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PARAMETRIZATION AND RELIABLE EXTRACTION 
OF PROPER COMPENSATORS1 

F E R D I N A N D K R A F F E R AND P E T R Z A G A L A K 

The polynomial matrix equation X\Dr + Y\Nr = Dk is solved for those X\ and Y\ that 
give proper transfer functions X^~lY\ characterizing a subclass of compensators, contained 
in the class whose arbitrary element can be cascaded to a plant with the given strictly 
proper transfer function NrDr

l such that wrapping the negative unity feedback round the 
cascade gives a system whose poles are specified by Dk. The subclass is navigated and 
extracted through a conventional parametrization whose denominators are affine to row 
echelon form and the centre is in a compensator whose numerator has minimum column 
degrees. Applications include stabilization of linear multivariable systems. 

1. INTRODUCTION 

1.1. Conf igurat ion a n d goals 

We consider the linear, time-invariant, closed-loop system S(F, C) in the negative 
unity feedback configuration shown in Figure 1, with P : e2 K> y2 and C : e\ H> y\ 
respectively an m x p plant and a p x m compensator. The input-error map of 
the system S (P , C) is 

Heu : u i-> e, u = U\ 
u2 

e = 
e\ 
e2 

(1) 

The external signals are the input u and the output y. The components of y are y\ 
and y2. Either P and C obeys a set of ordinary differential equations in polynomial 
matr ix fraction description (mfd), obtained by the Laplace transformation with zero 
initial conditions. Cancellation is not permitted or at least if it is carried out the 
order of the equations is changed, leading to a different system, which is set up from 
fewer independent initial conditions [10] and hence to be avoided. 

1This research has been supported by a Marie Curie Fellowship of the European Community 
programme "Improving Human Research Potential and the Socioeconomic Knowledge Base" under 
contract number HPMF-CT-1999-00347. P. Zagalak acknowledges support of the Grant Agency of 
the Czech Republic under project 102/01/0608. 
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Fig. 1. Negative unity feedback configuration. 

The task is to find a proper transfer function C for a given strictly proper transfer 
function P, and such that the closed-loop transfer function 

•Heu 
(ip + PC)-1 

C(IP + PC)'1 

-P(Im + CP)'1 

(Im+CP)'1 (2) 

is proper and has poles exclusively in the open left half-plane. A rational transfer 
function matrix P is said to be strictly proper if the limit 

lim P(s) 
s—>-oo 

(3) 

exists and is zero; P is said to be proper if (3) exists and is finite; P is said to be 
biproper if it is proper, invertible and the inverse is proper. 

If P is strictly proper and C is proper, then Im + CP and Ip + PC are biproper. 
In particular, the limit 

lim C(s)P(s) 
S—¥O0 

exists, is zero, and renders the rational matrix 

B(s) Im + C(s)P(s) 

(4) 

(5) 

biproper with B(oo) = Im. It follows that (2) is proper and its poles may be 
modified by selecting a convenient C. And this is where we turn to mfd: Xf1Yi 
for the compensator and NrD~l for the plant. The polynomial matrices (X^Yi) 
and (Nr,Dr) are respectively left and right coprime and are uniquely defined up to 
nonsingular multipliers on respectively the left and the right. The multipliers, called 
unimodular polynomial matrices, are such that their inverse is a polynomial matrix. 
The two mfds convert (5) into 

Dk(S) = Xi(8)Dr(8)+Yi(8)Nr(8). (6) 

The matrix Dk is polynomial because the right-hand side is a sum of polynomial 
matrices. Moreover, Dk is nonsingular and the roots of det Dk are the closed-loop 
poles, following the role of (5) in (2). Application related assumptions about Dk, 
X/, Dr, Yi and Nr are imposed in Definition 1.3. 
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The goals of this paper are: to recall the concept of data- and parameter-degree 
control for polynomial mfd of all proper feedback compensators whose denominator 
is row reduced with sufficiently large prescribed row degrees, to propose and justify 
an appropriate form for the conventional parametrization of such compensators, and 
to extract such a form in a numerically reliable way. 

1.2. Concepts 

A number of concepts may be introduced and exploited through the rational equation 

Im + Xf'YNrD-1 = Xr'DkD;1. (7) 

The concepts relate to the following lemma. 

Lemma 1.1. (Proper MFD, cf. Kailath [6, p. 385].) If D is column reduced, then 
ND~l is strictly proper (proper) if each column of N has degree less than (less than 
or equal to) the degree of the corresponding column of D. 

The Lemma gives a simple test for strict properness (properness) of right mfds 
provided the denominator is column reduced. It is obvious that the test can be 
dualized for left mfds and given a two-sided extension: If Xi and Dr are respectively 
row and column reduced, then Lemma 1.1 can be applied to those right-hand sides 
of (7) whose Dk is a product of two polynomial matrices that are respectively row 
reduced with the row degrees of Xi and column reduced with the column degrees of 
Dr. The extension justifies the following definition. 

Definition 1.2. (Row-Column Reducedness, cf. Callier and Desoer [3, p. 116].) An 
m x m polynomial matrix D is said to be row-column reduced if there exist m 
nonnegative integers n , called row powers, and m nonnegative integers &;, called 
column powers, such that the limit 

Dh = l imdiag[S- ' - i]^1I?(S)diag[S-* i]^1 (8) 
s—>oo 

exists and it is nonsingular. 

Statements such as "D (s) is row-column reduced with row powers r*, column 
powers ki, and highest coefficient matrix Dh" reflect that 

D(s) = diag[sr*]™ ^ h diagfs**]™ x + terms of lower degree in s. (9) 

The equation subject to this paper involves several specifications: 

Definition 1.3. (Compensator Equation, cf. Rosenbrock and Hayton [11].) A 
linear polynomial matrix equation 

Xi(8)Dr(8) + Yi(8)Nr(8) = Dk(s) (10) 

is called the compensator equation (COMP) if 
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(i) Dr and Nr are right coprime, 

(ii) Dr and Dk are square and nonsingular, 

(iii) Dr is column reduced with column degrees fci,...,fcm such that NrD~l is 
strictly proper, 

(iv) Dk is row-column reduced with row powers r\,..., rm and column powers 
& ! , . . . , Km-

The coprimeness in (i) ensures solvability for an arbitrary Dk and is conceptually 
linked to minimal realizations. The nonsingularity in (ii) follows by mfd for the plant 
and the closed loop. The reducedness in (iii) ensures coprimeness (solvability) at 
high frequencies and is inherent in high frequency behavior of N^j^D^^juS) and 
X^l(juj)Yi(ju) as physically realizable systems, while (iv) has to do with similar 
requirements about the closed loop, cf. Lemma 2.2. 

According to [8] the equation (10) is solvable if and only if a greatest common 
divisor of Dr and Nr is a right divisor of Dk] the solutions are related through a 
particular solution, say (X/0 , l /0) , in the parametrization 

Xt = Xlo + TDt 

(11) 
Yt = Ylo-TNt 

where the polynomial matrix T is the parameter and the polynomial matrices D\ 
and Ni satisfy NtDr = DtNr. 

1.3. Literature 

Our most recent and influential source of inspiration is the review by [1], see also 
[2], drawing on earlier results in [3]. In a conventional manner, the class of all 
polynomial matrices (X^Y{) is recalled before those pairs are singled out which de­
scribe compensators with proper rational transfer functions X^lYi. Sections 2.1 and 
2.2 contain results from [1], with modifications to accommodate the computational 
procedures in the present paper. 

The above results can be shown dual to those in the study by [7], our second most 
influential source. Despite a different Dk, which is assumed simultaneously row and 
column reduced with the highest coefficient matrices equal to an identity matrix, 
the assumptions are compatible and hence are the results. Whatever may be said, 
the study provides examples that should enable readers to form their own picture 
of the subject. 

A fundamental (if not the fundamental) step in either approach derives from the 
sufficient condition for the general problem of pole assignment by dynamical output 
feedback [11], alternatively proved by [17] using linear polynomial matrix equations. 
The latter proof is constructive and is subsequently used in [7]. 
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2. PROPER COMPENSATORS 

2.1. Existence 

Sufficient conditions for the existence of proper compensators are reviewed, leading 
to Lemma 2.2 whose closed-loop role for the compensators is analogous to the open-
loop role of Lemma 1.1 for the plant. 

Lemma 2 .1 . (Candidate Denominators) Let COMP have a particular solution such 
that 5ri[Yi] < ri for all i = 1 , . . . ,m. Then Xi(s) is row reduced with 5ri[X/] = ri 
for all i = 1 , . . . , m and it is such that 

-̂ Zhr-Drhc = Dkh (12) 

where X/ftr, -Drftc and Dkh are the highest coefficient matrices of respectively the 
row reduced Xt(s), the column reduced Dr(s), and the row-column reduced Dk(s). 

P r o o f . Let (Xi,Yi) be the solution whose existence we assume. Consider (10) 
with Dk, (Dr,Nr) and (X/,Y/) of respectively the form (9) and its single-sided 
versions, displaying respectively the highest coefficient matrices Dkh, (Drhc,Nrhc) 
and (Xihrj Yihr)- The transfer function NrD~l is proper by assumption and hence the 
constant matrix 1Vrhc is zero. To match the constant matrix Dkh, no contribution 
is recorded from YiNr and a pair of equalities is established: the row degrees of 
Xi equal the corresponding row powers of Dk and the highest row-column power 
coefficient matrix of X\Dr equals that of Dk. The latter equality is (12) and it 
provides a nonsingular Xihr by the nonsingularity of jDrftc and Dkh- D 

A set of sufficiently large row powers of Dk ensures a proper X^~lYi to exist. 

Lemma 2.2. (Proper Compensators: Existence) Let fi be the highest power of 5 
in a coprime left mfd 

D^Nt = NrD~x (13) 

of the strictly proper plant P. If for all i = 1 , . . . , m 

n > M - 1 (14) 

then COMP admits a particular solution (X^Yi) such that X[~xYi is proper. 

P r o o f . Particular solutions are generated one from another through the choice 
of the m x p parameter T in (11). To determine a proper particular solution from 
an arbitrary but fixed particular solution, say (Xip,Yip) from (X/0,Yj0), note that 
the right multiple by Df1 of Yi0 = Y\p + TD\ uniquely defines T and Y\p when 
the rational YloD~~l is decomposed into strictly proper and polynomial part, that 
is, YlpD~~l and T. The strict-properness of YloD~~l implies ^[F/o] < ^cj[A] for all 
j = 1 , . . . ,p. Since for alH = 1 , . . . , m 

$ri[Yt0] < max 6Ti[Yi0] = max Sc\[Yi0] < max JCj[A] = max Sri[Di] = fi 
i = l , . . . , m j=l,...,p j = l , . . . , p 2=1,...,p 



526 F. KRAFFER AND P. ZAGALAK 

it follows that 0H[Y/O] < /I, that is, <5n[Y/0] < /i — 1. Combine the latter condition with 
the assumption (14) to obtain <5ri[F;0] < r» and apply Lemma 2.1 to show that X\Q 

is row reduced with OH[-Y/0] = T% for all i = 1,... ,ra. By Lemma 1.1, the particular 
solution (Xio,Yi0) is proper because X\0 is row reduced and o*ri[Y/0] < r̂i[-^zo] for all 
i = 1,. . . ,ra. n 

The conservatism in the characterization of the sufficiently large row powers of 
Dk may be decreased by the choice of a convenient D~[XN\. 

Lemma 2.3. (Observability Index) If a coprime left mfd for the plant is chosen 
such that D\ is row recluced, then /i is minimal with respect to all coprime left mfds 
for the plant. 

P r o o f . Let the polynomial matrices D\ and D\ be row reduced with row degrees 
arranged in order, say ascending. According to [15] if D\ = UDi for some unimodular 
C7, then the row degrees of Di equal the corresponding row degrees of I)/. It follows 
that oVp[jD/] =- *)rp[jDz] = /i. The rest is trivial. • 

Such a minimization of the sufficiently large row powers of Dk doesn't protect us 
from choosing Dk whose row powers are unnecessarily high. 

E x a m p l e 2.4. Consider a 2 x 2 plant with proper transfer function in the mfd 

P(s) 1 1 
0 1 

s 2 + l 1 
0 s + 1 

To calculate the greatest observability index it is preferable to use the method in 
Section 3, but it is possible to find a left mfd with row-reduced denominator in hand 
and to check the highest power of 5; this is much easier for our simple mfd, for 
example take 

P(s) 
0 s + 1 

s 2 + 1 - 2 

- 1 г 
0 1 
1 s - 1 

Either way, fi = 2. According to Lemma 2.2 an admissible Dk is row-column reduced 
with column powers (fci, £2) = (2,1) and row powers ( n , ^ ) = (1,1). If Dk is row-
column reduced with (fci-Afe) = (2,1) and (r i , r2) = (0,0), then Lemma 2.2 is not 
applicable, yet compensators with proper transfer function may exist. For example 
consider 

Dк(s) = 
1 

s + 2 

and verify the existence of the compensator 

C(s) = 
1 
0 

0 
1 

i - l Г 
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2.2. Parametrization 

To generate all compensators with proper transfer function, a proper compensator 
may be put at the centre of a conventional parametrization whose parameter matrix 
is restricted conformally [1, 7]. 

Lemma 2.5. (Proper Compensators: Parametrization) Let (Xip,Yip) be a partic­
ular solution to COMP such that X7^Y\P is proper. Then all pairs (X^Yi) with 
proper X^~lYi are specified by 

Xt = Xlp-TNt 
(15) 

Y{ = Ylp + TD{ 

where T is an m x p polynomial matrix parameter such that 

Sij[T] < n-d^Dt] (16) 

for al i i = 1 , . . . ,m, j = 1 , . . . ,p. 

P r o o f . Arbitrary proper particular solutions may be generated one from another, 
say (Xi,Yi) from (X/p, Y/p), by a convenient choice of the parameter T in (15). As 
an extension to the proof of Lemma 2.2, the second equation in (15) reveals that 
firi[Yi] < T{ if and only if Sr[[TDi] < T{. To translate the latter condition in condition 
(16), consider a row-reduced D\ in the left-sided version of (8). • 

2.3. Homogeneous and particular solutions 

It is the control system specifications that define best descriptions: they do not 
define what the overall best description is, but the best description in view of the 
limitations imposed. With no limitations beyond "proper compensator and strictly 
proper plant" we pursue common system theoretical and computational concepts: 
absence of zeros at infinity, minimal order compensators*, minimal basis of rational 
vector spaces, and numerical linear algebra methods for rank determination leading 
to solution of uniquely defined linear systems. 

The homogeneous system may be viewed as a conversion between right and left 
mfd, NrD~x being the reference. Various forms of left-coprime D^XN\ obey 

D~lNt = NrD;\ (17) 

in relation to the homogeneous matrix polynomial equation 

-Nt(s)Dr(s) + Dt(s)Nr(s) = 0 (18) 

with Ni and Di unknown polynomial matrices that are respectively pxm and pxp 
in dimension and such that D\ is nonsingular. 
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The notion of left minimal basis (LMB) is instrumental. According to [4] we 
define polynomial matrices E and F such that 

E = [ -H , Dt ] (19) 

Dr 

Nr 

E(s)F(s) = 0. (21) 

F (20) 

Because Dr and Nr are right coprime, the (m + p) x m matrix F has full column 
rank m in the entire complex plane. The p x (m + p) matrix E is contained in 
the left null space of F. This null space is customarily described by E that obeys 
(19)-(21) and is also of 

(i) full row rank p in the entire complex plane and 

(ii) row reduced. 

Then E is said to be a minimal basis of the left null space of F , or a LMB for short. 
Our interest is with [ —Ni 29/ ] in LMB. The one we have in mind is sparse 

and uniquely derives from a unique form of D\ in the sense that if D/ and D\ satisfy 
D\ = UDi for some unimodular U, then the form of D\ equals that of Di. 

Definition 2.6. (Polynomial Row-Echelon Form, cf. Popov [9].) A p x p nonsin-
gular polynomial matrix D\ is said to be in polynomial row-echelon form if 

(i) Di is row reduced with the row degrees arranged in ascending order 

*ri[D.] < M A ] < ••• < STp[Dt] =( S[Dt] 

(ii) For row i, there is an index pi, called a pivot index, such that 

(a) SiPi[Di] = 5T[[Di] and the element is monic, 

(b) Sij[Di\ < STi[Di] if j >pu 

(c) if ST\[Di] = STj[Di] and i < j , then pi < pj, 

(d) Sipi[Dt] <ST[[Dl]ifi^j. 

For reasons mentioned above, the polynomial row-echelon form is considered use­
ful for the description of the solution (X/, Y/) = (—N^Di) of the homogeneous form 
of COMP due to (18), and corresponding to a left-coprime description D^Ni of 
the plant. 

Definition 2.7. (Homogeneous Solution) Consider the polynomial matrix solutions 
to the homogeneous form COMP. A pair (X/, Y/) is said to be desirable if 

(i) X\ and Y/ are left coprime, 
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(ii) Yi is nonsingular, 

(iii) Yi is in polynomial row-echelon form. 

Particular solutions include a special class whose description is similar in nature 
to the polynomial row-echelon form description of the plant. The class is distinct 
by the column degrees of the polynomial matrix Yi. 

Lemma 2.8. (Column Degrees) Let the assumptions of Lemmas 2.2 and 2.3 hold. 
Then COMP admits a particular solution (X/, Y/) such that X^lYi is proper and 

Sci[Yi(s)] < <5rj[IID.(S)]-l (22) 

for all j = 1 , . . . ,p and a convenient permutation matrix II. 

P r o o f . Let us choose the plant description D^Ni in the form obeying Defini­
tion 2.7. Then D\ is simultaneously row and column reduced by Definition 2.6. As 
shown in the initial part of the proof to Lemma 2.2, the transfer function YiDf1 is 
strictly proper and hence 

SdlYi] < £cj[£>z]-l. (23) 

Finally, (22) follows from the simultaneous row- and column-reducedness and the 
row degree invariance2 of Di. • 

For reasons mentioned above, the following form is considered a useful description 
to be put at the centre of the parametrization. 

Definition 2.9. Consider the class of COMP solutions such that X~1Y is proper. 
A pair (X, Y) is said to be desirable if the column degrees of Y\ are minimal with 
respect to the class. 

3. VERIFICATION OF EXISTENCE 

3.1. Applicability and methodology 

A judicious choice of Dk, the polynomial matrix on the right-hand side of COMP, 
requires a reliably determined greatest observability index of the plant. The same 
applies when the row powers of D^ are too high, cf. Section 4.2. 

To compute the greatest observability index, the plant may be efficiently realized 
in state space, where orthogonal similarity transformations to Hessenberg form may 
be applied to identify a set of integers whose sum equals the iridex. Details are given 
in the next two sections. 

2See the proof to Lemma 2.3 for reference and other use to the row degree invariance. 
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3.2. Implementation 

The plant described by mfd NrD~l admits state-space realization in controller form 
[6], with computational expenses depending upon the structure of FVhc, the highest 
coefficient matrix of the column-reduced Dr(s). If J?rhc equals an identity ma­
trix, or a permutation of an identity matrix, then there is no computation; if -D r n c 

is a triangular matrix, or a permutation of a triangular matrix, then a permuted 
backsubstitution will do; otherwise a general triangular factorization by Gaussian 
elimination with partial pivoting is an adequate tool to obtain the realization, ex­
cept in cases of ill-conditioning where orthogonal methods give an added measure of 
reliability [5]. 

The realization, say (A,i?,C), may be transformed to observer Hessenberg form 
[12], whose structure reveals the greatest observability index as shown in the next 
section. For the Hessenberg form, let U\ be an orthogonal transformation compress­
ing the columns of C and let p\ be the rank of C; then A\, C\, X\, Y\ and Z\ are 
matrices of appropriate dimensions defined by 

CUX = [ Zx 0 ] 

p\ n 

ЩAUx = 
Xx Ax 

Pl n 

}P1 

}n (24) 

where Z\ has full column rank p\. Applied to (24), a similarity transformation of 
the type block diag(//0l, U2) only effects A\, C\ and X\. If C\ has neither zero rank 
nor full column rank, then we can use U2 to compress the columns of C\ and repeat 
a partitioning of the type (24) on C1U2 and U£A\U2- The algorithm continues 
this recursion until a matrix C& is obtained with full column rank — a corollary to 
Definition 1.3 is that r^ -= 0 is the one and only stopping rule - reducing the pencil 
in the "staircase" form 

C 
sIn-A 

"%•-"'/'&%%"'/,f*џ' 4- " -" - v "y,,/ 'г"i*vф-?t*/t- &"'•' '-,,'-', -'vr--' ',"« ~*» *v*>'VTч'# t ŕ "%*",' " '"', 

PЉ,:&V,\'V;>K'ù&^'"?::%:k^:í: *'*•*'? -^—V^V':) 

.(25) 

The blanks denote zeros. The elements denoted x, as well as the matrix Yi, need 
not be computed for the purpose we have in mind. The Z\ have full column rank by 
construction, which implies that the shaded submatrix has full column rank for any 
value of s. According to the Popov-Hautus test the shaded submatrix describes the 
observable part of (C, A). 

Because NrD~l is coprime by assumption, the controller form is observable [6] 
and hence the rows and columns are void that intersect at sITk — A^. 

3.3. Greatest observability index 

The greatest observability index of the plant may be determined from the cardinality 
of the set ( p i , . . . , pk), specified in the previous section. . 
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Lemma 3.1. (Plant: Left Denominator) Let a strictly proper transfer function 
with mfd NrD~l be realized in observer Hessenberg form with k the number of full 
column rank blocks. Then there exists a left-coprime mfd DfxNi = NrD~l with D\ 
row reduced and such that S[Di] = A:(highest degree of all elements of Di). 

P r o o f . Let (A,B,C) = NrD~l be in observer Hessenberg form. From the 
identity 

DYx{s)Ni{s) = C(sIn-A)-1B = NrtfD^is) 

we extract 

[ Di(s) W(s) 
C 

sIn-A 
= 0 (26) 

with the polynomial matrix W(s) determined through 

-W(s)B = Ni(s). 

To exploit the Hessenberg structure we consider block column partitioning 

W{s) = [ W2(s) \W3(s) | . . . \Wk(s) ] . 

For improved visualization, the detailed version of (26) may be considered such that 
for i = 2 , . . . , k the matrices Z{ are scaled to the last pi columns of Ip. To prove the 
existence of a solution to (26) such that fc, k — 1,..., 0 are the highest powers of s 
in D[(s), W2(s),..., Wk(s) we may backsubstitute 

[ D,(s) W2(s) Wk(s) ] 

' zl 

sIPl - Yl 

-zk 
X SІpk ~ үк 

to obtain 

тлт d e f 

W*-i = 

Wк-2 = 

lPh 

LPk-\—pk 

0 

o 
o 

shk - Yk 

o o 
*Pk-2-pk-l " 

0 Mk-x(s) 

with Mk-i a unique p^-i x Pk-i matrix polynomial of second degree. 
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4. EXTRACTION 

4.1- Representation and solution: methodology 

Both the homogeneous COMP and COMP can be represented in various real linear 
systems which are underdetermined or square and their dimensions derive from /u, 
the greatest observability index of the plant. The systems are in the form 

[ X0 XX Xx YQ Y\ YУ]S = [ Ф0 Фi * * ] (27) 

where (X0,Xi,...,Xx) and (Y0,Yi,. 
generating the matrix polynomials 

X(s) = X0 + XlS + '-- + Xxs
x, 

,Yy) are sets of unknown constant matrices 

Y(s) = Y0 + YlS + + YyS

v. (28) 

X(s) has degree x and number of columns ra, while Y(s) has degree y and number of 
columns p. The matrix S is associated with the given matrix polynomials Dr(s) and 
Nr(s), represented in constant matrix sets (Do, -Di,. . . , Dj) and (iVo, JVi,..., Nn) 
which are displayed as shifted block structures 

A> 
D0 

Dd 

Dn 

Dd 

Dd 

N0 ••• Nn 

N0 ••• Nn 

N0 Nn 

(29) 

called resultants, cf. [14] for example. Specifications for ( $ 0 , $ i , • • •, $<f>) are subject 
to Section 4.2. 

A crucial observation is that the upper I = ra(l + x) rows of 5 are linearly 
independent by the column reducedness of Dr(s), while the remaining rows include 
those that are linearly dependent. The linearly dependent rows may be determined 
in a consecutive search. For i = Z -f-1, Z + 2, . . . we search, with sufficient accuracy, 
for the first row of S that depends linearly on the preceding rows. By the shifted 
block structure of 5, if the ith row of S depends linearly on the preceding rows, also 
the rows i + p , i + 2p, . . . depend linearly on the preceding rows. The row i is called 
a primary dependent row, while the rows i + p, i + 2p, . . . are called nonprimary 
dependent rows. Having the primary dependent row recorded we delete it altogether 
with all the nonprimary dependent rows that are associated with it from S. 

The procedure is continued until all rows of (29) have been examined, converting 
(27) into the square nonsingular system 

[X0 Xx 
Xx Y]Š = [ Ф0 Фi ФФ (30) 

with the new quantities denoted by hats. The system can be uniquely solved through 
inversion and the matrix [ YQ Y\ 

columns at appropriate positions of Y. 

Yy ] can be recovered by inserting specific 
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4.2. Homogeneous and particular solutions 

Descriptions of the homogeneous and particular solutions may be sought in sparse 
forms. Such forms rely on a minimum number of parameters, which is desirable for 
analysis and design. In connection with Lemma 2.5, the forms allow to efficiently 
characterize all solutions to a particular problem, which is of course appealing. 

Lemma 4 .1 . (Homogeneous Solution) Consider COMP in homogeneous form. Let 
/i be the greatest observability index of the plant. Then the linear system (30) such 
that 

(i) x = p - 1, 

(iQ V = Mi 

(hi) row % of [ $o $ i • •' $<i> ] is the negative of the zth primary dependent 
row for all % = 1,2,... ,p 

has a unique solution whose inspection gives the polynomial matrix pair (—Ni,Di) 
such that D^lNi = NrD~l is left coprime with D\ in polynomial row-echelon form. 

P r o o f . The solution to (30) is unique because S has full row-rank by construc­
tion; the solution exists because the right-hand side consists of primary dependent 
rows. [ Yo Y\ '— Yy ] is set up from Y column-wise: columns of Ip are inserted 
at the positions corresponding to the primary dependent rows and zero p x 1 columns 
at the positions corresponding to the nonprimary dependent rows of S. • 

Lemma 4.2. (Particular Solution) Consider COMP. Let 0 be the highest degree 
among the elements of Dk and the condition T{ > p — 1 hold for i = 1,2,..., m. 
Then the linear system (30) such that 

(i) x = 0 -max{fc i , . . . , fc m }, 

(ii) y = p - 1, 

(iii) ( $ 0 j $i»• • • ? $</>) are the coefficients of the matrix polynomial Dk(s) 

has a unique solution whose inspection gives the polynomial matrix pair (X/m, Y/m) 
such that Xj^Yim is proper with the least column degrees of Y\m. 

P r o o f . Analogy to the proof of Lemma 4.1. [ Y0 Yi • • • Yy ] is set up from 
Y column-wise: zero p x 1 columns are inserted at the positions corresponding to 
the dependent rows of S. • 

4.3. Recycled rank determination 

Compensators whose (McMillan) degree equals that obtained by a conventional 
method, such as state space, are of particular interest and this is not only because 
the rank determination problem subject to Section 4.1 can be recycled: 
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Corollary 4.3. (Recycled Rank Determination) Consider COMP. Let <f) be the 
highest degree among the elements of Dk and the condition r% > JJL — 1 hold for 
i = 1,2,..., m such that 

max{r i , . . . , r m } = fi-1. (31) 

Then the coefficient matrix S in the linear system (30) subject to Lemma 4.1 equals 
that subject to Lemma 4.2. 

P r o o f . A straightforward application of Definition 1.2. • 

5. LOW-LEVEL IMPLEMENTATION 

5.1. Simplification by inspection 

The structured linear system for the extraction of proper compensators entails zero 
columns whose explicit formation is undesirable for computations. The positions of 
such columns are a priori known, given the column powers &i,..., km. 

If max{ri , . . . , r m } = ^ — 1 , then the desired particular and homogeneous solutions 
require S whose number of rows is respectively (m + p)/j, and (m + p)fi + p. In either 
case there are (max{A:i,..., km)} + n)m columns of which k\ + • • • + km + \im are 
nonzero. The nonzero columns are linearly independent, as shown in [16, Theorem 
7.3.30, p. 243]. 

If max{ri , . . . , r m } > JJ, — 1, then the number of rows and columns is increased 
by an integer multiple of m, the number of zero columns is intact, and the nonzero 
columns are linearly independent. 

5.2. Transformations 

The above full-rank underdetermined system either has no solution or has an infinity 
of solutions. Not all solutions relate to proper compensators and not all proper 
compensators suit direct extraction. An indirect extraction is available through 
Lemma 2.5. The row search in Section 4.1, the column compressions in Section 3.2, 
as well as the solution of square system in Section 3.2 — all may be implemented as 
orthogonal transformations, whose stability is guaranteed and unsurpassed when it 
comes to producing a meaningful solution in cases of ill-conditioning. 

Householder reflections are orthogonal transformations that are exceedingly useful 
for a grand scale annihilation of all but the first component of a vector by properly 
choosing the reflection plane. A small example illustrates the general idea. Consider 
a 5 x 4 system and assume that Householder matrices Hi and H2 have been computed 
so that 

SH\ H2 — 

X 0 0 0 
X X 0 0 
X X E И 
X X X X 

X X X X 

X X X X 

(32) 



X 0 0 0 
X X 0 0 

SHiH^Hş — X X X 0 
X X X X 

X X X X 
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We examine the 2-norm of the highlighted vector. If the norm is sufficiently big, 
then the vector is part of a linearly independent row and we determine a 2 x 2 
Householder matrix H% such that 

[ H H ] H3 = [ x 0 ] . (33) 

If .ff3 = diag(/ 2 ,H 3 ),then 

(34) 

and the following step focuses on the l x l vector at the (4,4) position of (34). 
If, on the contrary, the norm is sufficiently small then the vector is part of a linearly 
dependent row, H3 = 14, and the following step focuses on the 1 x 2 vector at 
positions (4,3) - (4,4) of (34). After at most 5 such steps we obtain a list of linearly 
dependent rows and a lower quasi-triangular SHi • • • LI5, which is column compressed 
by construction. The structure and implementation of Householder matrices, as well 
as many relevant details, may be found in [5]. 

5.3. Summary 

The design of proper compensators for a strictly proper plant may rely on COMP, 
a special form of Diophantine equation. Assuming the right-hand side is chosen to 
give compensators whose (McMillan) degree equals that obtained via conventional 
methods, such as state space, the design steps are: 

COMP setup (Definition 1.3) 

(1) compute the greatest observability index /i, 

(2) choose Dk with row powers n = • • • = r m = /x — 1 and column powers 
M ? • • • j Km j 

Representation and transformation 

(3) set up the structured system and omit the zero columns, 

(4) transform the system and record the positions of the linearly dependent rows, 

Particular solution (Definition 2.9) 

(5) backsubstitute a triangular system, 

(6) insert zero vectors, 
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Homogeneous solution (Definition 2.7) 

(7) backsubstitute the above system for a different right-hand side, 

(8) insert columns of Ip and zero columns, 

All proper compensators 

(9) parametrize as described in Lemma 2.5. 

Details on choosing the right-hand side matrix D^ are beyond the scope of this paper 
and remain an open problem. The above procedure can be modified to accommodate 
Dk that give compensators whose (McMillan) degree is higher than that obtained by 
conventional methods. The modification requires an additional structured system; 
recycling is inapplicable. 

6. EXAMPLE 

As a continuation to Example 2.4, a simple illustrative example, consider the plant 

P(s) 
1 1 
0 1 

s 2 + l 1 
0 s + 1 

whose greatest observability index is fi = 2. Choose the right-hand side 

o3 

Dк(s) 
6s2 + l l s - 6 4s2 + Зs + 2 

0 s2 - 2s + 1 

which is row-column reduced with row powers (1,1) and column powers (2,1), in 
compliance with Lemma 2.2. 

Associated with both the homogeneous and particular solution, the system (27) 
takes on the form 

[X0 Xi У0 Yi Y2l 

110 0 10 0 0' 
0 10 10 0 0 0 
0 0 110 0 10 
0 0 0 10 10 0 
110 0 0 0 0 0 
0 10 0 0 0 0 0 
0 0 110 0 0 0 
0 0 0 10 0 0 0 

0 0 0 0 1 1 
0 0 0 0 0 1 

0 0 
0 0 

"-6 2 11 3 -6 4 1 O l 
0 1 0 -2 0 1 0 0 

There is a single column of zeros, the rightmost column of the coefficient matrix, 
whose existence is implied by k\ — k<i — 1 and which is to be deleted prior to 
transformation. Householder reflections reduce the system to quasi-triangular form 
with the coefficient matrix 
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-1.7321 0 0 0 0 0 0 
-0.5774 -1.2910 0 0 0 0 0 

0 -0.7746 -1.5492 0.0000 0.0000 0 0.0000 
0 -0.7746 -0.2582 -1.1547 0 0.0000 0 

-1.1547 -0.2582 0.1291 0.1443 0.7500 0.0000 0.0000 
-0.5774 -0.5164 0.2582 0.2887 0.1667 -0.4714 0 

0 -0.7746 -0.9037 -0.1443 -0.0833 0.2357 0.7071 
0 -0.7746 -0.2582 -0.2887 -0.1667 0.4714 -0.0000 

-0.5774 0.2582 -0.1291 -1.0104 -0.5833 -0.4714 0.0000 

and the right hand side 

5.7735 -6.4550 -6.4550 -0.2887 2.5000 -7.0711 7.0711 
-0.5774 1.0328 0.7746 0.0000 0.6667 -1.8856 0.0000 

The 8th row is identified as the primary dependent row. As a result, row 10 is a 
nonprimary dependent row and hence exempt from computation. This is denoted 
by *. The remaining primary dependent row is row 9. 

The extraction of the particular solution starts with the backsubstitution of the 
system with coefficient matrix and right-hand side respectively given by 

-1.7321 
-0.5774 

0 
0 

0 
-1.2910 
-0.7746 
-0.7746 

0 
0 

-1.5492 
-0.2582 

0 
0 

0.0000 
-1.1547 

0 
0 

0.0000 
0 

0 0 
0 0 
0 0.0000 

0.0000 0 
-1.1547 -0.2582 0.1291 0.1443 0.7500 0.0000 0.0000 
-0.5774 -0.5164 0.2582 0.2887 0.1667 -0.4714 0 

0 -0.7746 -0.9037 -0.1443 -0.0833 0.2357 0.7071 

5.7735 -6.4550 
-0.5774 1.0328 

-6.4550 -0.2887 
0.7746 0.0000 

2.5000 -7.0711 
0.6667 -1.8856 

7.0711 
0.0000 

The backsubstitution gives 

-6.0000 
-0.0000 

•12.0000 
-3.0000 

1.0000 
0.0000 

4.0000 
1.0000 

-0.0000 
-0.0000 

20.0000 
4.0000 

10.0000 
0.0000 

allowing to conclude the extraction by inserting the zero 2 x 1 vector at the position 
corresponding to the (deleted) 8th primary dependent row. The result, 

[ Xo Xi Y0 Yi ] = 
6 -12 1 4 0 20 10 0 " 
0 -3 0 1 0 4 0 0 
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describes the compensator transfer function 

C(s) 
s - 6 4s - 12 

0 s - 3 

- ì 
Юs 20 
0 4 

The extraction of the homogeneous solution starts with the backsubstitution of 
the system with a coefficient matrix as above and a right-hand side made-up of the 
primary dependent rows taken with a negative sign, 

0 -0.7746 -0.2582 -0.2887 -0.1667 0.4714 -0.0000 

-0.5774 0.2582 -0.1291 -1.0104 -0.5833 -0.4714 0.0000 

The backsubstitution gives 

-0.0000 
-1.0000 

•1.0000 
1.0000 

-0.0000 -0.0000 
0.0000 -1.0000 

0.00 1.00 
1.00 -1.00 

0.00 
-0.00 

allowing to conclude the extraction by inserting columns of I2 and the 2 x 1 column 
of zeros at the positions corresponding to respectively the primary dependent rows 
and the nonprimary dependent row. The result, 

[ X0 X, Y0 Yг Y2] = 
0 

- 1 

describes the plant transfer function 

P(s) = 
0 

1 -0 0 0 1 0 1 0 0 " 
1 0 - 1 1 -1 0 0 1 0 

s + 1 
- i - l г 

S2 + l - 1 
0 1 
1 s - 1 

7. CONCLUSIONS 

In a polynomial matrix context with data- and parameter-degree control it is possible 
to characterize all proper feedback compensators whose left denominator is row 
reduced with sufficiently large prescribed row degrees. The characterization via 
conventional parametrization [1], [7] admits a variety of forms which are distinct by 
the compensator at the parametrization's centre and by the affine terms that enable 
to navigate off the centre. In this paper, an appropriate centre and affine terms are 
proposed and extracted with system theoretical and numerical issues in mind. In 
effect, all proper feedback compensators are extracted. 

The numerical extraction is based on ideas that may be traced to [14] and is 
performed as backsubstitution of a square system which is obtained through con­
catenation of orthogonal transformations. To our knowledge the method is novel in 
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the context of COMP. The compensator at the centre and the affine terms match 
each other in relation to polynomial row-echelon form and are expected to enhance 
the applicability of the parametrization. On the numerical level, orthogonal transfor­
mations are recognized for reformulation of the problem* in a new coordinate system 
which is more appropriate for solving the problem, and this without affecting its 
sensitivity. Next, they can be performed in a numerically stable manner because 
numerical errors resulting from previous steps are maintained in norm throughout 
subsequent steps. 

The polynomial mfd parametrization can be shown consistent with a similar 
result over IRT-Loo in [13, Section 5.2]. Hence it should be useful for appropriate 
plant feedback stabilization in optimization or tracking contexts, see also [7], [3, 
Section 7.3]. It is obvious tha t the results can be dualized for the case tha t the plant 
is given as a left polynomial matr ix fraction. 
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