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K Y B E R N E T I K A — V O L U M E 38 ( 2 0 0 2 ) , N U M B E R 3, P A G E S 3 6 3 - 3 8 2 

COUNTABLE EXTENSION OF TRIANGULAR NORMS 
AND THEIR APPLICATIONS TO THE FIXED POINT 
THEORY IN PROBABILISTIC METRIC SPACES 

OLGA HADŽIÓ , ENDRE PAP AND MIRKO B U D I N Č E V I C 

In this paper a fixed point theorem for a probabilistic ^-contraction / : S —f £, where 
(5, T, T) is a complete Menger space, T satisfies a grow condition, and T is a ^-convergent 
t-norm (not necessarily T > T L ) is proved. There is proved also a second fixed point 
theorem for mappings / : S —>> 5, where (5, T, T) is a complete Menger space, T satisfy a 
weaker condition than in [13], and T belongs to some subclasses of Dombi, Aczel-Alsina, 
and Sugeno-Weber families of t-norms. An application to random operator equations is 
obtained. 

1. INTRODUCTION 

The origin of triangular norms was in the theory of probabilistic metric spaces, in 
the work K. Menger [9], see [4, 7, 14]. It turns out that t-norms and related t-
conorms are crucial operations in several fields, e.g., in fuzzy sets, fuzzy logics (see 
[7]) and their applications, but also, among other fields, in the theory of generalized 
measures [7, 11, 17] and in nonlinear differential and difference equations [11]. 

We present in this paper some results on t-norms which are closely related to the 
fixed point theory in probabilistic metric spaces, see [4]. The first fixed point theorem 
in probabilistic metric spaces was proved by Sehgal and Bharucha-Reid [15] for 
mappings / : S —> 5, where (S, T, T M ) is a Menger space, where T M = min. Further 
development of the fixed point theory in a more general Menger space (5, T, T) was 
connected with investigations of the structure of the t-norm T. Very soon the problem 
was in some sense completely solved. Namely, if we restrict ourselves to complete 
Menger spaces (S,T,T), where T is a continuous t-norm, then any probabilistic 
^-contraction / : S —r S has a fixed point if and only if the t-norm T is of if-type, 
see [4]. 

We investigate in this paper the countable extension of t-norms and we introduce 
a new notion: the geometrically convergent (briefly g-convergent) t-norm, which is 
closely related to the fixed point property. We prove that t-norms of JI-type and 
some subclasses of Dombi, Aczel-Alsina, and Sugeno-Weber families of t-norms are 
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geometrically convergent. We prove also some practical criterions for the geometri­
cally convergent t-norms. 

A new approach to the fixed point theory in probabilistic metric spaces is given 
in Tardiff's paper [16], where some additional growth conditions for the mapping 
T : S x S -» V+ are assumed, and T > T L . V. Radu [13] introduced a stronger 
growth condition for T than in Tardiff's paper (under the condition T > T L ) , which 
enables him to define a metric. By metric approach an estimation of the convergence 
with respect to the solution is obtained, see [4]. 

We prove in this paper a fixed point theorem for a probabilistic g-contraction 
/ : S -¥ S, where (5, T, T) is a complete Menger space, T satisfies Radu's condition, 
and T is a ^-convergent t-norm (not necessarily T > T L ) . We prove a second fixed 
point theorem for mappings f : S -¥ S, where (5, T, T) is a complete Menger 
space, T satisfy a weaker condition than in [13], and T belongs to some subclasses 
of Dombi, Aczel-Alsina, and Sugeno-Weber families of t-norms. An application to 
random operator equations is obtained. 

Notions and notations can be found in [4, 7, 11, 14]. 

2. TRIANGULAR NORMS 

A triangular norm (t-norm for short) is a binary operation on the unit interval [0,1], 
i.e., a function T : [0, l ] 2 -» [0,1] which is commutative, associative, monotone and 
T(x, 1) = x. t-conorm S is defined by S(x, y) = 1 — T( l — x, 1 — y). 

If T is a t-norm, x G [0,1] and n G N U {0} then we shall write 

» 1 if n = 0, 

T [XT ~ >x) otherwise. 

Definition 1. A t-norm T is of if-type if the family (x^ )neN is equicontinuous 
at the point x = 1. 

A trivial example of a t-norm of if-type is TM- There is a nontrivial example of 
a t-norm T such that (x^ )neN is an equicontinuous family at the point x = 1. 

Example 2. Let T be a continuous t-norm and let for every m G N U {0}: 

7m = [ l - 2 - m , l - 2 - m - 1 ] . 

If 

T(x,2/) = 1 - 2 " m 4- 2 " m - 1 f (2m + 1(x - 1 + 2~m) , 2m+1(y - 1 + 2~m)) 

for (x,y) G Im x Im and T(x,y) = min(x,y) for (x,y) g \J Imxlm then the 
mGNU{0} 

family (x^ )neN is equicontinuous at the point x = 1, i.e., T is a t-norm of .ff-type. 
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Proposition 3. ([4]) If a continuous t-norm T is Archimedean than it can not be 
a t-norm of ff-type. 

A method of construction a new t-norm from a system of given t-norms is given 
in the following theorem, see [4, 7]. 

Theorem 4. Let (Tk)keK be a family of t-norms and let ((a*, Pk))keK be a family 
of pairwise disjoint open subintervals of the unit interval [0,1] (i.e., K is an at most 
countable index set). Consider the linear transformations ifik • [a*,/?*.] —•> [0,1],k G 
K given by 

( x u-ak 

Vk(u) = - —. 
Pk -otk 

Then the function T : [0, l ] 2 -> [0,1] defined by 

m, ^ J V^iTkiVkWitpkiv))) if (x,y) € (a*,/3*)2, 
T(x,y) = < 

I min(x,y) otherwise, 

is a triangular norm, which is called the ordinal sum of (Tk)keK and will be denoted 
byT = (<(ak,pk)iTh>)keK. 

The following proposition was proved in [12]. 

Proposition 5. A continuous t-norm T is of iiI-type if and only if 
T = (< (ak,Pk),Tk >)keK and sup/3* < 1 or sup a* = 1. 

Remark 6. If T = (< (a*,/?*.),T* >)keK and sup/?* < 1 or supa* = 1, then 
T is of FI-type for any summands T* (not only for continuous and Archimedean 
summands T*, k G K, see [12]). Hence , if 

T = ( < ( l - 2 - * , l - 2 - ' = - 1 ) ) f > ) f c 6 N u { 0 } 

we have sup a* = sup(l - 2~k) = 1 (cf. Example 2). 

For an arbitrary t-norm of if-type we have by [4] the following characterization. 

Theorem 7. Let T be a t-norm. Then (i) and (ii) hold, where: 

(i) Suppose that there exists a strictly increasing sequence (6n)nGN from the 
interval [0,1) such that lim bn = 1 and T(bn,bn) = bn. Then T is of Ff-type. 

n—>oo 

(ii) If T is continuous and of iiI-type, then there exists a sequence (&n)neN as in 

(i). 

Prom the proof of the above theorem it follows that the condition of continuity 
of whole sequence (x^ )neN can be replaced by the condition that the function 
ST(X) = T(x7x) (x G [0,1]) is right-continuous on an interval [6,1) for b < 1. 
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Theorem 8. Let T be a t-norm such that the function ST(X) =T(X,X) (X G [0,1]) 
is right-continuous on an interval [6,1) for 6 < 1. Then T is a t-norm of LI-type if 
and only if there exists a sequence (bn)ne^ from the interval (0,1) of idempotents of 
T such that lim bn = 1. 

n—>oo 

In particular, for continuous t-norms the following characterization holds, [4]. 

Theorem 9. Let T be a continuous t-norm. Then the following are equivalent: 
a) T is not of FI-type. 
b) There exist a r G [0,1) and a continuous strictly increasing and surjective 

mapping (paT : [ar, 1] —• [0,1] such that 

T(x,y) = (faT^aT(
x)'klPaT(y)), for every x,y > a T , 

where the operation * is either Tp or TL, where Tp(x,y) = xy and TL(-C,2/) = 
max(x + y — 1,0). 

3. COUNTABLE EXTENSION OF t-NORMS 

An arbitrary t-norm T can be extended (by associativity) in a unique way to an 
n-ary operation taking for ( x i , . . . , x n ) G [0, l ] n , n G N, the values T(x\,... ,xn) 
which is defined by 

0 n / n - l \ 
Ĵ  X{ = 1, L xi ~ I I J_ -E»j Xn 1=1 [X\,. . . , Xn). 

i=l i=l \i=l J 

Specially, we have T\,(x\,..., xn) = max f ^ X{ - (n - 1), 0 j and T M ( ^ I , . . . , xn) = 

mm(xi,...,xn). 
We can extend T to a countable infinitary operation taking for any sequence 

(x n ) n G N from [0,1] the values 

oo n 

X Xi = lim X Xi. (1) 
.=i "^°° i=i 

n 
The limit on the right side of (1) exists since the sequence ( T Xi)ne^ is non-

i = i 
increasing and bounded from below. 

Remark 10. An alternative approach to the infinitary extension of t-norms can 
be found in [10]. 

In the fixed point theory it is of interest to investigate the classes of t-norms T 
and sequences (x n ) n G N from the interval [0,1] such that lim xn = 1, and 

n—i>oo 

oo oo 

lim X Xi = lim X xn+i = 1. (2) 
" ' " " *~>fc-i 
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n 

In the classical case T = TP we have (TP)n
=1 = \[ x{ and for every sequence (xn)neN 

i=l 
oo 

from the interval [0,1] with £ (1 - xn) < oo it follows that 
i = i 

oo 

lim ( r P ) £ n = lim TTa?< = 1-
n-»oo V ^ J l - n n - > o o A A 

i=n 

Namely, it is well known that 

oo oo oo n xi>0 <* \imT\xi = l & y2(l-Xi)<oo. 
n-^oo J--i- ..* 

i=l i=n -=1 

The equivalence 

0 0 oo 

V ( 1 - xi) < oo & Km T Xi = l (3) 
--—/ n - > o o . Z „ 

holds also for T^Tj^. Indeed 

(TL)n
= 1^ = max Ij^xi - (n - l) ,o) = max I ^fa - 1) + 1,0J , 

oo 

and therefore J ] (1 — x n )<oo holds if and only if 
71=1 

lim (Tj,)£nXi = max ( lim f](Xi - 1) + 1,0 ) = 1. 
n—voo \ n->oo -----' / 

\ i = n / 

n 
For T > TL we have T xi > (rL)i_-i-Ei and therefore for such a t-norm T the 

i=l 
implication 

> (1 - Xi) < oo => lim T x- = ! 
-"---' n->oo •___ 
i = l * - n 

holds. 

We shall need some families of t-norms given in the following example. 

Example 11. (i) The Dombi family of t-norms (TXD)AG[O,OO] i s defined by 

" rD(x,») ifA = o, 
T?(x,y)=l 

Tы(x,y) ifЛ = oo, 
l/ЛN " -

Ą^PШ *—> 
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Tïь(x,y) = { 

(ii) The Schweizer-Sklar family of t-norms (Tjfs)Ae[-oo,oo] is defined by 

TM(x,y) if A = -oo, 

( _ * + - , * - _ ) - / * if A e (-oo,0), 

TP(x,y) if A = 0, 

(max(xA + yx - 1,0))1 / A if A e (0, oo), 

To(x,y) if A = oo. 

(iii) The Aczel-Alsina family of t-norms (TAA)x^[o,oo] is defined by 

if A = 0, 

if A = oo, 

if A e (0,oo). 

(iv) The family ( T A

3 W ) A e [ _ i ) + 0 0 ] of Sugeno-Weber t-norms is given by 

Tn(x,y) ifA = - l , 

T^(x,y) = { 

Tv(x,y) 

TM(x,y) 

e - ( | l o g x | A + | l o g y | y / A 

Tx

sw(x,y) = { Tp(x,y) if A = oo, 

ín x + y~ 1 + Axy\ 
m a x ( 0 ' TTA J otherwise. 

The condition T > TL is fulfilled by the families: 1. Tf s for A G [-00,1]; 2. T f w 

for A G [0,oo]. 
On the other side there exists a member of the family (TjP)AG(0>oo) which is 

incomparable with TL, and there exists a member of the family (Tj(VA)<xG(o>0o) which 
is incomparable with TL. 

We shall give some sufficient conditions for (2). 

Proposition 12. Let (xn)ne^ be a sequence of numbers from [0,1] such that 
lim xn = 1 and t-norm T is of iiT-type. Then (2) holds. 

n—•oo 

P r o o f . Since t-norm T is of/I-type for every A G (0,1) there exists S(X) G (0,1) 
such that 

x > S(X) => T x > ! - A 

i = i 

for every p G N. Since lim xn = 1 there exists no (A) G N such that xn > S(X) for 
n—>oo 

every n > no (A). Hence 

i = l t= l 

> 1 -A , 
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for every n > no (A) and every p G N. This means that (2) holds. • 

Remark 13. If T is a t-norm such that there exists a sequence (xn)neN from the 
CO 

interval (0,1) such that lim xn = 1 and lim T X{ = 1, then T is continuous at 
n—•oo n—yoo . _ 

i=n 

the point (1,1). Indeed, let A G (0,1) be given. Then there exists nn(A) e N such 
that 

oo 

T Xi > 1 - A. 

i=no(A) 

oo 

Since T(x n o ( A ) ,x n o ( A ) + 1 ) > T *- > 1-A we obtain that x,2/ > max(xn o ( A ) ,xn o ( A ) + 1) 
i=no(A) 

implies T(x,y) > 1 — A. 
For some families of t-norms we shall characterize the sequences (x n ) n G^ from 

(0,1], which tend to 1 and for which (2) holds. 

L e m m a 14. Let T be a strict t-norm with an additive generator t, and the corre­
sponding multiplicative generator 8. Then we have 

fxi = t-Ҷf^t(xi) 
І=l и = l 

or 
oo 
ŢXІ = ~1 [Y[ (XІ) 
i=l Ki=l 

The preceding lemma and the continuity of the generators of strict t-norms imply 
the following proposition. 

Proposition 15. Let T be a strict t-norm with an additive generator t, and the 
corresponding multiplicative generator 9. For a sequence (xn)n^ from the interval 
(0,1) such that lim xn = 1 the condition 

n—i»co 

lim y ) t ( x i ) = 0 > 
n—voo -t—* 

or the condition 

n—ЮO ' 
i=n 

lim f[0(xi) = l, 
n—>oo ------

holds if and only if (2) is satisfied. 

n—»»oo • 
i=n 



370 O. HADŽIC, E. PAP AND M. BUDINČEVIC 

Example 16. Let (Tx*)xe(o,oo) be the Dombi family of t-norms and (xn)neN be a 
sequence of e 
equivalence: 
sequence of elements from (6,1] such that lim xn = 1. Then we have the following 

n-»oo 

S(v) 
A 

< oo ^ lim (Tл

D)£nж. = 1. 

For a t-norm TJP, A G (0, oo), the multiplicative generator 0^ is given by 

and therefore with the property 0^(1) = 1. Hence 

CO oo 

iK(*«) = I K ^ 
i=n i=n 

-Y°° (±^±)x 

= g A^fi=n

K *i ' 

and therefore the above equivalence follows by Proposition 15. Since lim xn = 1, 
n — > c o 

we have that 

( J ~ (1 — xn)
x as n -r oo. 

\ Xn ) 

Hence 
oo co / 1 _ \ * 

£(l-zn)A<oo # E l 1 - ^ ) <°°' 
n=l n=l \ X n / 

which implies the equivalence 

CO 

V ( l - xn)
x < oo & lim (TP)^ = 1. 

' -f n—>-oo 
n = l 

Example 17. Let (T,AA)AG(0)OO) be the Aczel-Alsina family of t-norms given by 

rA A (x ,2/) = e-(l l o^lA+l l o^lA)1 / A 

and (xn)neN be a sequence of elements from (0,1] such that lim xn = 1. Then we 
n—>co 

have the following equivalence 
oo 

£(1-*,)A<°° # JimjTfXn*-1-
1 = 1 

For a t-norm T A A , A G (0, oo), the multiplicative generator 0 A A is given by 

0£A(x) = e-(-log*)A 
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and therefore with the property 0AA(1) = 1. Hence 

oo oo 

IKA(*.) = ne- (- , o g i°* 
i=n i=n 

Since lim Xi = 1 and logx* ~ Xi — 1 as i -> oo by Proposition 15. the above 
t—>oo 

equivalence follows. 
For t-norms T f w , A G (—1, oo] we have the following proposition. 

Proposition 18. Let (#n)neN be a sequence from (0,1) such that the series 
oo 

^2 (1 — xn) is convergent. Then for every A G (—1, oo] 
n = l 

l i m ( r A

s w ) ~ n x i = l. 
n—>oo 

P r o o f . An additive generator of T f w for A G (-1,0) is given by 

We shall prove that for some n\ G N and every p G N 

JJH-W.) = «P ( | > { ^ r ) • Kg^Sj) > -' (4) 

for every n > n\ since in this case 

(rA

sw)?=1*n+i_i = ( ^ D " 1 (n^ s w(^n+i-i)) • (5) 

We have to prove that for some n\ G N and every p G N 

- I^TTA) g l o s C ^ + T 1 ) <* for every n > n i ' (6) 

since (6) implies (4). From lim (1 — xn) = 0 it follows that 
n—>oo 

^ ( ^ T T A ^ - 1 ) ) - ^ " - 1 ) 

and therefore the series 

~iog(i ЬõfH^T-ïл1*"-1') 
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is convergent. Hence it follows that there exists n_ G N such that (4) holds for every 
n > n_ and every p G N, and this implies (5). 

The above proposition holds also for A > 0 since in this case T f w > T_. ---
It is of special interest for the fixed point theory in probabilistic metric spaces to 

investigate condition (2) for a special sequence (1 — qn)neN for q G (0,1). 

Proposition 19. If for a t-norm T there exists qo G (0,1) such that 

oo 

lim T ( l - 9 o ) = l, (7) 
n—»oo ._ i = n 

then 
oo 

lim T (i - <r) = i, 
i—n 

for every q G (0,1). 

P r o o f . If q < q0 then 1 — qn > 1 — qn for every n G N and therefore (7) implies 

oo oo 

lim T ( l - < f ) > I™ T ( l - ? 5 ) = 1-
n->oo . „ n->oo „__ 

г = n г=n 

Now suppose that q > qo- First, we consider the special case when q2 = q0, i.e., 
V^o = q > qo- Then 

oo / oo oo 

T ( i - < r ) > T T ( i - 9 2 i ) , T ( i - 9 2 i + 1 ) 
i=2m \i=m i=m 

f oo oo . \ 

> T ( T ( l - ? o ) , T ( l - 9 o ) ) 
\ i = m i = m / 

and since T by Remark 13 is continuous at (1,1) it follows that 

oo 

lim T (1-9*) _ T ( 1 , 1 ) = 1. 

Therefore 
oo 

lim T (i - 9') > l i m T (i - gl) = i-
oo 

r 
m—î>oo . 

Now we consider an arbitrary q > qo from the interval (0,1). Since for q > qo there 
exists m G N such that q% ™ > q we reduce this situation on the case of the m-
iterations of the preceding procedure. ---
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Definition 20. We say that a t-norm T is geometrically convergent (briefly p-
convergent, in [4] called g-convergent for some q G (0,1)) if 

lim T ( l - g 2 ) = l. 
n-+°°i=n 

for every q G (0,1). 

oo 

Since lim (1 - qn) = 1 and £ (1 ~~ (1 ~ Qn))s < °° f° r every s > 0 it follows that 
n->°° n=l 

all t-norms from the family 

U W l U U {^AA}U^ U msw} 
AG(0,oo) AG(0,oo) AG(-l,oo] 

are ^-convergent, where TH is the class of all t-norms of if-type. 
The following example shows that not every strict t-norm is ^-convergent. 

Example 21. Let T be the strict t-norm with an additive generator t(x) = 
oo 

— lo (l_x\- In this case the series ^2 t ( l — q%) for any q G (0,1) is not convergent 

since 
OO OO -. OO -j 

^ t ( l - q ) = - ^ — — = - ^ ^—. 

In the following two propositions we shall give sufficient conditions for a t-norm 
T to be p-convergent. 

Proposition 22. Let T and T\ be strict t-norms and t and t i their additive 
generators, respectively, and there exists b G (0,1) such that t(x) < t i(x) for every 
x G (b, 1]. If Ti is ^-convergent, then T is ^-convergent. 

P r o o f . Since T\ is ^-convergent we have lim (Ti)°^n(l - ql) = 1. Therefore 
n—>oo 

oo 

lim V t i ( l - < r ) = 0 . (8) 
n—VOO ——* n—юo * 

i=n 

Since there exists no G N such that 1 — qn° G (6,1] we have by the condition of the 
proposition that 

t ( l - qn) < t i ( l - qn) for every n > n0. 

oo 

n-юo І_ 

Therefore, by (8) lim ]T t ( l - q{) = 0, i.e., T is ^-convergent. 
г=n 
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Propos i t ion 23. Let T be a strict t-norm with a generator t which has a bounded 
derivative on an interval (6,1) for some b G (0,1). Then T is ^-convergent. 

P r o o f . By the Lagrange mean value theorem we have for every x G (6,1) that 

t ( x ) - t ( l ) = t ( x ) = t ' ( 0 ( x - l ) 

for some £ G (x, 1), and therefore 

CO oo 

£ t ( i - 9 0 <A-"£<r\ 
i-=zo i=io 

where M = sup x G ( M ) \tf(x)l and 1 - qio G (6,1). • 

P ropos i t ion 24. Let T be a t-norm and ^\) : (0,1] -> [0, oo). If for some S G (0,1) 
and every x G [0,1], y G [1 - S, 1] 

| r ( z , y ) - T ( s , 1)| < t % ) (9) 

then for every sequence (xn)nGN from the interval [0,1] such that lim xn = 1 and 
n—•oo 

oo 

X) ^(xn) < coj relation (2) holds. 
n=l 

For the proof see [4]. 

Corol lary 25. Let T and -0 be as in Proposition 25. If for some q G (0,1), 

CO 

^ V ( l - 9 " ) < o o 
n=l 

then T is p-convergent. 

P r o o f . Since lim (1 — qn) = 1 by Proposition 25 we obtain that 
n—i>oo 

CO 

lim T (1 - tfn) = 1. • 
г = n 

E x a m p l e 26. Let a > 0, p > 1 and zQiP : (0,1] x [0,1] -> [0, oo) be defined in the 
following way: 

. x f y - i i n n " , . . IP i f (* .»)€ (0,1) X [0,1], 
z«,P(a:,y) = < | m ( l - s ) | P 

( y if ( s , i / ) e { l } x [ 0 , l ] . 

In this case the function za>p is equal to zero on the curve which connects the points 

(1,0) and (1 - e-al/" ,1), where 1 - e""17" < 1. 



Triangular Norms in the Fixed Point Theory 375 

Let T be a t-norm such that T(x,y) > zayP(x,y) for every (x,y) e [1 - S, 1} x 
[0,1]. Then for every (x, y) G [0,1] x [1 - S, 1) 

\T(x,y)-T(x,l)\ = \T(y,x)-T(l,x)\ 

< \za,p(y,x) -zayP(l,x)\ 
a 

< 

i.e., (9) holds for 

a 

| l n ( l - y ) | " ' 

if ye[l-ő,l), 

Since 

ý{y) = { \Hi-y)\p 

0 if y = 1 

OO OO 

2>u-*"> = E е т 
П = l П = l ' v " 

oo 

E a 

n = i nP\ìn(q)\P < °°' 

T is ^-convergent. 

4. FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES 

Let A + be the set of all distribution functions F such that F(0) = 0 (F is a 
nondecreasing, left continuous mapping from E into [0,1] such that supF(x) = 1). 

The ordered pair (S, T) is said to be a probabilistic metric space if S is a nonempty 
set and T : S x S -r A + (T(p, q) is written by FPiQ for every (p,q) G S xS) satisfies 
the following conditions: 

1. FUjV(x) = 1 for every x > 0 => u = v (u, v G S). 

2. FUyV = FV)U for every u,v G S. 

3. FUiV(x) = 1 and FViW(y) = 1 =-> Fu>u.(:r + y) = 1 for u ,v ,w G 5 and x,?/ G 
1+ =[0,oo). 

A Menger space is a triple (S, T, T), where (S, T) is a probabilistic metric space, 
T is a t-norm and the following inequality holds 

FUyV(x + y) > T(FUjW(x),FWfV(y)) for every u,v,w G S and every x > 0,y > 0. 

The (e, A)-topology in S is introduced by the family of neighbourhoods 

U = {Uv(e, A)}(V),r>A)G5XR+X(0,i), 

where 
tfv(e, A) = {u | w G S, FUtV(e) > 1 - A}. 



376 O. HADŽIČ , E. PAP AND M. BUDINČEVIČ 

4.1 . Probabi l i s t ic g-contraction a n d ^-convergent t -norms 

Definition 27. ([15]) Let (S,F) be a probabilistic metric space. A mapping / : 
S -r S is a probabilistic ^-contraction (q G (0,1)) if 

FfPufP2^)>FPuP2{^) (10) 

for every pi, P2 € S and every x G E. 

By Remark 13 each ^-convergent t-norm T satisfies the condition s u p ^ ^ T(x, x) = 
1, which ensures the metrizability of the (e, A)-topology. 

T h e o r e m 28. Let (S, .T7, T) be a complete Menger space and / : 5 -> S a proba­
bilistic ^-contraction such that for some p G S and k > 0 

supx*(l - Fpjp(x)) < oo. (11) 
x>0 

If t-norm T is ^-convergent, then there exists a unique fixed point z of the mapping 
/ and z = lim fnp. 

n-+oo 

P r o o f . Let /x G (q, 1) and 5 = q/p < 1. We shall prove that (fnp)neN is a Cauchy 
sequence. Choose e > 0 and A G (0,1) and prove that there exists no(e, A) G N such 
that 

Ffnpjn+mp(e) > 1 — A for every n > nn(e, A) and every m G N. 
CO CO 

Since the series ^ Sl is convergent, there exists n\ = ni(e) G N such that ]T Sl < e. 
i = l i=n i 

Let n > n\. Then we have 

/ CO \ 

FfnpJn+mp(e) > Ffnpfn+mp I ^ ^ ^ I 

(n+m-1 \ 

zJ ^) 

> r ( r ( . - - ( T ( E / „ p , / n + l p ( ( 5 " ) , E / „ + l p ) / „ + 2 p ( « 5 " + 1 ) ) , 

(m—l)-times 

. . . , Ffn+m-lpfn+mp(S
n ) J 

> r ( T ( . . . ( T ( E p , / p ( ± ) , E p , / p ( ^ ) ) , . . . , E p , / p ( ^ ) ) . 

(m—l)-times 

Let M > 0 be such that 

z*(l - FpJp(x)) < M for every x > 0. (12) 
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Suppose that 712 is such that 

1 - M(fik)n G [0,1) for every n > n 2 . (13) 

Prom (12) it follows that 

FPJP (4r ) > x - M ^ k ) n for e v e r y n e N 

and by (13) for n > max(ni,n2) 

F / » P i / n+« p (e) > T(T(^- • • ( r ( l - M ( f i k ) n , 1 - M ( / i f c ) n + 1 ) , . . . , l - M ( / i f c r + — 1 ) . 
N v ' 

(m—l)-times 

Let 8o be such that M(^ik)s° < /A Then for every n G N 

1 - M(/z f c)n + s° > 1 - (/i*)n + 1 

and therefore for n > max(rai,n2) and ra G N 

F/.+.0pir+.o+mp(e) > T ( r ( . . . ( T ( l - M ( / r + ^ , l - M ( / r + S 0 + 1 ) , 
v v ' 

(m—l)-times 

. . . , 1 - M ( > * ) n + * 0 + m - 1 ) 

> Ť (--(***)')• 
i = n + l 

Since T is ^-convergent we conclude that (fnp)neN is a Cauchy sequence. Let z = 
lim fnp. By the continuity of the mapping / it follows that fz = z. • 

Corollary 29. Let (S,!F,T) be a complete Menger space such that T is a strict 
t-norm with a multiplicative generator 0, and / : S - > S a probabilistic g-contr action 
such that for some k > 0 and p £ S (11) holds. If there exists /J, G (0,1) such that 

lim П 0(1-/0 = 1, 
I—ЮO ------n—>oo 

г=n 

then there exists a unique fixed point x of the mapping / and x = lim fnp. 
n—i»oo 

Let 

г= и дай и {ГЛ

АА>. 
Ле(0,оо) Л€(0,оо) 
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Corollary 30. Let (S,T,T) be a complete Menger space such that T > T\ for 
some T\ G T and / : S -» S a probabilistic (/-contraction such that for some k > 0 
and p G S (11) holds. Then there exists a unique fixed point x of the mapping / 
and x = lim fnp. 

n—>oo 

Prom the proof of Theorem 28 it follows that / : S —r S has a unique fixed point 
if (11) and the condition that T is ^-convergent is replaced by the condition 

^ m T / p , / P ( ^ ) = l ( ^ e (0,1)). (14) 

Using Examples 16 and J. 7 and Proposition 18 we obtain a fixed point theorem, 
where the condition (11) is replaced by the condition 

sup In* x(l - FpJp(x)) < oo, (15) 
X>1 

for some k > 0, which under some additional conditions implies (14). 

Theorem 31. Let (S,T,T) be a complete Menger space and / : S - ) S a proba­
bilistic g-contraction. Suppose that one of the following two conditions is satisfied: 
(i) T G {T^,T^A} for some A > 0 and there exists p G S such that (15) holds, 
where kX > 1. 
(ii) T = T f w for some A G (—l,oo] and there exists p G S such that (15) holds, 
where k > 1. 

Then there exists a unique fixed point z of the mapping / and z = limn_+oo/nP-

P r o o f , (i) Suppose that snpx>iln
k x(l — Fpjp(x)) < oo, i.e., that there exists 

M > 0 such that 

In* x(l - FPifp(x)) < M for every x> 1. (16) 

Relation (16) implies that 

/ 1 \ M 

M 
= 1 - J- •* (^(0,1)). 

nk\h\p\k ^ v n 

Suppose that 1 — nkyfnu\k > 0 for every n > rin. Then 

37-" (?)a 21 I1 - ̂ i^Jfor CTery n £ -• 
By Examples 16 and 17 

0 0 / M \ 
lim T ( 1 - -rn TT ) = 1 

n - > o o ^ n ^ n*|ln/i|V 
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since for k\ > 1 

i-=l 

Hence (14) holds. 
(ii) If T = T f w for some A G (-I-00] and (16) holds for some k > 1 then (14) 

holds, since by Proposition 18, £ ) £ i ik^^k < 00 implies (14). • 

Remark 32. It is obvious by Proposition 18 that in the case (ii) the condition 
(15) can be replaced by the Tardiff's condition (see [16]) 

[ lnudFpjp(u) < 00. 

4 .2. An application to random operator equations 

Special non-additive measures, so called decomposable measures, see [11], generate 
a probabilistic metric space ([4]) on which Theorem 28 implies a random fixed point 
theorem. 

Definition 33. Let S be a t-conorm. An S-decomposable measure m is a set 
function m : A -> [0,1] such that m(0) = 0 and 

m(AuB) = S(m(A),m(B)) 

whenever A, B G A and A n B = 0. 

Example 34. Taking S L t-conorm, ft = N, A = 2N and m(E) = min(|£|/iV, 1) 
for a fixed natural number AT, where |JE7| is the cardinal number of E, we obtain that 
m is SL-decomposable measure. 

Definition 35. Let S be a left-continuous t-conorm. A set function m : A -» [0,1] 
is cr-S-decomposable measure if m(0) = 0 and 

for every sequence (_4i)iGN from A whose elements are pairwise disjoint set. 

The set function considered in Example 34 is cr-SL-decomposable. 
An S-decomposable measure m is monotone, which means that A,B G A, AC B 

implies m(A) < m(B). A measure m is of (NSA)-fcype (see [17]) if and only if s o m 
is a finite additive measure, where s is an additive generator of the t-conorm S 
(see [17]), which is continuous, non-strict, and Archimedean, and with respect to 
which m is decomposable (s(l) = 1). If (fl,A,m) is a measure space and (M,d) is 
a separable metric space, by S we shall denote the set of all the equivalence classes 
of measurable mappings X : ft -> M. An element from S will be denoted by X if 
{X(u)} € X. The following proposition is proved in [14]. 
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Propos i t ion 36. Let (Q,,A,m) be a measure space, where m is a continuous S-
decomposable measure of (NSA)-type with monotone increasing generator s. Then 
(5, J7, T) is a Menger space, where T and t-norm T are given in the following way 
(T(X,Y)=F99): 

F%9(u) = m({u | CJ G ft, d(X(u),Y(u)) < u}) = m({d(X,Y) < u}) 

(for every X,Y G S,uGlR), 

T(x,y) = s_1(max(0,s(x) +s(y) — 1)), for every x,y G [0,1]. 

Let / : ft x M —>Mbea continuous random operator. Then for every measurable 
mapping X : ft —r M, the mapping u K> f(u,X(u))(u G ft) is measurable. If 
X : ft -> M is a measurable mapping let (fX)(u) = f(u,X(u)),Lj G l l , l E l 
Hence f : S-* S. 

Corol lary 37. Let (ft,.4, m) be a measure space, where m is a continuous S-
decomposable measure of (NSA)-type , s is a monotone increasing additive generator 
of S, (M, d) a complete separable metric space and / : ft x M —> M a continuous 
random operator such that for some q G (0,1) 

m({u | u G n,d((fX)(u),(fY)(u>)) < u}) 

> m ({u | (j G n,d(X(<j),y(w)) < -}\ (17) 

for every measurable mappings X, Y : ft —> M and every u > 0. If there exists a 
measurable mapping U : ft -> M such that for some fc > 0 

sup z* (1 - m({d(U, /U) < x})) < oo 
x>0 

and t-norm T defined by 

T(z,j/) = s"1 (max(0,s(x) + s(y) - l ) , x , y G [0,1], 

is ^-convergent, then there exists a random fixed point of the operator / . 

Corol lary 38. Let (ft,*4, m) be a measure space, where m is a continuous S ^ w -
decomposable measure of (NSA)-type for some A G (—l,oo], (M,d) a complete 
separable metric space and / : ft x M -> M a continuous random operator such that 
for some q G (0,1) (17) holds for every measurable mappings X, Y : ft -» M and 
every w > 0. If there exists a measurable mapping t7 : ft —r M such that for some 
k>l 

sup In* x(l - m({d(U, fU) < x})) < oo, 
X>1 

then there exists a random fixed point of the operator / . 
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