
Kybernetika

Didier Henrion; Kenji Sugimoto; Michael Šebek
Rank-one LMI approach to robust stability of polynomial matrices

Kybernetika, Vol. 38 (2002), No. 5, [643]--656

Persistent URL: http://dml.cz/dmlcz/135493

Terms of use:
© Institute of Information Theory and Automation AS CR, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/135493
http://project.dml.cz


K Y B E R N E T I K A — VOLUME 38 ( 2002) , NUMBER 5, P A G E S 6 4 3 - 6 5 6 

RANK-ONE LMI APPROACH 
TO ROBUST STABILITY OF POLYNOMIAL MATRICES 

DIDIER HENRION, KENJI SUGIMOTO AND MICHAEL ŠEBEK 

Necessary and sufficient conditions are formulated for checking robust stability of an 
uncertain polynomial matrix. Various stability regions and uncertainty models are handled 
in a unified way. The conditions, stemming from a general optimization methodology 
similar to the one used in /i-analysis, are expressed as a rank-one LMI, a non-convex 
problem frequently arising in robust control. Convex relaxations of the problem yield 
tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices. 

1. INTRODUCTION 

Polynomial matrices play a central role in modern systems theory. Algebraic meth
ods such as the polynomial approach [20] or the behavioral approach [28] heavily rely 
upon polynomial matrices. Dynamics of many systems (e. g. lightly damped struc
tures such as oil derricks or regional power system models, see [19] and references 
therein) are most naturally represented by polynomial matrices and polynomial ma
trix fraction descriptions. Unsurprisingly, fundamental system features are captured 
by properties of polynomial matrices. For example, the zeros1 of the denominator 
polynomial matrix in a matrix fraction description characterize system dynamics 
and performance. Satisfactory transient time response can be ensured as soon as 
the zeros are located in some specific region of the complex plane. 

An important issue in control is to assess to what extent stability and performance 
of a system can be guaranteed in face of uncertainty or variation of the system 
parameters. A lot of research efforts has been recently devoted to the investigation 
of this problem, which has been coined out as the robust stability analysis problem, 
see e. g. the textbooks [2, 3, 29] and references therein. Quite naturally, the problem 
of checking robust stability of uncertain linear systems amounts to checking robust 
stability of uncertain polynomial matrices. 

A very few works have been devoted so far to the study of robust stability of 
polynomial matrices, probably because the problem is particularly difficult to solve 
in its most general form. For example, it was proved that checking robust stability 
of a polytope of polynomial matrices (the so-called polytopic uncertainty model, see 

xThe zeros of a polynomial matrix are the roots of its determinant. 
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e.g. [2]) is an NP-hard problem even in the simple case that all vertex matrices 
are of degree zero (i.e. when they do not depend in the indeterminate) [4]. NP-
hardness roughly means that it is very unlikely to find an algorithm that solves 
the problem in a time which is a polynomial function of the problem dimensions. 
These negative results have naturally led to the development of conservative, yet 
tractable, polynomial-time conditions for checking robust stability. One possibility 
is to strengthen the standard notions of stability and allowable uncertainty model 
[19]. Another possibility is to pursue the so-called quadratic stability approach in the 
context of Lyapunov theory [2, 11]. It paved the way for the development of efficient 
polynomial-time stability tests based on optimization over linear matrix inequalities 
(LMIs, see [5]). Such stability tests are based on sufficient stability conditions. That 
is to say, they may guarantee robust stability at the price of a certain amount of 
conservatism which is difficult to evaluate. Preliminary results on the application of 
LMI techniques to the study of robust stability of polytopes of polynomial matrices 
are reported in [17]. 

In view of this unsatisfactory state of the art, the paper is precisely an attempt 
to overcome the lack of sufficiently general methods for assessing robust stability 
of uncertain polynomial matrices. As an extension of the results presented in [17], 
we provide sufficient but also necessary robust stability conditions. Our approach is 
sufficiently general to handle in a unified way a fairly large number of uncertainty 
models and stability regions. The basic idea behind our approach can be found in 
[9] and can be traced back to /i-analysis [10, 21]. It has been used recently to assess 
Instability of polynomial matrices [15] and stability of 2-D polynomial matrices [16]. 
The stability problem is first expressed as a quadratic optimization problem. Then, 
several techniques are used to come up with a standard form of the problem. The 
necessary and sufficient robust stability conditions are expressed as a rank-one LMI 
problem, a non-convex optimization problem frequently arising in robust control 
problems, see [14] and references therein. Convex relaxations of this non-convex 
rank-one LMI problem yield possibly conservative but tractable LMI conditions for 
robust stability. 

The outline of the paper is as follows. In Section 2 we state the problem to 
be solved. Then we introduce the stability regions (Section 3) and uncertainty 
models (Section 4) considered in the paper. In Section 5 we derive a rank-one LMI 
formulation of the problem. An illustrative example is proposed in Section 6 . 

Notations: R and C are the sets of real and complex numbers, respectively. A* 
means transpose conjugate of complex matrix A. The matrix inequalities A y B 
and A y B mean that matrix A — B is positive definite and positive semidefinite, 
respectively. 

2. PROBLEM STATEMENT 

Suppose we are given a non-singular complex polynomial matrix 

A(s,A) = A0(A)+A1(A)s + .-. + Ad(A)sd 
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of size n and degree d, whose matrix coefficients A; (A) are affected by some uncer
tainty A G A where A is a given set of allowable uncertainties. Suppose moreover 
that we are given a region V CC oi the complex plane. 

We say that uncertain polynomial matrix A(s,A) is robustly ©-stable if and 
only if the zeros of A(s, A) remain in region V for all admissible values A of the 
uncertainty. We aim at finding necessary and sufficient conditions for robust Te
stability of polynomial matrix A(s, A). 

3. STABILITY REGIONS 

First we describe the class of regions V we will consider throughout the paper. 
Define Vc = {s G C : s fi V} as the complement of region V in C. In this paper, 

we restrict our attention to two-dimensional regions V whose complement reads 

Vc = {s G C : D00 + D01s + D10s* + Dnss* y 0} 

where Hermitian matrix 

D = D* = 

(i) 

D00 D01 

D10 D11 

is non-singular and has at least one negative eigenvalue. In [15] we show that 
the above description is fairly general and can cover half-planes, disks, ellipsoids, 
parabolas and their complements, or possibly non-connected unions. For the sake 
of simplicity, in this paper we restrict our attention to the following simple regions: 

Half-plane V = {x + jy G C : ax + by + c > 0} with a, b, c G IK and 

D 
2c a + jb 

a-jb 0 

- Disk V = {s e C:\s-s0\<r} with s0 G C, r > 0 G E and 

D Г2 - S Q S Q S 0 

- 1 

Disk complement V = {s G C : \s - s0\ > r} with s0 G C, r > 0 G M and 

- r 2 + 508o ~so 
D 

S, 1 

where 2x2 matrix D has exactly one negative eigenvalue and one positive eigenvalue. 
Note that some care must be taken with zeros at infinity when dealing with open 
stability regions such as the disk complement or the left half-plane, see [15, § 3] for 
details. 



646 D. HENRION, K. SUGIMOTO AND M. ŠEBEK 

4. UNCERTAINTY MODELS 

In this section, we describe the class of allowable uncertainties studied in the paper. 
We consider that uncertainty A has a block-diagonal structure, a standard as

sumption made in the robust control literature, i. e. 

д = 
0 

0 

.Й" 

Each sub-block A* belongs to CNi xNi. This allows us to write uncertain polynomial 
matrix A(s, A) using a Linear Fractional Representation (LFR) 

A(s, A) = A0 + LAS(IN - DAs^R 

where the indeterminate s has been incorporated into 

(2) 

Д , = 
Sldn 0 

0 A 

so that N = dn + Ni + - - + NK [29]. For a given index i, a rather large set of 
uncertainties can be captured by the quadratic description 

Ai = {A, G CNi xNi : D?° + DfAt + A*£>2
10 + A^D]1 A{ __ 0} 

where Hermitian matrix 

DІ = D* = 
D}° D}1 

is non-singular and has at least one negative eigenvalue. Note that this class of 
uncertainties is similar to the stability regions considered in Section 3. In [25], this 
class is referred to as {X, Y, Z}-dissipative uncertainties (with an additional sign 
assumption on D\l). 

In this paper, we restrict ourselves to the following uncertainty models: 

- Norm-bounded uncertainties, with 

A i = { A i G C ^ x ^ : | | A i | | 2 _ 7 i } 

and 

Di = 
iflN, 0 

0 -INi 

Interval uncertainties, with 

Ai = {A, = (xi + jVi)INi e CNi xNi : Xi e [au b{]} 

and 

n __ — 2ab a + b 
D i ~ a + b -2 
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Using the same formalism, we can also cope with positive-real uncertainties, sector-
bounded uncertainties or /^-bounded uncertainties [12, 13, 26]. We can also enforce 
the uncertain parameters to be purely real (using a technique similar to that exposed 
in [10]) but it is out of the scope of the present paper. 

5. RANK-ONE LMI FORMULATION OF THE PROBLEM 

Following these preliminaries, we can now derive a rank-one LMI formulation of a 
necessary and sufficient condition for robust stability of a polynomial matrix. 

Our approach is twofold. First in Paragraph 5.1 we show that checking robust 
stability amounts to solving a quadratic optimization problem. Second, the LFR of 
A(s, A) is used in Paragraph 5.2 to take advantage of the special quadratic struc
ture of the optimization problem and to derive an LMI formulation where all the 
non-convexity is concentrated into the constraint that a matrix has rank one. Con
vex primal and dual LMI relaxations are then proposed in Paragraph 5.3 and 5.4 
respectively. 

5.1. Q u a d r a t i c opt imizat ion problem 

Recall from the problem statement in Section 2 that robust stability of uncertain 
polynomial matrix A(s, A) holds if and only if its zeros remain in V for all uncertainty 
A G A, or equivalently, if and only if A(s, A)v ^ 0 for all non-zero i> G C n , 8 G Vc 

and A G A. Robust stability is then ensured if and only if the optimal value // of 
the quadratic optimization problem 

џ = min v*A*(s, A)Л(s, A)v 
s.t. s ЄVC 

Д G Д 
v*v = 1 

(3) 

is strictly positive. 

5.2. Rank-one LMI problem 

Now we show that solving quadratic optimization problem (3) amounts to solving a 
rank-one LMI optimization problem. 

In relation with the LFR (2) of matrix A(s, A), we can define vectors 

p = 

Po 
Pi 

Pк 

such that 

A(s,A)v 

q 
p 

o 

l 

к 

Aov + Lp 
Rv + Dp 
Asq. 

(4) 
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For any sub-vectors Pi,qi in p, g, it follows from the block-diagonal structure of As 

that 

Pi = Aift. 

Now define the rank-one positive semidefinite matrix 

X = xx* = 

and matrices A, V% and Qi such that 

^ 0 

(5) 

(6) 

A(As)v = Ax 
qi = QiX 
Pi = ViX 

for i = 0 , 1 , . . . , K. Define finally the partitioning 

= 
' QІ ' X ' QІ ' Xf° X?1 

x}° X}1 

and the linear maps Fi from CNxN to C M * x M i associated with sets Ai as follows 
[9]: 

- Stability region Ai = {sINi G CNi xNi : D00 + D01s + D10s* + Dns*s > 0} 

Fi(X) = D00Xf° + D01X}° + D10Xf1 + D 1 1 ! , " . 

- Norm-bounded uncertainties A ; = {At € C ^ xNi : ||Ai||2 < -ji} 

Fi(X) = trace(1?X00-X11). 

- Interval uncertainties Ai = {(xi + jyi)lN{ £ CNi xNi : x% G [ai,bi]} 

F{(X) = -2aibiXf° + (a{ + b{)(X^ + X}°) - 2X}1. 

In relation to the above linear maps, equation (5) and rank-one matrix (6), we can 
state the following central result. 

L e m m a 1. Assume vector qi is non-zero. It holds pi = A^ i for some A; G Ai if 
and only if 

FІ(X) У 0. (7) 

P r o o f . This is a standard result in //-analysis, see [10, 21]. The proof is not 
reproduced here for conciseness. ---
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Using equations (4), (6), Lemma 1 and gathering all linear maps Fi(X) into one 
block-diagonal linear map 

F(X) = 

F0(X) 
Fг(X) 

FK(X) 

an alternative formulation of problem (3) can now be derived. It reads 

fj, = min trace A*AX 
s.t. F(X) y 0 

x = x* y o 
rankX = 1 

In 0 

(8) 

trace 0 0 
X = l. 

Problem (8) is an LMI optimization problem with a non-convex rank constraint. It 
must be pointed out that rank-constrained LMIs frequently arise in control problems 
but also in mathematical programming and combinatorial optimization, see [14] for 
a recent overview. We have shown the main result of this paper. 

Theorem 1. Polynomial matrix A(s, A) is robustly ©-stable if and only if // > 0 
in rank-one LMI optimization problem (8). 

5.3. Primal LMI relaxation 

A convex primal LMI relaxation can readily be derived for non-convex rank-constrained 
LMI problem (8). As a result, we obtain a sufficient condition of robust ©-stability 
of polynomial matrix A(s, A). 

Consider the following convex relaxation of rank-one LMI problem (8) 

V = min trace Л* ЛX 
s.t. F(X)У0 

X = X*У0 
In 0 

trace 0 0 

(9) 

X 

where the non-convex rank constraint has been dropped. Since the feasible set of 
problem (8) is included in the feasible set of problem (9), v > 0 in problem (9) 
obviously implies /x > 0 in problem (8). This is captured in the following corollary 
to Theorem 1. 

Corollary 1. Polynomial matrix A(s, A) is robustly ©-stable if v > 0 in LMI 
optimization problem (9). 
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5.4. Dual LMI relaxation 

Now we propose a convex dual LMI relaxation for non-convex rank-constrained LMI 
problem (8). 

For i = 0 , 1 , . . . , K define the linear maps FD(Pi) dual to the maps F{(X) intro
duced above, i. e. such that for any couple of matrices X E CNxN and Pi € CMi x M i , 
it holds 

trace FtP(Pi)X = trace F{(X)Pi. 

Then define 

Eo 

P = 
P, 

(10) 

and the associated linear map 

FD(P) = FD(P0)X + FD(P1)X + • • • + FD(PK)X. 

Consider the LMI feasibility problem 

A* A yFD(P) 

P = P* y 0 

and note that as soon as the above problem is feasible, it holds 

trace A* AX > trace FD(P)X = trace F(X)P 

for any matrix X = X* y 0. Since the above inequality is also valid for any rank-one 
matrix X, it follows that [i > 0 in problem (8). 

Using standard semi-definite programming duality arguments [27] it can be shown 
that LMI feasibility problem (10) is actually dual to relaxed LMI problem (9). Now 
if M denotes a matrix whose columns span the right null-space of A, it follows from 
the Elimination Lemma [5] that feasibility problem (10) can equivalently be written 
as 

N*FD(P)N ^ 0 
(11) 

P = P* y 0. 

The following corollary to Theorem 1 follows from the above discussion and provides 
us with an equivalent sufficient condition of robust P-stability. 

Corollary 2. Polynomial matrix A(s,A) is robustly P-stable if there is a matrix 
P solution to LMI feasibility problem (11). 
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6. ILLUSTRATION 

Let 

A(s,A) = 

( ^ ( 
1 2 " 
4 0 + 

y 

" 0 0 ' 
- 1 0 

y ч 

0 1 ' 
1 0 

• 

s + 

ч 

Ao \ Al Bl ) V 

- 1 - 1 
0 1 +д2 

be a polynomial matrix affected by interval uncertainty 

xx e [-0.6000,0.6000] = [ai,6i] 

and norm-bounded uncertainty 

HA2II2 < 72 = 0.3000. 

We are interested in knowing whether the zeros of polynomial matrix A(s, A) stay 
outside of the closed unit disk 

Vc = {sЄC:s*s< 1}. 

for all admissible uncertainty. 
Defining 

д s = 
5/4 

Xlh 

and using the construction principle described in [29], one possible LFR (2) for the 
above polynomial matrix is given by 

[ A0 L ' 
R D 

' AQ Aг A2 Bi h' 
h 0 0 0 0 
0 h 0 0 0 
0 h 0 0 0 
0 0 h 0 0 

Projection matrices in LMI problem (9) are as follows 

Qo = 
Һ 0 0 0 0 
0 Һ 0 0 0 Vo 

0 I2 0 0 0 
0 0 I2 0 0 

Qi = [ 0 h 0 0 0 ] Vx = [ 0 0 0 h 0 ] 

Q2 = [ 0 0 I2 0 0 ] V2 = [ 0 0 0 0 72 ] 

With the notation 
A = [ A0 Ax A2 Bx h ] , 
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LMI optimization problem (9) reads 

v = min trace A* AX 

s.t. FQ(X) = QoXQ*0 - VoXVS h 0 

Fi(X) = -2a1b1Q1XQ* + (oi + 6i)(QiX^f + ViXQ\) - 2VXXQ\ y 0 

F2(X) = t race{-V2XV$ + -fiQ2XQ&) £ 0 

trace 
Һ 0 
0 0 

X = l, X = X* У 0. 

X = 

With the help of the interior-point algorithm of the SDPHA package 3.0 [6] called 
from the user-friendly interface LMITOOL 2.0 for MATLAB [8] we obtained 

v = 0.004635 

as the optimal value of the above problém, with 

0.1562 -0.3551 0.1556 -0.3602 0.1539 -0.3628 -0.0934 0.2082 0.H16 -0.0106 
-0.3551 0.8438 -0.3473 0.8407 -0.3371 0.8316 0.2162 -0.5043 -0.2720 0.0205 

0.1556 -0.3473 0.1562 -0.3551 0.1556 -0.3602 -0.0923 0.2021 0.1079 -0.0112 
-0.3602 0.8407 -0.3551 0.8438 -0.3473 0.8407 0.2177 -0.4987 -0.2683 0.0223 

0.1539 -0.3371 0.1556 -0.3473 0.1562 -0.3551 -0.0906 0.1944 0.1035 -0.0117 
-0.3628 0.8316 -0.3602 0.8407 -0.3551 0.8438 0.2176 -0.4895 -0.2626 0.0240 
-0.0934 0.2162 -0.0923 0.2177 -0.0906 0.2176 0.0562 -0.1278 -0.0687 0.0060 

0.2082 -0.5043 0.2021 -0.4987 0.1944 -0.4895 -0.1278 0.3038 0.1643 -0.0111 
0.H16 -0.2720 0.1079 -0.2683 0.1035 -0.2626 -0.0687 0.1643 0.0889 -0.0058 

-0.0106 0.0205 -0.0112 0.0223 -0.0117 0.0240 0.0060 -0.0111 -0.0058 0.0011 

In virtue of Corollary 1, v > 0 implies that A(s, A) has no zero within the closed 
unit disk for any admissible uncertain parameters x\ and A2. Hence polynomial 
matrix A(s, A) is robustly 2?-stable. This can be checked graphically in Figuře 1, 
where zeros of A(s, A) are represented for 1000 randomly chosen admissible uncertain 
parameters. 

Now if we set 
72 = 0.4000 

the optimal value of LMI problém (9) is 

v = 5.2982 • 1 0 - 1 0 w 0 

for 

X = 

0.1423 -0.3261 0.1256 -0.2777 0.1357 -0.3425 -0.0794 0.1819 0.1212 -0.0215' 
-0.3261 0.8577 -0.2500 0.5999 -0.2842 0.8230 0.1995 -0.5045 -0.3460 0.0319 

0.1256 -0.2500 0.1412 -0.3250 0.1249 -0.2771 -0.0628 0.1345 0.0878 -0.0214 
-0.2777 0.5999 -0.3250 0.8550 -0.2497 0.5998 0.1477 -0.3427 -0.2293 0.0382 

0.1357 -0.2842 0.1249 -0.2497 0.1395 -0.3231 -0.0705 0.1509 0.0984 -0.0242 
-0.3425 0.8230-0.2771 0.5998-0.3231 0.8505 0.1961-0.4639-0.3122 0.0464 
-0.0794 0.1995-0.0628 0.1477-0.0705 0.1961 0.0490-0.H60-0.0781 0.0096 

0.1819 -0.5045 0.1345 -0.3427 0.1509 -0.4639 -0 .H60 0.3049 0.2093 -0.0131 
0.1212 -0.3460 0.0878 -0.2293 0.0984 -0.3122 -0.0781 0.2093 0.1477 -0.0070 

-0.0215 0.0319-0.0214 0.0382-0.0242 0.0464 0.0096-0.0131-0.0070 0.0087. 
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f % • %. yx. *.v 
. , '. .*r--".v*** 
"" •HiS^^-

: -•. • . * ¥ • * • ; .•.••«*w^^ 
""- ••?.--.r-r*i 

••*. • •^-V.-# - i 
. v.\*'?:V^K ; 
• ** •-J-C-Î~*"*V" 

" i" :'-P'f-iJ": 
• * . 'V^r't.1 

J •» c- -S- ** 
"" "72"j»-E 

"V^ү.* 
*-&».':". 

-1 - 0 . 5 
Real(s) 

F i g . 1. Case 72 = 0.3000. Zeros of A(s, A) for 1000 randomly 

chosen admissible uncerta in parameters x*i and A2 . 

However, Corollary 1 cannot be used to conclude about robust stability or instability 
of polynomial matrix A(s, A). 

Using a trial and error method, we found that matrix A(s, A) has an unstable 
zero at s = 0.9903 for the following choice of admissible uncertain parameters 

xi = -0.6000 A2 = 
0.1600 -0.3600 
0.0800 0.0400 

The normalized vector v such that (Ao + (A\ + x\)s + (A2 + A2)s2)v = 0 gives rises 
to a vector 

" -0.3785 
0.9256 

-0.3749 
0.9166 

-0.3712 
0.9077 
0.2249 

-0.5500 
-0.3862 

0.0066 

such that rank-one matrix X = xx' satisfies /z = 0 in rank-constrained LMI problem 
(8). In virtue of Theorem 1, uncertain polynomial matrix A(s, A) is not robustly 
Instable. 

V 

ŠV 

š2v 
X\ŠV 

Ã2Ѓv 
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7. CONCLUSION 

Following an idea found in [9, Chapter 1] and that can be traced back to //-analysis 
[10, 21], we have proposed a general methodology for determining whether the zeros 
of a given uncertain polynomial matrix stay within a given region of the complex 
plane for all admissible uncertainty. Several stability regions and uncertainty models 
can be covered in a unified way. Necessary and sufficient conditions are formulated as 
a rank-constrained LMI optimization problem. Sufficient robust stability conditions 
are readily derived as convex LMI optimization or feasibility problems. 

The main motivation behind formulating the robust stability problem as a rank-
constrained JLMI problem is in that our results can be extended in various directions: 

- Necessary robust stability conditions may also be obtained, using geometric 
properties of the intersection of ellipsoids [14]. 

- The gap between necessity and sufficiency of the LMI conditions can be nar
rowed thanks to recent results on the full-block 5-procedure [24] and quadratic 
separators [18, 22]. 

- Rank-one LMI problems are special kinds of non-convex optimization problems 
for which tailored global optimization algorithms have recently been designed 
[1]. Quite efficient local optimization algorithms based on successive lineariza
tions can also be used [7], but without guarantee of convergence to the global 
optimum. 

- The LFR used to represent the uncertain polynomial matrix is not necessar
ily minimal, thus problem dimensions in the LMIs can be decreased via any 
(sub-optimal) LFR reduction procedure (see [15, 16] for an example of such a 
procedure). 

- Numerical aspects of solving the LMI conditions must also be carefully checked. 
Intensive numerical experiments are currently performed and will result in 
several new macros to be implemented in the next release 3.0 of the Polynomial 
Toolbox for MATLAB, see [23]. 

- Another interesting extension could eventually be to consider robust synthesis 
problems and Diophantine equations over polynomial matrices [20]. 

ACKNOWLEDGEMENTS 

Most of this work was done when the first and third authors were visiting the Depart
ment of Aerospace Engineering at the University of Nagoya, Japan, in the scope of the 
Japanese-Czech project "Polynomial Methods for Industrial Control Design" sponsored by 
the Programme "Contact" of the Czech Ministry of Education under project No. NJ 11/98. 
These authors would particularly like to thank Professors M. Suzuki and K. Sugimoto for 
their genuine sense of hospitality. The first author is also grateful to Denis Arzelier and 
Dimitry Peaucelle, LAAS-CNRS, Toulouse, for several stimulating discussions. This work 
was also supported by the Ministry of Education of the Czech Republic under contract 
No. LN00B096. 



Rank-one LMI Approach to Robust Stability of Polynomial Matrices 655 

(Received February 4, 2002.) 

R E F E R E N C E S 

P. Apkarian and H. D. Tuan: A sequential SDP/Gauss-Newton algorithm for rank-
constrained LMI problems. In: Proc IEEE Conference on Decision and Control, 
Phoenix 1999, pp. 2328-2333. 
B. R. Barmish: New Tools for Robustness of Linear Systems. Macmillan, New York 
1994. 
S.P. Bhattacharyya, H. Chapellat, and L.H. Keel: Robust Control: The Parametric 
Approach. Prentice Hall, Upper Saddle River, N.J. 1995. 
V.D. Blondel and J.N. Tsitsiklis: A survey of computational complexity results in 
systems and control. Automatica 36 (2000), 9, 1249-1274. 
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan: Linear Matrix Inequalities 
in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia 
1994. 
N. Brixius, R. Sheng, and F. A. Potra: SDPHA: a MATLAB implementation of homoge
neous interior-point algorithms for semidefinite programming. Optimization Methods 
and Software 11/12 (1999), 583-596. 
L. El Ghaoui, F. Oustry, and M. Ait Rami: A cone complementarity linearization 
algorithm for static output feedback and related problems. IEEE Trans. Automat. 
Control 42 (1997), 8, 1171-1176. 
L. El Ghaoui and J. L. Commeau: LMITOOL 2.0 Package: An Interface to Solve LMI 
Problems. E-Letters on Systems, Control and Signal Processing, Issue 125, January 
1999. 
L. El Ghaoui and S. I. Niculescu (eds.): Advances in Linear Matrix Inequality Methods 
in Control. SIAM Advances in Control and Design, Philadelphia, 1999. 
M. Fan, A. Tits, and J. Doyle: Robustness in the presence of joint parametric uncer
tainty and unmodeled dynamics. IEEE Trans. Automat. Control 36 (1991), 1, 25-38. 
J. C. Geromel, P. L. D. Peres, and J. Bernussou: On a convex parameter space method 
for linear control design of uncertain systems. SIAM J . Control Optim. 29 (1991), 
381-402. 
S. Gupta: Robust stability analysis using LMI: Beyond small gain and passivity. In
t e rna l J. Robust Nonlinear Control 6 (1996), 953-968. 
W. M. Haddad and D. S. Bernstein: Explicit construction of quadratic Lyapunov func
tions for the small gain, positivity, circle and Popov theorems and their applications to 
robust stability. Part I: Continuous-time theory. Internat. J. Robust Nonlinear Control 
3 (1993), 313-339. 
D. Henrion, S. Tarbouriech, and M. Sebek: Rank-one LMI approach to simultaneous 
stabilization of linear systems. Systems Control Lett. 38 (1999), 2, 79-89. 
D. Henrion, O. Bachelier, and M. Sebek: D-stability of polynomial matrices. Internat. 
J. Control 74 (2001), 8, 845-856. 
D. Henrion, M. Sebek, and O. Bachelier: Rank-one LMI approach to stability of 2-D 
polynomial matrices. Multidimensional Systems and Signal Processing 12 (2001), 1, 
33-48. 
D . Henrion, D, Arzelier, D. Peaucelle, and M, Sebek: An LMI condition for robust 
stability of polynomial matrix polytopes. Automatica 37 (2001), 3, 461-468. 
T. Iwasaki and S. Hara: Well-posedness of feedback systems: Insights into exact 
robustness analysis and approximate computations. IEEE Trans. Automat. Control 
43 (1998), 5, 619-630. 



656 D. HENRION, K. SUGIMOTO AND M. ŠEBEK 

[i9; 

[20; 

[21 

[22 

[23; 

[24 

[25; 

[26; 

[27; 

[28; 

[29; 

W. C. Karl and G. C. Verghese: A sufficient condition for the stability of interval 
matrix polynomials. IEEE Trans. Automat. Control 38 (1993), 7, 1139-1143. 
V. Kucera: Discrete Linear Control: The Polynomial Approach. Wiley, Chichester 
1979. 
A. Packard and J. Doyle: The complex singular value. Automatica 29 (1993), 1, 71-
109. 
D. Peaucelle and D. Arzelier: New LMI-based conditions for robust H2 performance 
analysis: In Proc. American Control Conference, Chicago 2000, pp. 317-321. 
Polyx, Inc.: Polynomial Toolbox for MATLAB, Release 2.0.0, 1999. See the web page 
www.polyx.cz. 
C. Scherer: A full-block <S-procedure with applications: In: Proc. IEEE Conference 
on Decision and Control, San Diego 1997, pp. 2602-2607. 
G. Scorletti and L, El Ghaoui: Improved LMI conditions for gain scheduling and 
related control problems: Internat. J. Robust Nonlinear Control 8 (1998), 845-877. 
D. Shim: Quadratic stability in the circle theorem or positivity theorem. Internat. J. 
Robust Nonlinear Control 6 (1996), 781-788. 
L. Vandenberghe and S. Boyd: Semidefinite programming. SIAM Rev. 38 (1996), 
49-95. 
J. C. Willems: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. 
Automat. Control 36 (1991), 259-294. 
K. Zhou, J. Doyle, and K. Glover: Robust and Optimal Control. Prentice Hall, Upper 
Saddle River, N.J. 1996. 

Dr. Didier Henrion, Laboratoire ďAnalyse et d}Architecture des Systemes, Centre Na
tional de la Recherche Scientifique, 7 avenue du Colonel Roche, 31 077 Toulouse, cedex 
4, France and Institute of Information Theory and Automation - Academy of Sciences 
of the Czech Republic, Pod vodárenskou věží 4, 182 08 Praha 8, Czech Republic, 
e-mail: henrion@laas.fr. 

Dr. Kenji Sugimoto, Department of Information Systems, Nara Institute of Science and 
Technology, Takayama 8916-5, Ikoma, Nara 630-0101. Japan, 
e-mail: kenjiuis.aist-nara.ac.jp 

Ing. Michael Šebek, DrSc, Center for Applied Cybernetics, Faculty of Electrical En
gineering, Czech Technical University in Prague, Technická 2, 16627 Praha 6. Czech 
Republic, 
e-mail: m.sebekůc-a-k.cz 


		webmaster@dml.cz
	2015-03-25T22:13:12+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




