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KOLMOGOROV COMPLEXITY, PSEUDORANDOM 
GENERATORS AND STATISTICAL MODELS TESTING 

JAN ŠINDELÁŘ AND PAVEL BOČEK 

An attempt to formalize heuristic concepts like strings (sequences resp.) "typical" for 
a probability measure is stated in the paper. Both generating and testing of such strings 
is considered. Kolmogorov complexity theory is used as a tool. 

Classes of strings "typical" for a given probability measure are introduced. It is shown 
that no pseudorandom generator can produce long strings from the classes. The time 
complexity of pseudorandom generators with oracles capable to recognize "typical" strings 
is shown to be at least exponential with respect to the length of the output. 

Tests proclaiming some strings "typical" are introduced. We show that the problem of 
testing strings to be "typical" is undecidable. As a consequence, the problem of correspon
dence between probability measures and data is undecidable too. If the Lebesgue measure 
is considered, then the conditional probability of failure of a test is shown to exceed a 
positive lower bound almost surely. 

1. INTRODUCTION 

The problem of describing single strings (sequences resp.) which are "typical" or 
"characteristic" for a given probability measure is an old, important and difficult 
one.1 Various approaches to its solution are summarized in [2]. Probably the first 
attempt to solve it formally was done by Von Mises (see [2]). Significant progress in 
the solution was achieved by Kolmogorov complexity theory and theory of Martin-
Lof tests. 

Kolmogorov complexity theory was originated by Kolmogorov in [3].2 Exposition 
of the theory could be found e.g. in [1, 6]. Strings (sequences resp.) which are 
"characteristic", or "typical" for a given probability measure are called random (m-
random, asymptotic random) with respect to the measure. 

Theory of Martin-L6f tests was initiated by Martin-L6f [7]. Its explanation and 
the relationship between Kolmogorov complexity theory and theory of Martin-L6f 
tests can be found in [1, 6]. Basic attempt of theory of Martin-L6f tests is to char-

1 Probability theory and statistics deals with classes of such strings (sequences resp.). 
2A similar approach to the program size complexity was initiated independently by Solomonoff 

and Chaitin. 
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acterize strings and sequences which, with respect to a given probability measure, 
possess all possible properties of stochasticity ([1], p. 313, [7]). 

We deal with strings and sequences "characteristic" or "typical" for a probability 
measure. To avoid misunderstanding and confusion with classical terminology, we 
call such strings (sequences resp.) "typical" instead of random. 

The paper is organized as follows. 
Auxiliary results on Kolmogorov complexity used in the paper are summarized 

in Section 1. 
Classes of strings (sequences resp.) which are "typical" for a given probability 

measure are introduced in Section 2. It is shown that each class of "typical" strings 
constitutes an immune set. 

Section 3 is devoted to pseudorandom generators. It is shown that no pseudoran
dom generator can produce long "typical" strings. Pseudorandom generators with 
oracles capable to recognize "typical" strings are then introduced. We prove that 
the time complexity of such generators grows at least exponentially with respect 
to the length of the output strings. A relationship of these results with applied 
Monte-Carlo methods is mentioned. 

Section 4 is devoted to testing of strings to be "typical". We show that this 
problem is undecidable. As a consequence, one of the basic problems of applied 
statistics, the problem of correspondence between statistical models and data, is 
undecidable too. After that, the Lebesgue measure is considered. We introduce the 
conditional probability that a string of low Kolmogorov complexity is proclaimed 
"typical". We show that such probabilities are bounded from below by a positive 
constant almost surely. 

Basic results of the paper concern pseudorandom generators with oracles (Sec
tion 3) and testing of strings to be "typical" (Section 4). 

NOTATION 

We shortly describe the notation used in the paper. 
The set {0, 1, 2, ...} of natural numbers is denoted by iV, the symbols n, t denote 

natural numbers. 
The symbol E denotes a finite alphabet of cardinality c > 2. The symbol S* 

denotes the set of all strings over E, l(x) denotes the length of a string x. The 
symbol S n denotes the set of all strings over E having the length n. 

The set of all (infinite) sequences over S is denoted by E°°. The symbol Sn 

denotes the initial segment of a sequence S having the length n. Consider a set X of 
sequences. The symbol SX denotes the set of all initial segments of sequences from 
X, i.e. SX = {Sn\S GX k neN}. 

The symbol * denotes a universal Kolmogorov algorithm (see [1], p. 309) with 
inputs from the set S*xJV and with outputs from the set E*. 

We consider the er-algebra of subsets of S°° generated by the set of cylinders. The 
symbol P denote a probability measure on E°°, while Pn denotes the corresponding 
marginal probability measure on S n . Hence 

Pl{x){x} = P{S€X°°\Sl{x)=x} 
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holds for each string x. 
The symbol f denotes a sequence (/o, / i , /2, .. •) of nonnegative reals. 

2. KOLMOGOROV COMPLEXITY AND PROBABILITY MEASURES 

Concepts and results on Kolmogorov complexity applied below are summarized in 
this section (see [9] for a detailed explanation). 

Assume that x is a string. (Conditional) Kolmogorov complexity is defined by 

K*{x\n) :=inf{/(p) |pGS* & $(p, n) = x}. 

The number n represents our prior information about the string x. The number of 
strings of low Kolmogorov complexity is estimated by 

cf+1 - 1 
card {x G X*\K*{x\n) < / } < —-— (2.1) 

(cf. Lemma 1.1. in [9]); here f is a nonnegative real. 
Strings from the class 

Cstr f := {x G V*\Kv{x\l{x)) > fl(x)} 

are called f-complex strings. If an f-complex string x has the length n, then we have 

K*{x\n) >fn. (2.2) 

Sequences from the class 

Cseq f := {S G S°°|3t Vn > t : Ky{Sn\n) > fn} 

are called {-complex sequences. Such classes were studied e.g. in [4, 5, 9]. 

Let S be an {-complex sequence. If n is sufficiently large, then the Kolmogorov 
complexity Ky{Sn\n) of the initial segment Sn is greater than or equal to the lower 
bound fn. 

Sequences from the set 

C s e q M := {S G S°°|Vn > t: K*{Sn\n) > fn} 

are called (f, t)-complex sequences. If n > t, then the initial segments of (f, t)-
complex sequences having the length n are f-complex strings. Both sets C s e q f t 

and Cseq f are measurable. 
We have 

x e SCseqft =-=.> x G Cstr f a.s., (2.3) 

as is shown in [9]. "Almost surely" means "up to a finite number of cases". 
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Proposition 1.1. Let P be a probability measure on S°°. For each n we define 

7rn(P) := max Pn{x}. (2.4) 
xeEn 

a. We have 

b. If 

takes place, then we have 

P(Cseq f f t ) > 1 - 2 • E ~ t - 7rn(P) • c'». (2.5) 

E - 0 7 r n ( P ) . c ^ < o o (2.6) 

P(Cseq f ) = 1. (2.7) 

A dependence of the probabilities P n ( C s t r f flEn) of the class off-complex strings 
having the length n as well as of the probabilities P(Cseq f ) of the class of f-complex 
sequences on the lower bounds f of Kolmogorov complexity is discussed in [9]. 

3. ON "TYPICAL" STRINGS AND SEQUENCES 

An attempt to formalize heuristic concepts like strings and sequences "typical" for 
a given probability measure is stated in the section. Classes of such strings and 
sequences are introduced. It is shown that the classes of "typical" strings constitute 
immune sets. 

3.1. On "typical" strings 

Let us think over "typical" strings. The set of strings "typical" for a given probability 
measure P is denoted by 

Typstrp. 

We assume, that 
Typstrp C E * , 

because our marginal probability measures operate on subsets E n of E*. 
Of course, we give no definition of the set of "typical" strings! Instead, we shall 

introduce a global property relating the set of "typical" strings with the set of f-
complex strings. Our analysis of "typical" strings is based on this property. 

The property just mentioned is illustrated on ergodic measures. Consider a coding 
of "typical" strings. It is a well-known fact that the "typical" strings having the 
length n can be compressed by the coding up to the length approximately equal Co -n 
(where Co is a positive constant related with entropy of the probability measure), 
but not much shorter. It means that they can be compressed up to the length 
greater than or equal to (Co — e0) • n, where en is a small positive constant, at least 
for large values of n. From the viewpoint of Kolmogorov complexity it means that 
the Kolmogorov complexity Kq(x\n) of long "typical" strings x should be greater 
than or equal to (C0 - e0) * n + C, where C is a constant and n is the length of x. 
Take e positive such that (Co -£o) • n + C > e• n holds almost surely, put fn = e-n. 
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We claim that Ky(x\n) > fn should hold for the "typical" strings x of the length 
n, at least for large values of n. It results that long "typical" strings should be 
f-complex, i. e. that "typical" strings should be f-complex almost surely. 

In general, our property reads: 

(*) there is a sequence f such that almost all "typical" strings are f-complex, i. e. 
that 

x E Typstr P = > x G Cstr f (3.1) 

holds almost surely*. 

Our property gives a heuristic upper bound of the set of "typical" strings. In 
fact, it states that 

Typstr P C Cstr f U X for a finite set X. (3.2) 

Almost all probability measures used in practice are covered by (*). For instance, 
ergodic measures are covered by (*) with a single sequence f (see Example 1 in [9] 
for detailed discussion of the topic). 

The set Typstr P is usually immune4, as is shown in 

Theorem 2 .1 . Let (*) take place, let lin^^oo fn — oo. 
If the set Typstr P is infinite, then it is immune. 

P r o o f . Let Typst r P be infinite. Then Cstrf is infinite too. This set is immune, 
which is an easy consequence of Theorem (4.3) from [1], pp. 332-333. The set Cstr f \ 
Typstr p is finite, hence Typstr P is immune. • 

3.2. On "typical" sequences 

Let us turn to "typical" sequences. The set of sequences "typical" for a given 
probability measure P is denoted by 

Typseqp. 

We assume that 
Typseqp C E°°, 

because our probability measures operate on Borel subsets of S°°. 

We can assume, that there is a lot of "typical" sequences, i.e. that (the set 
Typseqp is measurable and) 

P(Typseqp) = 1. 

3Like above, "almost surely" means "up to a finite number of cases". 
4 The set of strings is called immune iff it has no infinite recursively enumerable subset ([8], 

p. 107). If X is immune and G : N -> S* is a recursive function with infinite range, then G(n) lies 
outside the set X for infinitely many n's. 
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In general, we use this condition at some specific places only. 

Finally, we consider the sets 

£p,f,t := Typseqp n C s e q f t (3.3) 

of sequences which are both "typical" and (f, £)-complex. 
As a rule, probabilities of the sets Ip,f,t converge to probability of the set 

Typseqp of typical sequences, as is shown in 

Proposition 2.1. Let P be a probability measure on S°°. 
Assume that E^L07rn(P) • cfn < oo (i.e. (2.6)) is fulfilled. 
If Typseqp is a-measurable set, then we have 

lim P ( I P , M ) = P(Typseqp). (3.4) 
t—i>oo 

P r o o f . The sets Cseqf t are measurable (see Section 1). Hence the sets Zp,f,t 
are measurable by (3.3). We have 

tUmP(Cseq r > t) = l (3.5) 

according to (2.5), hence (3.4) follows from (3.3). • 

3.3. Extend ing results of the paper 

Basic results of the paper are formulated by means of the sets Typstr P of "typical" 
strings and the sets Zp,f,* of "typical" and (f, £)-complex sequences. Analogical 
results are true for the other sets introduced in the paper. We does not formulate 
them explicitly because of space limitations. Instead, we introduce and prove them 
by means of the following 

Metatheorem 2 .1 . (extending results of the paper) 

a. All results on the sets Typstr P hold for the sets Slp} f, t in the following sense. 
Assume that some statement Mi concerning the set Typstr P is true. Replace 
Typstrp by <SZp}f)t in the statement, exclude the assumption (*) from the 
statement. Then the new statement M2 is true. 

b. All results on the sets Typstr P hold for the sets Cstrf. 

c. All results on the sets Ip^f^t hold for the sets Cseq f t. 

P r o o f . 

a. Consider the statement M\ without the assumption (*). Put Typstr P := 
<SXp,f,i. Then (*) takes place, as follows from (2.3) and (3.3). Hence the 
statement M2 is true. 
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b. Clearly, (*) is true for Typs t r P := Cstrf. 

c Put TypseqP :-= Cseq f; then the equality Zp,f,£ = C s e q f i takes place. • 

It follows from Metatheorem 2.1 b,c, that our results on sets Typs t r P and Zp,f,t 
can be transformed into results on sets of f-complex strings and (f, £)-complex se
quences, i.e. into those formulated purely in terms of Kolmogorov complexity theory. 

4. ON PSEUDORANDOM GENERATORS 

We show in this section that no pseudorandom generator can produce long strings 
"typical" for probability measures used in practice. Pseudorandom generators with 
oracles capable to recognize "typical" strings are introduced. We show that the 
time complexity of such generators grows at least exponentially with the length of 
the output. A relationship of these results with applied Monte-Carlo methods is 
mentioned at the end of the section. 

Assume that G is a pseudorandom generator. It means that G represents an 
effectively computable function ascribing strings from S* to natural numbers. Ac
cording to Church's thesis (see [1], p. 92) we can suppose that G is a recursive 
function. Moreover, we assume that the length of the output string G(n) equals the 
value of the input number n. 

Our pseudorandom generators are "purely deterministic" ones. Hence random 
side affects, like random seeds performed by means of physical entities at the begin
ning of the process or periodically in the course of the process, are not considered 
here. 

No pseudorandom generator can produce long "typical" strings, as follows from 

T h e o r e m 3.1 . Let (*) take place, let limn_yoo fn = oo. Then we have 

G(n) fi Typs t r P a. s. 

P r o o f . Clearly, the conditional Kolmogorov complexities K^ (G(n) \n) are bounded 
from above by some constant. Moreover limn^oo fn = oo, hence there is a constant 
n (# , f, G) such that 

K*(G(n)\n) < fn (4.1) 

is true for all n > n(\I>, f, G). 
There is some no such that (3.1) is true for all strings x with l(x) > no, as follows 

from (*). Consider a "typical" string x with n := l(x) > max{n($, f, G), no}. It 
suffices to prove that G(n) / x. The string x lies in Cstrf by (3.1), hence (2.2) is 
true, so that G(n) ^ x by (4.1). • 

No pseudorandom generator can produce long initial segments of sequences from 
the set 5Xp,f,t (by Theorem 3.1 and Metatheorem 2.1a). Moreover, the length of 
these segments is independent of the probability measure under consideration, as 
follows from 
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T h e o r e m 3.2. Let limn_>oo fn = oo. 
Then there is a constant n(\I>,f, G, t) independent of P such that we have 

G(n)$SIPtf,t V n > n ( * , f , G , t). 

P r o o f . Choose no equal t in the proof of Theorem 3.1. Apply Metatheorem 2.1 a. 
to the proof. • 

Assume for a moment that there is a lot of "typical" sequences, i.e. that 

F(Typseqp) = 1. (4.2) 

Moreover, suppose that the probabilities 7rn(P) of a most probable string of the 
length n are of 0(n~2) type (there may be several most probable strings). Majority 
of probability measures used in practice satisfies this condition, like the ergodic mea
sures do (see Example 1 in [9] for details). Finally, take a sequence f of lower bounds 
converging slowly to infinity, e.g. like log*' 2n does. Then Hindoo P ( C s e q f < ) = 1 
holds, as follows from (2.5). 

Let e be a small positive constant. Consider a probability measure P satisfying 

P ( C s e q f ) t ) > l - e . (4.3) 

The class of such measures, say V, is very large, at least for large t. We have 

Pn(SIp,fitnXn)>l-e 

for all n (by (4.2), (3.3) and (4.3)). Therefore, majority of strings "typical" for any 
probability measure from the class V lies in the set SXpjyt. But no pseudoran
dom generator can produce long strings from this large and heterogeneous set by 
Theorem 3.2. It reflects our intuitive feeling that no pseudorandom generator can 
produce long strings "typical" for any of the probability measures used in practice. 

Let us turn to pseudorandom generators with oracles. Before going ahead, we 
limit the class of probability measures under consideration. Nevertheless, it remains 
substantially general for practical purposes. 

In the rest of the section we assume, that 

£ *n < fn a. s. 

takes place, where 0 < e < 1 is a positive real. Majority of probability measures 
used in practice, e. g. ergodic measures, is taken into account in this case, as follows 
from Example 1 in [9]. (But different measures may be covered by different e's.) 

It was shown above, that the pseudorandom generators fail to produce long "typ
ical" strings. For this reason we add an oracle to a pseudorandom generator, namely 
the oracle capable to recognize "typical" strings. We investigate the time complexity 
of such generators. 

A Turing machine equipped by an oracle is considered. Inputs of our machine are 
natural numbers, outputs are strings. Starting on the input n, the machine works 
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as follows. It subsequently generates auxiliary strings. Whenever some auxiliary 
string is obtained, the machine asks the oracle whether it is a "typical" string of the 
length n, or not. If the answer is positive, the string is placed on the output tape of 
the machine and the machine halts. If the answer is negative, new auxiliary string 
is generated, etc. Each of Turing machines just described is called a pseudorandom 
generator with oracle. 

Clearly, producing of an auxiliary string takes at least one unit of time. Therefore, 
if i auxiliary strings are generated until the machine halts, then the time complexity 
of the procedure is greater than or equal to i. 

T h e o r e m 3.3. Let (*) take place. Assume that e • n < fn is true for almost all n, 
where 0 < e < 1. 
Then the time complexity of a pseudorandom generator with oracle grows at least 
exponentially with the length of the output. 

P r o o f . Consider an input n of the generator. Suppose that the auxiliary strings 
xi , X2, • . . , Xi were generated until the machine halts. Hence the "typical" string 
Xi E Typs t r P is produced as the output. If n is sufficiently large, then e • n < fn 

and Xi G Cstrf are true. So that we have 

£-n < fn < Ky(xi\n) 

by (2.2). Moreover, there is a constant C such that 

Kv(xi\n) <l(i) + C 

takes place. Therefore, we have 

e • n < /(z) + C< logc(i) + C. (4.4) 

If n is sufficiently large, then | • n < logc(i) is valid by (4.4), i.e. ci'n < i is true. 
The time complexity of producing Xi is greater than or equal to i, which finishes the 
proof. • 

An exponential upper bound of time complexity can be obtained too. Consider 
a pseudorandom generator with oracle performing the following steps. Starting 
on the input n, it subsequently generates strings of the length n in a prescribed 
lexicographical order. Whenever it generates a string, it asks the oracle. If the string 
is "typical", the generator outputs the string and halts. Otherwise it generates the 
next string. Clearly, generating of one string and asking the oracle once can be 
done in a polynomial amount of time. Hence the whole procedure of producing of a 
"typical" string takes at most p(n) • ca rdS n = p(n) • cn units of time, where p(-) is 
a polynomial. Finally, p(n) • cn < c2n holds almost surely. 

Our considerations on pseudorandom generators turn some light on applied Monte-
Carlo methods. They suggest that safe "purely deterministic" pseudorandom gen
erators cannot be obtained in the frame of contemporary computer science. 
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5. ON TESTING STRINGS TO BE "TYPICAL" 

Tests proclaiming some strings as "typical" are considered in this section. We show 
that the problem of testing the strings to be "typical" is undecidable. As a conse
quence, one of the fundamental problems of applied statistics, the problem of cor
respondence between statistical models and data, is undecidable. Finally, we prove 
that the conditional probability that a string which is not f-complex is proclaimed 
"typical" is bounded from below by a positive constant. 

Consider a probability measure P on S°°. 
A test is a recursively enumerable6 set of strings,6 i.e. a recursively enumerable 

subset of S*. It is denoted by 
TP. 

We assume that just the strings from the test Tp are proclaimed "typical" for the 
probability measure P. 

No test Tp can proclaim exactly the "typical" strings as "typical", which follows 
from 

T h e o r e m 4.1. Let (*) take place, let limn_HX, fn = co. 
If Tp is an infinite test, then Tp \ Typstr P is an infinite set. 

P r o o f . If the set Typstr P is finite, then the assertion the theorem is true. Let 
Typstr P be infinite. Then it constitutes an immune set by Theorem 2.1. Hence 
Tp \ Typstr p is infinite. • 

Theorem 4.1 means that the problem of testing the strings to be "typical" is 
undecidable by means of Turing machines. 

A fundamental problem of applied statistics consists in answering of the question: 
"Does the collection of the observed data correspond to a given probability measure?" 
We show that this problem is undecidable. The question should be answered in an 
effective manner, safely and for infinitely many collections of input data. Therefore, 
it can be formalized by: "Does an infinite test Tp exist such that Tp C Typstr P 

takes place?" Theorem 4.1 shows that the answer is negative. 
It will be interesting to estimate the conditional probability 

Pn(TP | S n \ Typstr P ) 

that some string which is not "typical" is proclaimed "typical" by the test. Unfor
tunately, such an estimate cannot be obtained by means of the assumptions stated 
above. Namely, the property (*) gives no lower bound of the set Typstr P of "typ
ical" strings, as follows from the equivalent condition (3.2) on page 751. It means 
that we have at disposal no upper bound of the probability Pn(T,n \ Typstr p). 

5 This is the weakest constructive restriction; see [1], p. 314, Comment b) for details. 
6Traditionally, a Martin-L6f test for randomness is a specific recursively enumerable subset of 

S* x N. Our approach is different. Classical approach deals with testing a hypothesis about a 
statistical model and data, while we are dealing with problem of correspondence between statistical 
models and data. 
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In the rest of the section we assume, that P is the Lebesgue measure. Hence 

Pi{x){x} = c~1^ 

is true for each string x E S * . 
Clearly, strings of low Kolmogorov complexity are too regular to be "typical" for 

the Lebesgue measure. Therefore, the conditional probability 

Pn(TP | S n \ C s t r f ) (5.1) 

that some string which is not f-complex is proclaimed "typical" is of interest. We 
show that if a lot of strings is proclaimed "typical" by a test, then the probabilities 
(5.1) are bounded from below by a positive constant almost surely. 

Theorem 4.2. Assume that P is the Lebesgue measure on E°°, limn_>00 fn = co. 
Moreover, let 

liminf Pn(TP n Sn) > 0. (5.2) 
n—>oo 

Then 
liminf Pn(TP | E n \ C s t r f ) > 0. (5.3) 

n—>oo 

P r o o f . 

1. There is some no G N such that the sets S n \ Cstrf are nonempty for all 
n > no, because limn_^oo fn = oo. Prom now on, let n > no-

The probability (5.1) equals 

card [ r P n ( S n \ Cstr f)] 
card [ z > \ Cstr f] ' l j 

The value of the denominator in (5.4) is bounded from above by c n
c_1~1, as 

follows from (2.1). 

2. There is a partial recursive function F from the set E* x N into the set S* 
satisfying the following properties. The domain of the function F(-, n) contains 
exactly card [Tp n Sn] shortest strings from the set S*. The range of the 
function coincides with Tp D S n . Hence for each string z from the domain of 
the function F(«, n) we have 

K*(F(z, n)\n) <l(z) + C, (5.5) 

where C is a constant. 

Let us put 
r n : = c a r d [ T P n S n ] . (5.6) 

We introduce auxiliary sets 

Xn:={zeZ*\l(z) + C<fn}. (5.7) 



758 J- ŠINDELÁŘ AND P. BOČEK 

3. We show that if z lies in Xn and F(z, n) is defined, then F(z, n) lies in the 
set Tp n ( S n \ Cstrf). This fact enables us to obtain a lower bound of the 
numerator in (5.4). Consider the string z. The string F(z, n) lies in the set 
Tp n S n according to definition of the function F. At the same time we have 
Ky(F(z, n)\n) < fn by (5.5) and (5.7), hence F(z, n) does not lie in the set 
C s t r f by (2.2). 

4. Two cases are considered below, rn > card Xn and rn < card Xn. 

Case a. First, let rn > card Xn. Then F(z, n) is defined for all z G Xn. Hence the 
value of the numerator in (5.4) is bounded from below by cardan, which 
is at the same time bounded from below by 

rU-c _ 1 
(5.8) 

c - 1 

Hence the value of the numerator in (5.4) is bounded from below by the 
value of (5.8). Therefore, we have 

Pn(TP | En \ Cstrf) > j~+xZ\ (5-9) 

by part 1. of the proof. 

Case b. Assume that rn < card Xn is true. Then there are rn strings z in Xn such 
that F(z, n) is defined. Let z\, ..., zTn be that strings. We have 

{F(zi, n)\i = l,...,rn} = TPf)-Zn (5.10) 

in this case according to definition of the function F and (5.6). Moreover, 
part 3. of the proof gives 

TP n ( S n \ Cs t r f ) D {F(zu n)\i = l,...,rn}, 

which together (5.10) proves that 

TP n ( S n \ Cstrf) = r P n s n 

takes place. Therefore, we have 

Pn(TP | S n \ Cst r f ) > P n ( T p n E n ) . (5.11) 

5. Two lower bounds (5.9) and (5.11) of the probability (5.1) show, that we have 

Pn(TP | S n \ Cs t r f ) > m i n { ^ + 1 ~ * , Pn(TP n S n ) | . (5.12) 

This inequality together with limn->cx) fn = oo and (5.2) show, that (5.3) is 
true. • 
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The assumption "there is a lot of strings proclaimed 'typical by the test' formal
ized by (5.2) can be replaced by 

lim Pn(TP n S n ) = l. 
n—-»oo 

Then we have 
liminf Pn(TP I S n \ C s t r f ) > c " 0 " 1 . (5.13) 
n—>oo 

as follows from (5.12). If the universal Kolmogorov algorithm is chosen appropriately, 
then the constant C equals 1 and the lower bound in (5.13) equals c~2. 
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