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K Y B E R N E T I K A — V O L U M E 39 ( 2003 ) , NUMBER 5, P A G E S 5 4 7 - 5 6 0 

N O N - M O N O T O N E O U S PARALLEL ITERATION F O R 
SOLVING C O N V E X FEASIBILITY PROBLEMS 

GILBERT CROMBEZ 

The method of projections onto convex sets to find a point in the intersection of a finite 
number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of 
the constructed sequence. Such slow convergence depends both on the choice of the starting 
point and on the monotoneous behaviouT of the usual algorithms. As there is normally no 
indication of how to choose the starting point in order to avoid slow convergence, we present 
in this paper a non-monotoneous parallel algorithm that may eliminate considerably the 
influence of the starting point. 

Keywords: inherently parallel methods, convex feasibility problems, projections onto con
vex sets, slow convergence 

AMS Subject Classification: 65Y05, 65B99, 47H09 

1. INTRODUCTION 

The method of projections onto convex sets (abbreviated as POCS) is often very 
well suited to solve the so-called "convex feasibility problem". In the m-dimensional 
Euclidean space E m , this problem may be described as follows: given a finite number 

n 
of closed convex sets {Cj}™=1 in Rm with nonempty intersection C* = fl Cj, find 
a point in C*. When the individual sets Cj are such that for each of them its 
corresponding shortest-distance projection operator Pj (j = 1 , . . . ,n) is explicitly 
known, by the POCS-method a sequence is constructed that converges to a point 
in C*; depending on the number r (1 < r < n) of projections used at each step 
to construct such sequence, sometimes one speaks of a sequential method (r = 1), 
or a block-iterative method (1 < r < n), or a (fully) parallel method (r = n). An 
overview of general problems and methods may be found in [1], and in the books 
[12] and [4]. More specific sequential, block-iterative and parallel methods have 
been described in [9], [2], [5], [6] and [10]. Examples of the use of convex feasibility 
problems in applied domains (as for instance in image processing) may be found in 
[12]. 

As often has been remarked, however, the sequence that is constructed by the 
POCS-methods sometimes converges very slowly. The following combined facts 
may be responsible for this slow convergence: the mutual position of the involved 
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convex sets (i.e., the given problem), and the algorithm used to reach a feasible 
point. Usually we can only interfere into the used algorithm. To see what facts 
in a common iteration algorithm may be responsible for slow convergence, we refer 
to Table 1 accompanying Example 1 at the end of this paper. In this example, 
12 disks (having nonempty intersection) with corresponding projection operators 
Pi, F2, • • • > P12 are given; we use the sequential algorithm indicated as PP, in which 
we put T = P12P11 • • P2P1, and in which the iteration sequence {x^}^"^ is con
structed by Xfc+i --= Txfc. From Table 1 we see that, for some starting points, a point 
in the intersection is obtained after one application of T, while for other starting 
points the same method leads to a very slowly converging sequence (the same is 
true in the parallel case, although for different starting points). The following expla
nation for this different speed of convergence seems acceptable : for some starting 
points, the converging sequence { x ^ } ^ ^ may enter some narrow "corridor" between 
two or moire convex sets; the monotoneous way of convergence that is present by 
using a common algorithm is then responsible for very small steps towards the limit 
point, leading to slow convergence. This monotoneous behaviour for the constructed 
sequence { x ^ } ^ ^ in E m that converges to a point of the intersection C* is expressed 
as |xfc+i — w| < jxfc — w|, Vw £ C*, for all k. 

The observations explained above lead to the following conclusions. First of all 
(and certainly for nonlinear projections), applicable theoretical results about the 
rate of convergence may be difficult to find. But what is even more important is 
that the real way out of the difficulties is not situated in finding some algorithm 
that in all circumstances is the fastest (as such algorithm probably does not exist), 
but in finding an algorithm that, independent of the starting point, leads to an 
acceptable speed of convergence. Otherwise said, returning to Example 1, it is well 
acceptable that for some starting points algorithm PP leads to a faster convergence 
than the new algorithm we want to construct, but the new algorithm should not 
lead to extremely slow convergence, although this last fact can only be observed 
experimentally. 

Again from our observations, we see that a possible way out of slow convergence 
could be by allowing (and provoking) nonmonotoneous behaviour of the iteration 
sequence, because we then have the possibility to leave the small corridor by taking 
big steps at several iteration points. In a recent paper [8], we already elaborated this 
idea, and we constructed a parallel algorithm that at different steps in the iteration 
caused an interruption of the monotoneous behaviour of convergence, and that led 
to a much faster convergence in those cases where the monotoneous procedure was 
slow, while keeping an acceptable speed of convergence in the other cases. There 
was, however, one less desirable fact in the method: part of the computations had 
to be done in the space ( E m ) n instead of in E m . 

In this paper, we present a new algorithm that may interrupt the monotoneous 
behaviour of the iteration sequence {xfc}£^, but such that all computations may 
be done in E m . In Section 2, we explain the theoretical background and in Section 
3 we prove convergence of the constructed sequence to a point of C*. For ease 
of presentation, we give the construction in the fully parallel case, although the 
method seems to be equally valid in the block-iterative case. At the end of Section 
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3 we also give some comments on the fact that the constructed algorithm should be 
seen as a prototype, but that more flexibility can be incorporated in it. In Section 
4, we present two examples to compare the number of iterations needed to obtain 
convergence for different algorithms. 

2. CONSTRUCTION OF THE ALGORITHM 

2.1. For ease of reference, we start with a short description of the Pierra method 
[11] for viewing a parallel iterative projection method in some space as a (semi-) 
sequential one in a suitable product space. 

Let Em be the m-dimensional Euclidean space with standard inner product ( , ) 
and norm | | derived from ( , ); denote (Em , ( , ) , | |) for short by H. Elements 
of H are denoted by boldface letters. 

Suppose that in iI, n closed convex sets {Cj}r-=l are given, having nonempty 
n 

intersection C* = D Cj. Projection onto Cj is denoted as Pj. We want to obtain 
a point in C* by a parallel iterative procedure. 

Consider the n-fold product (E m ) n of E m ; elements of (E m ) n are denoted by capi
tal letters. We introduce an inner product ((, )) and norm || || on (E m ) n , as follows: 
when V = (vi, v 2 , . . . , v n) and W = (wi, w 2 , . . . , wn) are elements of (E m ) n , put 

( ( ^ i ) ^ ! ^ ^ ^ ( ( , ) ) , || ||) for 
3=1 j=l 

short by H. 
In Hy we consider the subsets V and T, defined as follows. V is the set of all 

7i-tuples with equal components, i.e., for v E H we have that (v, v , . . . , v) EVcH. 
V is the image of H under the canonical imbedding q : H -> H, where for v G H 
we put q(v) = (v, v , . . . , v). V is a closed linear subspace of H. Projection onto V 
is denoted as Pp . 

The subset T of H is defined as the n-fold cartesian product of the convex sets 
{Cj}'j=1 in Hy i.e., T = C\ x C2

 x * • • x Cn. It is a closed convex set of H, with 
corresponding projection operator Pp. 
Clearly, C* ^ 0 is equivalent to T f\ V ^ 0, and, moreover, q(C*) = T D V. Hence, 
obtaining a point in C* C H is equivalent to obtaining a point in Tf)V. In particular, 
when we construct a sequence {Xk}^^ in V C H that converges in H to a point 
in T fl V, the corresponding sequence { x * . } ^ in H with Xk = q~l(Xk) will be 
convergent in H to a point in C*. 

Use of the Pierra method mentioned above is based on the properties given in 
Lemma 1, and may be resumed as in Lemma 2. For proofs we refer to [11, Lemma 
1.1] and [8, Lemma 1]. 

Lemma 1. Let V = ( v i , v 2 , . . . ,v n ) eH. Then 

(i) PjrV = (PlVi ,P 2V 2 , . . . ,PnVn)-

( i i ) W = «(£!>;) • 
3 = 1 
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Lemma 2. Suppose that, starting from some point x0 in II, a sequence {xfc}jj"f? 
in H is constructed by a parallel method, as follows 

n j 

Xfc+i = Xfc + A/fc+i ^ ~(PJXk ~ Xjfe), (1) 

J = l 

where A*.+i denotes a (positive) variable relaxation coefficient. Then, under the 
natural imbedding q of H into 7I, the sequence { x ^ } ^ in H is equivalent to the 
sequence {Xk}~^^ in V C 7I constructed as follows: 

-Yo = Q(*o) 
^Xk+1 = Xk + \k+1(Pv(PrXk)-Xk). (2) 

Hence, the parallel method in II, given by (1), is equivalent to a semi-sequential 
method in 7I, given by (2) (we use the word semi-sequential to stress the fact that 
no relaxation with respect to the projection onto V is allowed). The procedure in 
(2) may also be split into two separate steps, as follows: 

n + i - Xk + Xk+1(Pj.Xk-Xk) (3i) 

Xk+1 = Pv{Yk+_). (3ii) 

We also remark that in (1) the same equal weight factors ^ for each projection 
operator Pj have been used; the procedure works equally well for fixed but different 
weight factors. For the value of the variable relaxation coefficient A^+i used at 
each step in (1) or (2) to obtain convergence, several possibilities are available. In 
particular, when in going from Xk to Xk+1 (or from xk to x^+i), the following value 
of Afc+i is used 

, \\PrX>-Xkff _ g ^ - F ^ l ' 
M = \\P^rXt)-Xt\?-^_tl • 

i= i 

it has been shown in [7, Formulas (8) and (9)] that the following inequalities are 
true for each V in T D V: 

((Xk+1-V,Xk+1-Xk))<0, (5) 

||**+i " Vf < \\Xk - V\\2 -\\Xk - Xk+1\\
2. (6) 

It is also true that A^+i > 1, for each k. 
Moreover, again from [7] we deduce that the following orthogonality relation is true: 

\\Xk - Xk+1\\
2 = \\Xk - P?Xk\\

2 + \\PTXk - Xk+1\\
2. (7) 
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2.2. Inequality (6) implies in particular that, when at each iteration step the 
value of Xk+i given in (4) is used, the resulting sequence { A ^ } ^ will have a mono-
toneous behaviour. We now present an algorithm that, by using suitable values 
of the relaxation coefficients at regular steps, may lead to a non-monotoneous be
haviour, but still will result in a sequence that is convergent to a point of T fl V. 
We first explain the method for one possible interruption point with index k + 1; 
afterwards we enumerate all possible interruption points. 

Let TV be a given positive integer (N > 2). Suppose that, starting from some point 
Aro in V C H, we obtained by using procedure (2) with the corresponding relaxation 
coefficients as given in (4), the points ATi, X2 , . . . , Xk with k > N (in particular, for 
those intermediate points up to and including Xk the properties corresponding to 
(5) and (6) are true). Now, in order to find Xk+i, we will use a relaxation coefficient 
such that, although it may no longer be true that ||Afc+i - V\\ < \\Xk — V\\ for all 
V 6 TOV, it will nevertheless be true that ||A"fc+i - V\\ < \\Xk+i-N - V\\, for each 
V £ Tf\V. Put another way, the monotoneous behaviour of the sequence {Xk}~^^ 
that we are going to construct may be interrupted at Xk+i with respect to Xk, but 
it is repaired with respect to Xk+i-N-

To this end, with jk+i denoting a positive but not yet determined number and 
with Xk+i as given by (4), put 

Xk+i =Xk + (Ajb+i + lk+i)(Pv(PFXk) - Xk). (8) 

Putting 

Wk+i =Xk + \k+i(Pv(PrXk) - Xk), (9) 

we know that for the couple (Wk+i,Xk) the properties corresponding to (5) and (6) 
are true (replacing in (5) and (6) Xk+i by Wk+i), and moreover we see that (8) may 
be rewritten as 

Xk+i = Wk+i+lk+i(Pv(PrXk)-Xk). (10) 

For any V in T fl V, we derive from (10) 

\\Xk+i-Vf = | | K V , + 1 - y | | 2 + 7
2

+ 1 | | P P ( P ^ , ) - - X , | | 2 

+ 2lk+i((Wk+i - V,Pv(PTXk) - Xk)). 

In view of (9), we may replace Pv(PjrXk) — Xk in the right-hand-side of the 
foregoing equality by ^ — 7 ( ^ + 1 ~Xk). Hence, the former equality may be rewritten 

as 

\\Xk+i-V\\2 = | |TV ,+ 1--F | | 2 + ^ ± 1 | | ^ + 1 - ^ | [ 2 

Ak+i 

+ 2^±±((Wk+i-V,Wk+i-Xk)). 
*k+l 

As we already remarked, the inner product in the last term is non-positive (cor
responding to (5)). We conclude that, irrespective of the positive value of 7&+1, we 
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have that 

ll^ib+i - ^ll2 < \\wk+i - v\\2 + ^\\Wk+i - Xk\\2. (ii) 
Ak+1 

The inequality (6), in which we replace Xk+i by JV^+i, is valid. Taking into 
account this new inequality in the first term on the right-hand-side of (11) we obtain: 

l l^+i " ^ll2 < II** - V||2 - \\Xk - TV*+i||2 + ^\\Wk+i - X*||2, 
Ak+i 

which leads to 

\\Xk+l- V\\2 < \\Xk - V\\2 + ( ! ± ! - l ) \\Wk+1 - Xk\\
2. (12) 

Now, the inequality (6) is also always true for the following couples of points: 
(Xk,Xk-i),(Xk-i,Xk-2), • > > ,(*fc+i-(Iv-i))**+i-Iv). Hence, repeatedly bound
ing (by using the inequalities corresponding to (6)) each new first term on the right-
hand-side of the expressions obtained from (12), we get 

i i ^+ i -^ i i 2 

< \\Xt-i - V\\2 - \\Xk-t - Xk\\
2 + (xjk - l)||IYt+i - *fc||2 

< \\Xk-2 - V\\2 - \\Xk-2 - X*-i||2 - HXfc-x - Xk\\
2 + ( $ - - - l)||W*+i - xk\\< 

< ... 
< \\Xk+1-N -V\\2 - \\Xk+1-N - ^ ^ - ( J V - D I I 2 \\Xk-2 - Xk-,||

2 

-HXfc-x - Xk\\
2 + ( $ - _ - l)\\Wk+1 - Xk\\

2. 
Afc + 1 

Putting for short 

Mk+i = \\Xk+i-N - Xk+i-(N-i)\\ H 1- ||-Xfc-2 - -X*-i|| + ||-X"/fc-i - Xk\\ , 
(13) 

the obtained inequality may be written as 

\\Xk+1 - V\\2 < \\Xk+1-N - V\\2 - Mk+1 + (J^ - l) \\Wk+1 - Xk\\
2. (14) 

Now let a be a given positive number, 0 < a < 1. In order to be sure that the 
newly obtained point Xk+i is closer to each point V of T fl V than Xk+i-N (--e-) 
in order to repair the monotony when considering Xk+i and the points with indices 
preceding and including k + 1 — IV), it is sufficient to choose jk+i such that the 
following is true: 

(J^- - l ) \\Wk+1 - Xk\\
2 = aMk+1, 

which leads to 

7k+1 = Xk+1f+\\wk+1*-xk\r
 (15) 
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The just described procedure to construct a single possible interruption point 
Kfc+i will now be applied for a specific subsequence of indices, as follows. Let J 
be a positive integer with J > N. Suppose that, starting from some point X0 

in V and up to the index J , we determine the points X i , K 2 , - - >Xj accord
ing to the procedure (2) with A^+i as given by (4). However, for determining 
Nj+i, Xj+i+yv, -KJ+1+2IV, •.. , Xj+i+pyv,... (pa nonnegative integer) we use proce
dure (8) with the corresponding 7-value as given by (15), while for all intermediate 
points between X J + I + P J V and -Kj+i+^+ijyy (for all nonnegative integers p) again 
procedure (2) is used. Then we obtain in V the sequence {-Y*}^, having the 
subsequence {-Yj+i+pIv}^) for which it is true that: 

IIKj+i+pIv - V\\2 < \\Xj+lHp_l)N - V\\2 - (l-a)Mj+1+pN, for all V e TnV. 
(16) 

We want to stress the fact that, contrary to the algorithm in [8], all computations 
now are done in V (and hence in H). The only supplementary computational effort, 
when comparing to a monotoneous parallel method, is to keep a list of the IV — 1 
intermediate points between X/+i+p/v and Xj+i+(p+i)yy, together with the point 
.Yj+i+p/y itself; these points are needed in order to compute -Yj+i+(p+i)Lv-

Before giving the proof of convergence of the constructed sequence, we resume 
the former result in the following algorithm, stated in the space U. 

Algorithm. 

Let % be some Euclidean space with inner product (( , )) and norm || || derived 
from it, V a closed linear subspace of H and T a closed convex subset of % such 
that T n V / 0. Let IV and J be positive integers with J > IV, and let a be a real 
number between 0 and 1. Starting from some point X0 in X>, construct the sequence 
{xk}t=o ^ V as follows: 

(i) When Xk has been obtained, and k g {J + m I V } ^ 0 , let 

. \\PrXk-Xk\\2 . . v , 
Afc+1 = \\pv(Pj,xk) - Xk\rand compute *+1 y 

Xk+i — Xk + Xk-\-i(Pv{Pj^Xk) - Xk)-

(ii) When Xk has been obtained, and k G {J + m I V } ^ 0 , let Xk+i be determined 
as before; put 

Wk+i = Xk + \k+i(Pv(PrXk) - Xk), 

' Mk+i= H-Yfc-i - Xk\\
2 + \\Xk-2 - Xfc-i||2 + • • • + \\Xk+i-N - •y J b + 1_ ( N_1 ) | 

lk+1 = \k+1 yj\ + p ^ ^ p , 
and compute Xjt+i by 

Xk+1 = Wk+1 +lk+i(Pv(Pj:Xk) - Xk). 

Then the constructed sequence {Xk}k^ converges to a point of T n V. 
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3. CONVERGENCE OF THE CONSTRUCTED SEQUENCE 

In this section we prove that the sequence {Xk}~k^)> constructed in V C 7i as 
described in the algorithm, is convergent to a point A G V n T. By construction, 
the sequence {Xk}k^ contains in particular the subsequence { X j + i + p N } ^ , that 
we often will denote shortly as {Xnp}^^. The proof of convergence of the sequence 
{Xk}~k^ consists of the following three parts: 

(i) The subsequence {Xnp}p^ contains a subsequence, denoted (for simplicity) 
as { A ^ } ^ , that converges to a point A G V DT. 

(ii) Each converging subsequence of {-Ynp}p=2o converges to the same point A. 

(hi) The sequence {Xk}~k^> converges to A. 

P r o o f of (i). 

As a consequence of inequality (16), the subsequence {Xnp}^^ has the Fejer 
monotony property, i.e., \\Xj+1+pN - V\\ < \\XJ+1+{p_1)N - V\\, for all V in TC)V. 
In particular, this leads to the conclusion that the subsequence {-X"np}p-̂ o IS bounded, 
and hence it contains a subsequence, denoted as {X8}~1^, that converges to some 
point A G %. As the original sequence {Xk}X^ belongs to V and as V is closed, 
the point A certainly belongs to V. We now show that A also belongs to T. 
Again from the inequality (16) we deduce recursively that, when XUp and XUq with 
q > p denote successive terms appearing in the subsequence denoted as {Xs}*^, 
then the following inequality is also true for all V in T C\ V 

\\Xnq - V\\2 < \\Xnp - V\\2 - (1 - a)[Mnp+1 + Mnp+2 + ••• + Mnq). (17) 

Hence, letting np and nq both tend to infinity, we conclude that the sequence 
{||Xriq — V||}+°^0 tends to some nonnegative number d(V), and that the expres
sion MUp+1 tends to zero when np —•> +00. In particular, we see from (13) that 
the expression MUp+1 contains the part \\Xnp — -^np+i||2j that also tends to zero 
when np -> +00. This result, combined with the orthogonality relation (7) which 
states that \\Xnp - X n p + 1 | | 2 = \\XUp - Pj?Xnp\\

2 + \\Pj?Xnp - X n p + 1 | | 2 , leads to the 
conclusion that | |Xnp — Pj?X7lp\\

2 -> 0 when np -> +00. Finally, when XUp again is 
used as the general term X's of the subsequence {Xs}*^ that converges to A, and 
when we write: 

||E^Xnp - A\\ < \\P?Xnp - Xnp\\ + \\Xnp - A||, 

we know that both terms on the right-hand-side tend to zero when np (or 5) tends 
to infinity. Hence, also the subsequence {PjrXnp}np (also denoted as {PTX8}~\^) 

tends to A. As the sequence {P^X8}\\^ belongs to T, and as T is closed, also A 
belongs to T. Hence, A G T n V. 
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P r o o f of (ii). 

Let us suppose that the subsequence {Xnp}+^ contains another converging sub
sequence, denoted (again for simplicity) as {Xf.}+f£, but that this subsequence con
verges to a point A'. With a proof as in (i) above it will follow that also A' belongs 
t o F H P . We now prove that A' = A. 

The subsequence {X's} is convergent to the point A. Writing X's - A! as X's -
A + A — A', and developing, leads to: 

\\X'S- A'\\2 -\\X'S- A\\2 = 2 < X's~ A,A- A' > +\\A- A'\\2. (18) 

In the same way, we obtain: 

\\X't - A\\2 - \\X't - A'\\2 = 2<X't-A',A'-A> +\\A' - A\\2. (19) 

As remarked in the proof of (i) above, taking into account that both A and A' 
belong to TC\V, the number sequences {\\XUp - A'||}+fg and {||Xnp - A\\}+^ are 
convergent, with respective limits d(A') and d(A), and of course the same is true for 
their respective subsequences {\\X'S - i4'||}+ig, {\\X[ - -4'||}+f£, 
{||*J " A\\)t=Q a n d {\\X't ~ ^l l}£o • T a k i n g i n (18) and (19) the limit, respectively 
for s —> +oo and for t —> +00, we obtain: 

d{A')2-d(A)2=0 + \\A-A'\\2 

and 
d(A)2-d(A')2=0 + \\A'-A\\2. 

Hence, d(A) = d(A'), and from this it easily follows that A = A!. 

P r o o f of (iii). 

The complete sequence {Xk}\^ contains the specific subsequence {XUp}p^ that 
already converges to the point A in T fl V. Let now j be any index of the sequence 
{Xk}t^o> ie-> 3 € ^ + - Then there exist successive indices np and nq of the sub
sequence {Xnp}p^ (with np < nq) such that np < j < nq. For j = nq, there is 
nothing to prove. For j < nq, we know from the way of construction that for the 
successive points Xnp,Xnp+i,... ,-Xj-i, Xj the Fejer monotony property is valid; in 
particular, we have that ||A^--A|| < | |Xj_i-.A| | < ••• < \\XUp+1 - A\\ < \\Xnp-A\\, 
and we know that ||-X"np — A\\ —> 0 when np —> +00. Hence, when j —> +00 we also 
have that Xj -> A. • 

We summarize the foregoing convergence result of the algorithm in the following 
theorem, stated in the original space H = (Em , ( , ) , | | ) . 

Theorem. JSiippose that in H, n closed convex sets {Ci}^=l with corresponding 
71 

projection operators {Pi}f=1 and with nonempty intersection D Ci are given. Let 

N and J be positive integers, IV > 2 and J > IV, and let a be a real number 
with 0 < a < 1. Suppose that, starting from some point x0 in H, the point x*. of 
the sequence {xfc}£f£ has been obtained, and that the next iteration point Xk+i is 
constructed according to the following rule: 
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(i) When k $ {J + mN}+™0, p U t : 

X - j = 1 

M+i — — 
Ľàl**-Pix*l 2 

I x f c - E ^ x ^ 

and construct x&+i by: 

n 1 

Xifc+i = x* + Afc+i 5 3 ~(pJxk - xfc)« 
• 1 n 

. 7 = 1 

(ii) When k G {J + mTV}+^0j determine Afc+i as in (i). Put: 

n 1 
wjfc+i = x* + Afc+i 5 3 ~ipjxk ~ X*), 

J = I 

Mfc+i = |Xfc-l - Xfc|2 + |Xfc_2 - x*._i|2 + • • • + \xk+1-N - xfc_hi_( /v_i) |
2, 

\ / i -L. ftMfc+l 
IWjfc+i - x f c | 2 ' 

and construct x^+i by: 

n 1 

Xk+1 = Wfc+i + 7^+1 5 3 -(Pj*k - Xjfc). 
• -I ^ 

J = l 

Then, although for the sequence { x ^ } ^ ^ the monotoneous behaviour may be inter
rupted at some (or all) indices k G {J + m j V } ^ 0 , the sequence converges to a point 

of n CV 
i=l 

Remark concerning the flexibility of the algorithm. 

As stated in the introduction, the algorithm as described above should be seen 
as a prototype of a class of algorithms allowing more flexibility. Without going into 
details, the following extensions seem to be possible: 

a. Instead of using equal weight factors ^ in the Pierra method, a family of fixed 
n 

but non-equal weight factors {a>;}n
=i with 0 < ui < 1 for each i and ^ ^ = 1 may 

i=l 
be used. 

b . In the given algorithm, we try to provoke an interruption of the monotony 
at every a priori fixed number of N iterations, by taking a well-determined big step 
at each of these a priori fixed moments. The algorithm could also be adapted such 
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that a big step is taken after each "variable" number Np of iterations, where Np 

changes between two fixed integers Mi and M2 (e.g., Mi = 5 and M2 = 100), and 
where Np plays the role of N above. Prom a practical point of view, the explanation 
is as follows: it seems necessary to take a big step when in a number of foregoing 
iterations very small steps have been taken; hence, the user of the algorithm keeps 
record of the distances |x^ — Xfc_i| of successive iteration points. Prom some index 
k on, we proceed as follows : when the sum of Mi such distances is "too small", 
the algorithm should provoke an interruption of the monotoneous behaviour; on 
the other hand, if this sum of Mi distances is "big enough", then for each number 
of steps between Mi and M2 the user decides whether and where an interruption 
has to be created, by comparing the sum of each number (between Mi and M2) of 
distances with a list of thresholds; at the number Np between Mi and M2 where 
the sum of the distances is for the first time smaller than the wanted threshold, the 
algorithm should force an interruption of the monotoneous behaviour; and finally, 
when no interruption has been forced "between Mi and M2", and when the sum of 
M2 distances is still big enough, the user provokes nevertheless an interruption at 
M2. 

4. EXAMPLES AND CONCLUDING REMARKS 

In this last section we consider two examples to compare the results of the algorithm 
given in Section 2 with the ones corresponding to some classical methods. 

In our first example, we take twelve disks in the plane as closed convex sets 
{Cj}]^; these disks are given by the following expressions (with respect to an 
orthonormal system of axes): 

X~COS{u)) +{y~S[n{u)) <-, -orj = -,...,12. 

(here, (x,y) denotes a generic point in the plane). 
Clearly, their intersection (in fact determined by C\ and Ci2) is nonempty; in 

particular, (0,0) is a point in their intersection, but it contains more points. Explicit 
expressions for the associated projection operators {P j} ]^ may be found in [3]. 
Starting from some given point in the plane, and using those projection operators, 
we want to find a point in the intersection. We use the following algorithms: 

PP: The method of pure projections in a sequentially composed manner, i.e., 
when Xfc is the current iteration point, and when we put T = PnPn • • • -P2-P1» then 
the update x&+i is given by x^+i = Tx*.. It is a monotoneous procedure. 

PAR: The parallel projection method given in (1) and (2), with fixed equal weights 
(n — tV) a^ e a c k s t eP) ar-d with Afc+i as given by (4). Again, this leads to a mono
toneous way of convergence. 

NMPAR (0.9,5,10): The non-monotoneous parallel procedure developed in this 
paper. As in PAR, use has been made of fixed equal weights at each step and of 
the value of \k+i as given by (4). Besides, it contains the following parameters as 
explained in the Algorithm: 
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a: The real number between 0 and 1 that may be responsible for interrupting 
the monotoneous behaviour; in the example we put a = 0.9. 

N: The number that determines the period to repeat the use of the adapted 
relaxation coefficient; we took N = 5 in the example. 

J: The first index where the adapted relaxation coefficient is used; in the example 
we put J = 10. 

In Table 1 at the end of this paper we have given, for eight different starting 
points ((-3,0),...) either the number of iterations needed to obtain a point in the 
intersection (this is a positive integer), or the sum of the distances of the current 
iteration point to the twelve sets Cj after 25 and 50 iterations respectively. Prom 
this table the following conclusions may be made. 

- PP: the influence of the choice of the starting point on the speed of convergence 
is very clear; sometimes convergence is obtained after one step, while in other cases 
there is a very slow way of convergence. This completely unpredictable behaviour of 
convergence makes it rather unlikely to obtain practical useful results in a theoretical 
manner. In applied problems it is not at all clear what guess of starting point to 
make in order to assure fast convergence. Together with a bad choice of starting 
point, the monotoneous behaviour of the iteration sequence seems to be responsible 
for slow convergence. 

- Method PAR: the same remarks as for PP can be made; for some starting points 
there is a quick convergence, in other cases convergence is slow. 

- Method NMPAR (0.9,5,10): the results of this method seem to confirm what had 
already been observed by use of another non-monotoneous method in [8]: for those 
cases where the monotoneous parallel method gives a fast convergence, the same is 
true for the non-monotoneous method (in our example, the number of iterations in 
those cases is equal, due to the choice of our parameters); but, for those cases where 
either PP or PAR lead to slow convergence, NMPAR leads to convergence in an 
acceptable number of steps. The explanation for this phenomenon seems to be that, 
by interruption of the monotoneous behaviour, the newly obtained iteration point 
has left some small corridor, which is responsible for small steps in the iteration, 
and as a consequence the intersection of the convex sets is approached from another 
direction. 

Finally, we want to mention the influence of the parameter a on the speed of 
convergence. Prom the theoretical investigation in the construction of the algorithm 
it is clear that, as a becomes closer to 1, the corresponding step length in the 
iteration is bigger, and this increases the probability of interrupting the monotoneous 
behaviour. 

In our second example, we consider 15 sets d in R2 (i = 1 , . . . , 15) having the 
following form: 

Ci = {xeR2 : 6i,i < (a*,x) < ^,2}, 

with {bi,i}}=! and {bi^Jlii se*s of real numbers, and with { a ; } ^ a set of 15 given 
15 

points in E2 . These data are chosen such that fl Ci ^ 0. 
i= l 

The following algorithms have been used: 
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PP1RO: the sequential iteration scheme where at each iteration step only one 
pure projection onto a set Cj, chosen at a Random Order, has been used; i.e., when 
x*; is the current iteration point, then x*.+i = PjXk, where Pj is the projection 
operator onto a set Cj choosen at random. Moreover, for this algorithm and for 
each given starting point, the algorithm was run 30 times. The number appearing 
in Table 2, corresponding to algorithm PP1RO and to a given starting point, is the 
average number of iterations needed to obtain convergence. 

Table 1. 

Starting point (-3,0) (Ю,-10) (3,4) 
PP 1 3.279208 x 10" 3 3.661634 x Ю " 3 

5.000838 x 10" 4 5.49556 x 10" 4 

PAR 9.972098 x 10~3 4 1.129448 x 10" 2 

3.128052 x 10" 3 3.427267 x 10" 3 

NMPAR (0.9,5,10) 22 4 22 

Starting point (-17,12) (-2,1) (-100,-50) 
P P 3.601907 x 10" 3 3.202676 x 10" 3 1 

5.419265 x 10" 4 4.89951 x 10~4 

PAR 1.185358 x 10~2 9.768488 x 10" 3 8.859039 x 10" 3 

3.548027 x 10~3 3.080129 x 10" 3 2.859947 x 10" 3 

NMPAR (0.9,5,10) 22 22 24 

Starting point (2,-4) (0,2) 
P P 3.005983 x 10" 3 3.694175 x 10~ö 

4.637248 x 10"4 5.537283 x 10"4 

PAR 5 9.757404 x 10"3 

3.077506 x 10"3 

NMPAR (0.9,5,10) 5 25 

PP1ARO: the sequential iteration scheme where at each iteration step one relaxed 
projection onto a randomly chosen set Cj is used; i.e., when Tj = 1 + \j(Pj — 1) with 
1 the identity operator on H and with Aj a positive real number, then x&+i = TjXk-
In the example, each Xj had the value 1.5. As in PP1RO, the number appearing 
in Table 2 corresponding to PP1ARO and to a given starting point is the average 
number of iterations needed to obtain convergence. 

PAR: the common parallel algorithm as in example 1, but now for 15 sets (n=15). 
NMPAR (0.9,5,10) and NMPAR (0.9,20,25): the non-monotoneous parallel pro

cedures developed in this paper, but with parameters a = 0.9,1V = 5, J = 10 and 
a = 0.9, N = 20, J = 25 respectively. 

For PAR and for NMPAR ( , , ), the numbers figuring in Table 2 give the number 
of iterations that was necessary to obtain convergence. From Table 2, we may 
conclude that, also for this example, the new algorithm has better convergence 
properties than the traditional ones. 
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Table 2. 

Starting point (0,0) (-10,10) (9,2) 
PPIRÖ 1046 1565 398 

PPIЛRO 395 716 236 
PAR 884 888 3 

NMPAR (0.9,5,10) 82 89 3 
NMPAR (0.9,20,25) 187 69 3 

Starting point (-3,6) (5,-1) (7,8) 
P P I R O 769 1347 775 

PPIЛRO 398 574 400 
PAR 329 923 326 

NMPAR (0.9,5,10) 40 142 30 
NMPAR (0.9,20,25) 50 89 51 

(Received February 3, 2003.) 
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