
diagnosis. Figure 1 illustrates the values of the detection statistic So and diagnosis 
statistic Si obtained in such a case and their forecasts. If, on the other hand, the 
fault was accompanied by a slow progression of symptoms, it was forecasted with 
a correct indication of the type of fault about to occur (prediction), and at the 
appropriate moment it was discovered and recognized within the scope of detection 
and diagnosis (see Figure 2). Self-correction also operated properly, preliminarily 
eliminating nonrepresentative elements of the random samples and later adapting 
the system to variable operating conditions. 

The experience gathered from these experiments has made it possible to formulate 
a number of conclusions pertaining to application. 

During the application of the system presented here, it may prove advantageous 
for the purpose of prediction to limit the values of the statistic So. In such case, the 
following quantities should be treated as observations: 

min(50(a;, 1), 60), min(50(a;, 2), b0),..., min(50(cO, j ) , b0), (76) 

given that bo > 0; this means the upper boundary of the statistic So to the number 
bo. The purpose of this conception is to eliminate erroneous indications of predic­
tion resulting from the mere shifting of the symptom vector from areas assigned to 
exceptionally large values of the statistic 5o to regions with values which, though 
indeed smaller, do not in fact give grounds to presume that a fault has occurred. 
A multiple of the critical value <2o can be proposed as the constant bo, specifically 
bo = 10ao- (In Figures 1 and 2 one can see the impact of the boundary bo = 2 on 
the forecast of the statistics So.) 

From the practical point of view, it may also prove advantageous to bound the 
dimension of the symptom vector Z, for the purposes of individual diagnosis tests, 
to only those coordinates which are of essential significance for the recognition of 
the given type of fault. This means that for every k = 1,2,. . . , d the definition of 
statistic (29) should be generalized to the form 

Sk(uJ) = fk(9k(Z(u,j))), (77) 

where Qk : Mn —> Mnk (n^ £ {1 ,2 , . . . , n - 1}) is a mapping of the spatial projection 
Mn onto the subspace Mnk composed of the previously mentioned coordinates of the 
symptom vector that are essential for the given type of fault. Then /*. : Mnk -* M 
and - in accordance with Table 1 - the sizes of the random samples (26) are subject 
to reduction. 

For those types of diagnosed faults which are not preceded by clear-cut symptoms, 
prediction can be omitted. 
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Fig. 1. The fault detection process with abrupt changes. 
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Fig . 2. The fault detection process in the case of slowly progressive symptoms. 
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7. CONCLUSIONS 

In the present paper the concept of a statistical fault detection system has been 
presented for detection, diagnosis, and prediction associated with these two func­
tions. It is intended for application in real time, while the device under supervision 
is performing its usual technological operations. In the statistical inference system 
here designed, the successive availability of the symptom vector has been assumed, 
that is, of a finite number of variables whose current values and/or the relations 
between them are dependent on the technical state of the device being supervised. 
The exact form of these relations need not be given a priori - its identification 
constitutes an integral part of the procedure here proposed. No limitations have 
been introduced on the form of the statistical patterns characterizing proper work­
ing conditions and the types of faults to be diagnosed; in particular, allowance is 
made for the existence of local extremes. Detailed familiarity with the model of the 
dynamic system being supervised is likewise not required. Allowance is also made 
for the simultaneous occurrence of several different types of faults to be diagnosed. 
The system here presented has the capacity to detect and recognize changes in the 
values of particular coordinates of the symptom vector, and especially - due to the 
application of kernel estimators - the complex qualitative and quantitative relations 
existing among them. These changes may be abrupt, or - thanks to prediction -
slowly progressive. A procedure has also been introduced to eliminate less credible 
data and adapt the system to variable working conditions. Finally, the demands on 
the automatic control system executing the algorithm here designed do not exceed 
the capacities of contemporary devices sufficiently advanced to apply fault detection 
procedures. The possibilities of modern systems in practice limit the dimension of 
the symptom vector to 7 - 9 , while due to the global probability of error the number 
of types of faults to be diagnosed should not exceed 3 - 5 . The material presented 
above is documented by mathematical theorems given in the appendices. 

The present paper provides a complete algorithm enabling the construction of a 
usable fault detection system in respect to statistical inference regarding the current 
value of the symptom vector. This places the following demands on the designer: 

(A) defining the symptom vector Z on the basis of the technological conditions 
and the available methodology [2,5,9,14,18,24]; 

(B) distinguishing d types of faults foreseen for diagnosis; 

(C) specifying the quotients a i /b i , a 2 / b 2 , . . . , a^/b^ representing the ratio of eco­
nomic losses resulting from neglecting particular types of faults to be diagnosed 
against the corresponding false alarms; 

(D) fixing the anticipation of the forecasts s0, s i , . . . , Sd on the basis of technological 
requirements; it is suggested that relation (59) be fulfilled; 

(E) obtaining experimentally the sequence of values of the symptom vector when 
the system is operating properly (27) and when the particular types of faults 
to be diagnosed are occurring (26). 

At that point - according to the design here presented - the following steps should 
be taken: 
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(F) using the foregoing sequences, specify the kernel estimators of the density 
functions / o - / i , . . - - / d (following the instructions given in Section 3.1), and 
therefore the forms of the statistics So, S i , . . . , Sd] 

(G) on the basis of the results obtained at items (E) and (F), calculate the se­
quences of values of the random variables / 0 o Z, / i o Z , . . . , fd o Z assuming the 
proper operation of the system, and the variables f\ o Z, f2 o Z , . . . , fd°Z when 
respectively the 1st, 2nd,. . . , dth type of fault to be diagnosed is occurring2; 

(H) using these sequences, define the kernel estimators of the density functions 
(Section 3.1) and the distribution functions (Section 3.2) of the variables / i oZ, 
f2 o Z , . . . , fd o Z when the system is operating properly, and when respectively 
the 1st, 2nd,... ,dth type of fault to be diagnosed is occurring; 

(I) applying algorithm (38) - (39), calculate the critical values ai , a 2 , . . . , a^; 
(J) by means of the sequences obtained at item (G), specify - applying algorithm 

(49) - (50) - the kernel estimator of the quantile of the random variable fo° Z 
when the system is operating properly, and therefore the critical value ao\ the 
order of the quantile can be assumed on the basis of formula (52); 

(K) as described in Section 5, establish the procedure for self-correction and per­
form the operations in the off-line phase; 

(L) based on the sequences of values of the random variables /o o Z, f\ o Z , . . . , 
fd° Z for the case of proper system operation, as calculated at item (G), fix 
the parameters of the prediction model (Sections 3.4 and 4.3) in the detection 
sense and for the individual types of faults to be diagnosed. 

When the fault detection system is working in real time, after obtaining the succes­
sive values of the symptom vector, one proceeds in turn to: 
(M) obtain the current values of the statistics So, Si, • • •, S^, and then verify detec­

tion conditions (46) or (47), and diagnosis conditions (30) or (32); 
(N) calculate the forecasts for these statistics and check the prediction conditions 

in the detection sense (54) or (55) and diagnosis sense (57) or (58); 

(0) update the prediction models (following the instructions in Sections 3.4 and 
4.3); 

(P) in the event of erroneous indication, improve the procedure for on-line self-
correction (Section 5). 

The calculation algorithms for items (F) - (P) have been fully presented in Sec­
tions 3 - 5 of this article. References have also been given to the literature, enabling 
the future creation of more sophisticated individualized versions. 

Finally, the material presented here can also be designed using kernel estima­
tors in their conditional version [21]. In the event that particular coordinates of 
the symptom vector should prove to be significantly dependent on other factors of 
a variable nature (e.g. environmental temperature), this may lead to a major im­
provement in the system's practical properties. This problem will be investigated in 
future research projects. 

2If - for the sake of example - Z Q , Z Q , . . . >z™° m e a n s a n mo-element sequence of the symptom 
vector Z for proper operating conditions, then the sequence of values of the random variable e. g. 
fk°Z assuming such conditions should be understood to have the values fk{zo), fk{zo), • • • )fk{z™0)-
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APPENDICES 

Appendix A: Proof of the optimality of the critical value for the diag­
nosis tests 

In this appendix it will be shown that the optimal - in the Bayes sense - critical 
value for the kth diagnosis test is given as the solution of equation (34). 

The basic task of statistical decision theory [3] is the optimal selection of one 
element from among all possible decisions on the sole basis of probabilistic informa­
tion about the state of nature (reality), especially when its actual state is unknown. 
Let the following be given: JV - a non-empty set of possible states of nature, V - a 
non-empty set of possible decisions, and the loss function £ : N xV —riRU{±oo}, 
in which its value £(v, S) is interpreted as losses resulting from making the decision S 
while in reality the state v is occurring. If the probability space (J\f, S, V) is defined 
on the set JV, and for every S G V the integral fj^£(v,S)dV(v) exists, then the 
mapping £b :V —riRU{±oo} given as 

£b(S)= f £(v,S)dV(v) (78) 
JN 

is called the Bayes loss function. Every element 5b (zV such that 

£b(Sb) = inf £b(S) (79) 
<5ED 

is known as a Bayes decision, while the above procedure is known as the Bayes rule. 
Its underlying purpose is therefore to minimize the expected value of losses. 

In the diagnosis problem here under consideration, for any fixed index k, it is 
therefore assumed that the set of states of nature J\4 is two-element: Vk - the 
occurrence of the fcth type of fault to be diagnosed, and v0 - proper system operation. 
Similarly, the set of decisions that can possibly be made Vk takes on the form: 
Sk - accepting the hypothesis Hk stating that the kth type of fault to be diagnosed 
has occurred, and So - accepting the hypothesis Ho representing proper operation. 
Therefore, if a* > 0 and b^ > 0 mean the losses incurred by neglecting the kth 
type of fault and the corresponding false alarm respectively, then the loss function 
£ assumes the form 

Є(v,ő) = { 

0 when the state Vk occurs and the decision Sk is made 
0 when the state i/n occurs and the decision So is made 

Bk when the state Vk occurs and the decision So is made 
bk when the state v0 occurs and the decision Sk is made. 

(80) 

If the decision 6k is taken, then the value of Bayes loss function (78) is 

eb(Sk) = akak, (81) 

whereas in the case of the decision So: 

eb(So) = bkpk, (82) 
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while 

ak = Pk({uen:Sk(uJ)eAk}) = Pk({uen:fk(Z(uJ))<ak}) (83) 

pk = Po({uen:Sk(uJ)eBk}) = P0({uen:fk(Z(ujJ))>ak}) 
= 1 - P0({u e n : fk(Z(uJ)) < ak}), (84) 

where Pk and Pn denote in succession the probabilities in the case of the occurrence 
of the kth type of fault to be diagnosed and for proper working conditions. According 
to the principle of the Bayes rule (79), the decision 6k should be made if akak < bkfik, 
whereas the decision 5Q whenever 3kak > bk(3k. The critical value ak is thus to be 
specified in such a way as to fulfill the condition 

3kak = bk/3k, (85) 

i.e. ultimately, after taking into account dependencies (83)-(84): 

Po({u e n : fk(z(uj)) < ak}) + ^Pk({u e n : fk(Z(uJ)) < ak}) = 1. (86) 
bk 

The foregoing condition is equivalent to equation (34), whose verification was the 
purpose of this section. 

Append ix B: Proof of the formal correctness of the procedure for fault 
diagnosis 

Theorem 1. Let: 
(A) c> 0; 
(B) X, FOJ Y\ represent n-dimensional random variables, defined on the same prob­

ability space; their distributions have density functions; 
(C) fx denote a density function of the distribution of the random variable X, 

while fx is its strongly consistent kernel estimator, calculated on the basis of 
an rax-element random sample, with the application of a kernel such that the 
inverse image of any real number is a zero-measure set; 

(D) the mappings fx and fx be Borelian; 
(E) a e M constitute a unique solution of the equation 

FfxoY0(a) + cFfxoYl (a) = 1, (87) 

while F/xOy0 and Ffx0yl denote distribution functions of the random variables 
fx ° io and fx °Y\, respectively; 

(F) a e M be a solution of the equation 

PfxoY0(*)+cFfxoYl («) = !> (88) 

where Ft oY and Ft oYi represent kernel estimators of the distribution func­
tions of the variables fx°Y0 and fx o Yi, calculated on the basis of ran­
dom samples with the sizes ran and m\, while in both cases the values of the 
smoothing parameters are dependent on their sizes in accordance with condi­
tions (11)-(12). 
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Then, with probability 1: 
lim d -= a; (89) 

TllX ,7710.7711->oo 

therefore, a is a strongly consistent estimator of the quantity a. 

P r o o f . From the strong consistency of the estimator fx it results that with 
probability 1: 

fx°Y0
m^°°fxoY0. (90) 

This implies the weak convergence, and consequently the convergence of the distri­
bution functions 

FfxoY0(t)-FfxoY0(t)
m^°°0 (91) 

at the points of continuity of the mapping FfxoYo. 
The following dependence, in turn, is true: 

|^-oy„(')-i;>x.yo(')| = | / ' 4 o r 0 ( s ) d s - / ' //*oy0(*)ds 
1 ' K—CO J— CO 

/

t . . /"CO . 

IW*) - //x.y.WP - / 4oy0W - 1/xoy„Wjd-. (92) 
-co ' ' J— CO ' ' 

where ft oY and fs oY denote the density function of the random variable fx ° io 
and its kernel estimator, respectively. (The existence of this function results from 
Assumptions (B)-(C) on the basis of the Radon-Nikodym Theorem [4].) If condi­
tions (11) - (12) are fulfilled, then the right-hand side of inequality (92) is convergent 
to zero with probability 1, thanks to the strong consistency of the kernel estimators 
of the density functions in the norm L\ [6]. This entails the convergence of the left 
side as well, i.e. 

^ o n W - I W o W ^ O (93) 

with probability 1. 
Now: 

4 o y 0 W " FfxoYo(t) = FfroYo® - FfxoYo® + FfxoY0(*) " *>*oy0(t); (94) 

thus, thanks to formulas (91) and (93), it results that with probability 1 

^ o y o W - ^ ° ^ W m X ^ ° ° 0 (95) 

at the points of continuity of the mapping FfxOY0. 
Analogously, the following dependence is true with probability 1: 

^ / x . y 1 ( - ) - - 7 / - o y . ( * ) m x - - V > o o 0 (96) 

at the points of continuity of the mapping FfxQY1-
In order to prove thesis (89) it is necessary to show that with any fixed e > 0 and 

for sufficiently large rax, rao and rai 

ae(a-e,a + e) ' (97) 
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with probability 1. Since a distribution function of a probability measure can have 
at most a countable number of discontinuities, there exist the numbers i~, £~ G R, in 
which the mappings FfxOY0 and Ffx0Y1 are continuous, and the following condition 
is fulfilled: 

a-e<t~<a<t~<a + e. (98) 

The distribution function is also an increasing function, and so, due to the assumed 
uniqueness of the solution a, the following inequalities are true 

Ffx *Y0 (n + cFfx oYl (r) < 1 (99) 

FfxoYo(n+cFfxoYl (n > i, (ioo) 

i.e., thanks to formulas (95) and (96), for sufficiently large rax, ^ o and mi , with 
probability 1 there also occurs 

FfXoYo(n+cFfxoYi(n<i (ioi) 
FfxoY0(t*) + cFfxoYi(n>l, (102) 

which - taking into account the form of equation (88) and the continuity of the kernel 
estimator of the distribution function - directly establishes the truth of condition 
(97), and consequently of the thesis to be proved. • 

It results from the foregoing theorem - by means of obvious replacements - that 
according to the statement made in Section 4.1, if a& (k =- 1,2,. . . , d) constitutes a 
solution of equation (34), then a*., as a solution of dependence (35), is its strongly 
consistent kernel estimator. 

Append ix C: Proof of the formal correctness of the procedure for fault 
detection 

Theorem 2. Let: 

( A ) c e ( O . l ) ; 

(B) X, Y represent n-dimensional random variables, defined on the same proba­
bility space; their distributions have density functions; 

(C) fx denote a density function of the distribution of the random variable X, 
while fx is its strongly consistent kernel estimator, calculated on the basis of 
an rax-element random sample, with the application of a kernel such that the 
inverse image of any real number is a zero-measure set; 

(D) the mappings fx and fx be Borelian; 

(E) a E M constitute a unique solution of the equation 

FfxoY(a)=c, (103) 

while Ffx0Y denotes a distribution function of the random variable fx ° Y\ 
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(F) a £ M be a solution of the equation 

^/*oy(&) = c, (104) 

where FjxoY represents a kernel estimator of the distribution function of the 
variable fx°Y, calculated on the basis of an m-element random sample, while 
the value of the smoothing parameter is dependent on its size in accordance 
with conditions (11)-(12). 

Then, with probability 1: 
lim a = a; (105) 

Tnx ,Tn—¥oo 

therefore, a is a strongly consistent estimator of the quantity a. 

P r o o f . Just as in the case of dependence (95), it can be shown that with prob­
ability 1: 

fy-.rC) " Ff*°vW m X ^ ° ° ° <106) 
at the points of continuity of the mapping FfxQY> Analogously to formula (97), 
one can prove that with any fixed e > 0 and for sufficiently large mx and m, with 
probability 1 there also occurs 

a€(a-e,a + e), (107) 

which ultimately states the truth of the thesis of the present theorem. • 

Thus it can be inferred that if ao represents the solution of equation (45), then an, 
being a solution of dependence (48), is its strongly consistent estimator. Reference 
was made to this fact in Section 4.2. 

(Received April 23, 2001.) 
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