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K Y B E R N E T I K A — V O L U M E ЗP ( 2 0 0 3 ) , NUMBER 5, P A G E S 5 6 9 - 5 8 2 

C O M P U T I N G C O M P L E X I T Y DISTANCES 
B E T W E E N A L G O R I T H M S 

S. ROMAGUERA, E . A. SANCHEZ-PEREZ AND O. VALERO1 

We introduce a new (extended) quasi-metric on the so-called dual p-complexity space, 
which is suitable to give a quantitative measure of the improvement in complexity obtained 
when a complexity function is replaced by a more efficient complexity function on all inputs, 
and show that this distance function has the advantage of possessing rich topological and 
quasi-metric properties. In particular, its induced topology is Hausdorff and completely 
regular. 

Our approach is applied to the measurement of distances between infinite words over 
the decimal alphabet and some advantages of our computations with respect to the ones 
that provide the classical Baire metric are discussed. 

Finally, we show that the application of fixed point methods to the complexity analysis 
of Divide & Conquer algorithms, presented by M. Schellekens (Electronic Notes in Theo-
ret. Comput. Sci. 1 (1995)), can be also given from our approach. 

Keywords: invariant extended quasi-metric, complexity function, balanced quasi-metric, 
infinite word, Baire metric, contraction mapping, Divide & Conquer algorithm 
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1. I N T R O D U C T I O N AND PRELIMINARIES 

In the sequel the letters M + , u and N will denote the set of nonnegative real numbers, 

the set of nonnegative integer numbers and the set of positive integers numbers, 

respectively. 

M. Schellekens introduced in [23] the theory of complexity spaces as a p a r t of 

the development of a topological foundation for the complexity analysis of programs 

and algorithms. Later on, S. Romaguera and M. Schellekens [21] introduced the 

so-called dual complexity space and obtained several quasi-metric properties of the 

complexity space which are interesting from a computational point of view, via the 

analysis of its dual. Recently, it was shown in [22] tha t the dual complexity space 

admits a s t ructure of a (quasi-)normed semilinear space in the sense of [20] (see 

Section 2). 

In [7], the notion of dual complexity has been extended to the "p-dual" case, 

where p > 1, for including in this theoretical approach to computational complexity, 

xThe authors acknowledge the support of the Spanish Ministry of Science and Technology, Plan 
Nacionál I+D+I, Grant BFM2003-02302 and FEDER. 
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algorithms with running time 0(2n/nr), 0 < r < 1 (see Section 2). However, for 
all p G [1,+co), the quasi-pseudo-metric generated in a natural way induces a T0 

topology that is not even T\. 
In this paper we construct a new distance function on the dual P-complexity 

space, namely, an invariant extended quasi-metric, which is suitable to measure 
progress made in lowering the complexity by replacing a given program by another 
program which is more efficient on all inputs. In particular, it permits us to give a 
numerical quantification of progress made in lowering the complexity by replacing 
a given program Q by a program P which is more efficient on all inputs. More
over, this distance function possesses rich topological and quasi-metric properties as 
Hausdorffness and complete regularity, among others. We also apply this extended 
quasi-metric to the-measurement of distances between infinite words over the deci
mal alphabet and analyze some advantages of our methods with respect to the ones 
that use the classical Baire metric. In this way, we partially reconcile the theory 
of computational complexity with the corresponding to denotational semantics. Fi
nally, we show that, similarly to the approach made by Schellekens in [23], Divide 
Sz Conquer algorithms induce contraction mappings for our extended quasi-metric, 
and then a Banach-type fixed point theorem is applicable to our context. 

Our main reference for general topology is [4] and for quasi-pseudo-metric spaces 
they are [6] and [14]. 

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real-valued 
function d on X x X such that for all x,y,z G X : (i) d(x,x) = 0, and (ii) d(x,z) < 
d(x,y) +d(y,z). 

If, in addition, d satisfies: (iii) d(x,y) = 0 if and only if x = y, then d is called a 
quasi-metric on X. 

We will also consider extended quasi-(pseudo-)metrics. They satisfy the three 
above axioms, except that we allow d(x,y) = -Foo. 

If d is a quasi-(pseudo-)metric on X, then the function d~l defined on X x X by 
d~l(x,y) = d(y,x), is also a quasi-(pseudo-)metric on X, and ds defined on X x X 
by ds(x,y) = max{d(x,y),d~1(x,y)}, is a (pseudo-)metric on X. If d is an extended 
quasi-(pseudo-)metric on X, then d~x and ds are an extended quasi-(pseudo-)metric 
and an extended (pseudo-)metric on X, respectively. 

Each extended quasi-pseudo-metric d o n a set X induces a topology T(d) on X 
which has as a base the family of open d-balls {Bd(x,r) : x G X, r > 0}, where 
Bd(x,r) = {y G X : d(x,y) < r} for all x G X and r > 0. 

If d is an extended quasi-metric on X, then the topology T(d) induced by d is T\. 
A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a 

quasi-metric on X. The notion of an extended quasi-metric space is defined in the 
obvious manner. 

A semilinear space on E + (a cone in the sense of [12]) is a triple (X, +,•) such 
that (X, +) is an Abelian monoid, and • is a function from E + x X to X such that 
for all x, y G X and r, s G E + : 

(i) r • (s • x) = (rs) • x; 
(ii) r • (x + y) = (r • x) + (r • y)\ 
(iii) (r + s) • x = (r • x) + (s • x); 
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(iv) 1 • x = X. 

A norm on a semilinear space (X, +, •) is a function p : X -» R+ such that for all 
x,y G X and r G R+: 

(i) p(x) = 0 if and only if x = 0; 
(ii) p(r • x) = rp(x); 
(iii) p{x + y) <p(x)+p(y). 

A normed semilinear space is a pair (X,p) such that X is a semilinear space and 
p is a norm on X. 

The following is a classical and useful example of a normed semilinear space. 
For each pG [1, +co) denote by lp the set of infinite sequences x := (xn)neu of 

real numbers such that J ^ ^ n I xn \v< +°o. 

It is well known that (lp, ||.|| ) is a Banach space, where || . ||p is the norm on lp 

defined by || x ||p=(£n°=o I xn \p)1/p for all x G lp (see, for instance, [8]). 
Let Z+ = {x G lp : xn > 0 for all n G u;},and let ||.||+p be the restriction of ||.||p to 

/+. It is well known, and easy to see, that (/+, ||.||+p) is a normed semilinear space, 
which is called the positive cone of (/p,]|.||p). 

2. A NEW COMPLEXITY DISTANCE 

Let us recall [23] that the complexity (quasi-pseudo-metric) space consists of the 
pair (C,dc), where 

C = {/ G (0,+oor = E2~njjnj < +0°] • 

and dc is the quasi-pseudo-metric on C given by 

*(/..)-E»----{(-^-75.j.»)}. 
for all f,g€C. (We adopt the convention that q-̂ -- = 0.) 

The dual complexity space, introduced in [21], can be directly used for the com
plexity analysis of algorithms in the case that the running time of computing is the 
complexity measure ([21], p. 313). Contrarily to the complexity space (C,dc), it can 
be endowed with a structure of normed semilinear space ([22]). Furthermore, the 
dual has a definite appeal, since in this context, it has a minimum which corresponds 
to the minimum of semantic domains. % 

Recall that the dual complexity space consists of the pair (C*,dc*), where C* = 
{/ G (R+)tJ : Z)^=o 2 ~ n / ( n ) ' < +°°}> a n d dc* is the quasi-pseudo-metric on C* 
given by dc*(f,g) = E n ° = o 2 " n m a x ^ W " / (* ) ,0} , for all f,ge C*. 

The quasi-pseudo-metric spaces (C*,dc*) and (C,dc) are isometric via the inver
sion mapping * : C* -> C, i.e., * ( / ) = 1 / / for all / G C* (see [21]). 
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For p G [l,+oo), the dual p-complexity space, introduced in [7], is the normed 
semilinear space (C*,r/P), where 

C; = | / € ( E + r : X > - n / ( n ) ) p < +00 i , 

and qp is the norm on C* given by 

/ 00 \ J / P 

<&>(/) = ( E ( 2 " n / ( n ) ) p ) • 
It was proved in [7] that the normed semilinear spaces (C*,gp) and (/+, ||.| |+p) are 

isometrically isomorphic in the following sense: There is a bijective linear mapping 
(j) : C* —• Z+ such that | |0 ( / ) | | + p = qP(/) for all / G C*. In fact, the mapping <f> is 
given by the rule <f>(f)(n) = 2~ n / (n) , / G C*, n G CJ. 

Now, for each f,g € C* put 

/ oo \ l /P 

<U/ ,s ) = E(2 -max{(^ (n ) - / (n ) ,0} )M . 
\ n = 0 / 

Then dQp is a To quasi-pseudo-metric on C*, which, clearly, is not a quasi-metric 
([7]). Note, in particular, that the quasi-pseudo-metric space (C{,dQl) is exactly the 
dual complexity space, as defined above. 

According to Section 4 of [23], the intuition behind the complexity distance be
tween two functions / , g G C* is that dQp (/, g) measures relative progress made in low
ering the complexity by replacing any program Q with complexity function g by any 
program P with complexity function / . Therefore, if / ^ g, condition dqp(f)g) = 0 
can be interpreted as g is "more efficient" than / . In particular qp(f) = dQp(0,f) 
measures relative progress made in lowering the complexity by replacing / by the 
"optimal" complexity function 0, assuming that the complexity measure is the run
ning time of computing. Thus, if qp(g) < qP(f), there is an increasing in complexity 
when g is replaced by / , i.e., g is "more efficient" than / . 

We want to show that these computational interpretations are also provided by 
the extended quasi-metric eQp which will be constructed below. We also give a nu
merical quantification of the improvement in complexity obtained when a complexity 
function g is replaced by a more efficient complexity function / , via the properties 
ofe,p . 

Similarly to [13], an extended quasi-metric d o n a semilinear space (X, +,•) is 
said to be invariant if for each x,y,z G X and r > 0, d(x + z,y + z) = d(x,y) and 
d(r • x,r -y) = rd(x,y), where we use the natural convention that r(+oo) = +oo for 
all r > 0. 

Theorem 1. For each p G [1, +co) let eQp : C* x C* -> [0, -Foo] be given by 

effp(/,s) = QP(9 ~ f) -f / < 0, and 
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eqP(fi9) ~ +00, otherwise. 
Then eqp is an invariant extended quasi-metric on C*. 

Proof . F ixp e [l ,+oo). Let f,g G C* such that eQp(f,g) = 0. Then / < g and 
qp(g - / ) = 0 (note that, indeed, g - f e C* because / < g)« It immediately follows 
that f = g. 

Now let g,heC* be such that eQp(f,h) < -f-oo and eQp(h,g) < +oo. Then / < h 
and h<g. So eqp(f,g) = qp(g - / ) < qp(p - h) + qp(h - / ) = e<,p(/i,s) + eQp(f,h). 

Therefore eqp is an extended quasi-metric on C*. 
It remains to show that eQp is invariant. To this end, let f,g,h G C* and let 

r > 0. If eqp(f,g) = +oo, it clearly follows that eQp(f + h,g + h) = +oo and 
eqP(rf,rg) = +oo. Otherwise, we have / < g, and thus / + h < g + h. So 

eQp(f + h,g + h)= qp((g + h) - (f + h)) = qP(g - f) = eQp(f,g), 

and 
eqp(rf,rg) = qp(fg - rf) = rqp(g - f) = reqp(f,g). 

The proof is complete. a 

Remark 1. Given the dual p-complexity space (C*,qp), we show that (dqp)
s < eQp. 

Indeed, let f,g G C*. If eQp(f,g) = -f-oo, the conclusion is obvious; otherwise, we 
have f < g, and thus dQp(g,f) = 0. Therefore eQp(f,g) = qp(g - f) = dQp(f,g) = 

(dqpY(f,9). 
Consequently (C*, T(eQp)) is a submetrizable topological space. (Let us recall that 

a topological space (X, T) is said to be submetrizable if there is a metric topology 
on X weaker than T). 

Balanced (extended) quasi-metric spaces were introduced by D. Doitchinov [3] 
in order to obtain a satisfactory theory of quasi-metric completion that preserves 
complete regularity. 

Recall that an extended quasi-metric space (X, d) is said to be balanced if given 
r,s > 0, (xk)keN, (yk)ken sequences in X with limm5jt->+oo d(ym,xk) = 0, and points 
x,y £ X with d(x,xk) < r and d(yk,y) < s for all k G N, then d(x,y) <r + s. 

It is well known that each balanced extended quasi-metric space is Hausdorff and 
completely regular (see [3]). 

Theorem 2. For each p G [l,+oo) the extended quasi-metric space (C*,eQp) is 
balanced. 

Proof . Let r, s > 0, (fk)keN, (gk)keN be sequences in C* with limm,fc-»+oo eqp(gm,fk) 
0, and f,g eC; with eQp(f,fk) < r and eQp(gk,g) < s for all k G N. Thus / < fk 
a n d 9k < 9 for all k G N. Moreover gm < fk eventually. 

We first note that f < g. Indeed, let n0 G N. For an arbitrary e > 0 there is 
k G N such that 

£(2-n(/*(n)-^("))Pl <£• 
\n=0 ' 
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Thus fk(n0) - 5*(rto) < 2n°e. Hence 

/ K ) < fk(n0) < 2n°s + gk(n0) < 2n°e + g(n0). 

We deduce that f(n0) < g(n0) for all n0 G N, i.e. / < g. 
Finally, choose k G N such that gk < fk- Then for any m G N, we obtain 

/ m \ VP / m \ - / P 

£(2- n (2(n) - /(„)))P < £(2-(<7(n) - Pib(n) + /*(n) - f(n))Y 
\n=0 / \n=0 / 

/ m \ 1 / P / m \ 1/P 

< J2(2'n(9(n) - 9k(n))Y + £(2-(/*(n) - /(n)))* . 
\n=0 I \n=0 / 

We immediately deduce that 
eQp(f,g) <eqp(gk,g) + eqp(fjk) <s + r. 
Therefore (C*,egp) is a balanced extended quasi-metric space. • 

Corollary. For each p G [1, +00) the extended quasi-metric space (C*, eQp) is Haus-
dorff and completely regular. 

Note that Hausdorffness of (C *, eQp) also follows immediately from the fact noted 
in Remark 1 that (C*,T(egp)) is a submetrizable topological space. 

Theorem 3. Let p G [1, +00), let (fk)keN be a decreasing sequence in the dual p-
complexity space (C*,(7P) and let / : u —r E + given by 

/ (n) -= inffceN /^(n) for all n G CJ. 

Then the following statements hold. 

(1) f EC* and l i m ^ + o o eqp(f, fk) = 0. So limfc_++oo qP(fk - / ) = 0. 

(2) 9p(/) = infjfe€Ngp(/jfc). 

Proof. We first show that f € C* and that (fk)keN converges to / in (C*,e7p). 
Indeed, let e > 0. Since f\ G C* there is n£ G CJ such that 

00 

£ (2-7i(n))»<e/3. 
n=ne+l 

So En"=ne+i(2~n/W)P < ̂ /3,and, hence, / G Cp*. 

Furthermore, since /* < /1 for all A: > 1, it follows that 

CO 

£ (2"n/fc(n))p < e/3 
n=nff+l 
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for all k G N. 
By definition of / and the fact that / * + ! < fk for all k G N, there is k\ G N such 

that for each k > ku (2~n(fk(n) - f(n)))p < e/3, n = 0,1, ...,n e. Hence for k > ku 

eЧp(f,h) < J2(2-n(h(n)-f(nW 
n = 0 

< E(2 _ n(/*(n)-/H))P+ £ (2-n/fc(n))p 

n = 0 n=:7ie + l 

We conclude that (fk)keN converges to / in (C*,egp). So, by Remark 1, 
limA;_>+oo qv(fk — f) = 0. Therefore, statement (1) holds. 

Finally, for each e > 0 there is ke G N such that for k > ke, qp(fk - / ) < £ , so 
</p(/fc) < <7P(/) + e- Thus, statement (2) is satisfied. • 

As we have noted above, if f,g G C*, / / g, satisfy / < g, then there is an 
improvement in the running time of computing when g is replaced by */. In this 
case the positive number qp(g — / ) provides a numerical quantification of such an 
improvement. 

Furthermore, if (fk)keN is a decreasing sequence in C*, Theorem 3 shows that 
/ represents the infimum of all running time of computing corresponding to the 
complexity functions fk, k G N, where / = inike^fk. 

This interesting computational fact can be formulated in the framework of the 
so-called right If-sequentially complete quasi-metric spaces. 

Similarly to [19], a sequence (xn)nGN in an extended quasi-metric space (X,d) 
is called right If-Cauchy if for each e > 0 there is n0 G N such that d(xk,xn) < e 
whenever k > n > n0. The extended quasi-metric space (X, d) is called right K-
sequentially complete quasi-metric if every right K-Cauchy sequence is convergent. 

Right If-sequential completeness plays a crucial role in the study of completeness 
of hyperspaces and function spaces on quasi-metric spaces (see, for instance, [15] 
and Section 9 of [14]). 

Theorem 4. For each p G [l,+oo) the extended quasi-metric space (C*,e7p) is 
right If-sequentially complete. 

P roof . F ixp G [1,+co). Let (fk)keN be a right If-Cauchy sequence in (C*,eqp). 
For e = 1, there is n0 G N such that eqp(fkyfn) < 1 whenever k > n > n0 . 
Consequently, fk < fn whenever k > n > n0, and thus, the sequence (fk)k>n0 is 
decreasing. By Theorem 3, (fk)keN converges in (C*,egp) to the function f e C* 
defined by f(n) = inik>no fk(n) for all n G u. We conclude that (C*,eQp) is right 
K-sequentially complete. • 
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As we indicated above the quasi-pseudo-metric space (C*,dQp) is a T0 non Tx 

space, and hence, dqp is not balanced. Next, we shall show that completeness prop
erties of (C*,dQp) are quite different to completeness properties of (C*,eQp). In fact, 
it was proved in [7] (see also [21]), that (C*,dQp) is Smyth complete. (Let us recall 
that a To (extended) quasi-pseudo-metric space (X, d) is Smyth complete provided 
that every rigth If-Cauchy sequence in (X, d~l) converges in the (extended) metric 
space (X, ds)). The following example shows that (C*,dq ) is not right If-sequentially 
complete. 

Example 1. Let (fk)keN be the sequence of functions defined on u by /^(n) = k 
whenever n £ u. Clearly (fk)keN is a right K-Cauchy sequence in (C*,dqp),ior each 
p G [l,+oo), because dqp(fk,fj) = 0 whenever k > j . Since for each / G C* and 
each k eN, fk < f + max{(/fc - / ) , 0}, it follows that 

k (^l) = Qp{fk) ~ Qp{f) + ^(max{(/* " /) ,0}) = qP(f)+dqp(f,fk). 

So, (fk)keN does not converges in (C*,dqp). 

Next we show that (C*,eqp) is not Smyth complete. 

Example 2. Let (fk)keN be the sequence in C* given by fk(") — 1 —2-fc, whenever 
n G u. Then, for k < j , we have 

I/P / OP \ 1 / P 

eqp(fkJj)<2-k^¥-íj , 

and, therefore, (fk)keN lS right If-Cauchy in (C*,(eQp)
 x) for each p G [1,+co). 

Clearly (fk)keN is not convergent in (C*,(eQp)
s), because (eqp)

s(f,g) = +00 for all 
f,geC*p w i t h / / g. 

As an application of the theory developed above we shall measure distances be
tween some infinite words over the decimal alphabet via the complexity extended 
quasi-metric eqp and we shall compare our computations with the ones that provide 
the classical Baire metric. 

Let E = {0,1,2, ...,9} and let S^ be the set of all infinite words over S . Each 
w G E^ will be denoted by wnwiu^.... 

Let us recall ([11], [17], [1], [16]) that the Baire metric is given by 

D(v,w) = 2~£(<v^ iiv^w and D(w,w)=0, 

for all v,w G S^, where C(v,w) is defined as the length of the nonempty common 
prefix of v and w\i it exists, and £(v,w) = 0 otherwise. 

It is clear that we may identify S^ with the subset C*- of C* defined by C*E = 
{/ C C; : f(n) G S for all neu}. 

The following result illustrates the relationship between the complexity extended 
quasi-metric eQp and the Baire metric. 
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Proposition 1. Let f,g G C ; E be such that / < g. If eqp(f,g) < 2~k for some 

keu, then D(f,g) < 2 ~ ^ + 1 \ ' 

P roof . Since 

/ o o \ 1/P 

^ (/>*) = E(2"n(^(n)-/(n)))' 

it follows from our assumption that g(n) = f(n) for n = 0,1,. . . , k. Therefore £(f, g) > 
k + 1. So D(f,g) <2-( f c + 1 ) . • 

Corollary. Let (fj)jeN be a sequence in C*>E such that lim^+oo eqP(f, fj) — 0 for 
some / G C*>E. Then limj^+oo D(f, fj) = 0. ' 

Remark 2. It follows from the preceding corollary that the topology induced by 
the Baire metric is weaker than T(eQp) o n C * s . 

Now let E£ = {w G Ew : w0 = 0}. Then, we may identify ££ with the subset 
C;,E0

 o f Cp*,E, defined by Cp*>Eo = {/ G C; E : /(0) = 0}. 

Next we compute a paradigmatic particular case in the realm of C*^0- Let / := 
0000... and let us consider the sequence (/j)jeN given by 

/ i := 01111... 
/2 := 00111... 

j-times 

fj :=0000 111... 

Obviously (fj)j^N is a decreasing sequence in C*EQ. Since /(n) = infjGM/j(n) 
for all n G CJ, it follows from Theorem 3 that (fj)jeu converges to / with respect 
to T(e9p), and thus it converges to / with respect to the Baire metric D by the 
corollary of Proposition 1. In particular, we have D(f,fj) = 2~~J and 

/ ~ \ P f2-(j-1)p\1/p
 2 

. '*(/•£) = (J>~n ) P) = v^zr) = QP-ir/pW'M-

for all j G N. 
In general, the sequence (gj)jeN given by 

#i := Okkkk... 
g2 := OOkkk... 

j-times 

gj := 0000 fcfcfc..., 
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with 1 < k < 9, converges to / with respect to T(eQp) and hence with respect to 
the Baire metric. However, a direct computat ion shows tha t D(f,gj) = D(f,fj) 
but eqp(f,gj) = keQp(f,fj) for all j G N. This fact makes evident an interesting 
computational advantage of our complexity distance eQp with respect to the Baire 
metric. Indeed, while the Baire metric does not distinguish between the distances 
from gj to / and from /_,- to / , the (extended) quasi-metric eQp is sensitive to such 
differences in a satisfactory way. For instance, if we consider the sequence (hj)jeu 

where 

h\ := Ommmm... 
/i2 := OOmmm... 

j-times 

hj := 0000 mmm..., 

with 1 < m < k < 9, we obtain eQp(f,hj) = 1feqp(f,gj) < eQp(f,gj) for all j G UJ, as 
it was desirable. 

Next, we extend this approach to discuss, in our context, the problem of the 
approximation for any real number UJ G (0,1) , which admits a rational decimal 
expansion, i.e. u) := Ocji^.-.^iOOOO...., where CO, > 0. 

In this case, we consider the sequence (gj)jeN given by 

gi := 0u>iu>2...uji0kkkk... 
<72 '•= 0u>iu>2...uJi00kkk... 

j-times 

gj := 0uiu>2...uji 0000 kkk..., 

with 1 < k < 9. Then D(u,gj) = 2 " ^ + 1 ) and 

( oo \ 1 / / P 

E (2"n*)P = (2?-lV/*Diu'9i)> 
n=i+j+l ) V ' 

for all j G N. 
Finally, let (hj)jeuJ be the sequence given by 

h\ := 0u\U)2...uJi0mmmm... 
/i2 := OcJi^.-.^.OOmmm... 

j-times 

hj := 0uj\U2...u)i 0000 mmm..., 

with 1 < m < k < 9. Therefore D(u,hj) = 2"( i + > + 1 ) = D(u),gj)\ however 
eqp(w,hj) = ye g p ( c j , ^ j ) for all j G UJ, as it was desirable. 
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3. A BANACH FIXED POINT THEOREM: APPLICATION TO 
DIVIDE & CONQUER ALGORITHMS 

Motivated in part for applications of quasi-metric structures to computer science, 
there exist several generalizations of the classical Banach fixed point theorem to the 
setting of quasi-metric spaces in the literature ([2], [5], [9], [10], [17], [18], [23], e tc) . 

Similarly to the metric case, by a contraction mapping from an extended quasi-
metric spaces (X, d) to an extended quasi-metric space (F, d') we mean a mapping 
T : X -> Y such that there is 0 < a < 1 with d'(Tx,Ty) < ad(x,y) for all x,y G X. 
In this case, we say that a is a contraction constant of T (see, for instance, [23]). 

Our next result, that generalizes Banach's fixed point theorem to extended right 
K-sequentially complete quasi-metric spaces, will be useful later on. 

Theorem 5. Let (X, d) be a Hausdorff right ^-sequentially complete extended 
quasi-metric space and let T be a contractive mapping from X into itself. If there 
is xo G X such that d(Tx0,xo) < +oo, then T has a fixed point. 

P roo f . (We sketch the proof since it follows from standard arguments). 
For each n G N let Tnxo = xn. Clearly d(xn+i,xn) < and(Txo,xo) for all n G 
u, where a is a contraction constant for T. By the triangle inequality it easily follows 
that for each k,n G N, 

an 

d(xn+k,Xn) < z d(Txo,x0), 
1 — a 

and, consequently, (xn)ne^ is a right K-Cauchy sequence in (X, of). Let y G X such 
that limn->+oo d(y,xn) = 0. By continuity of T, limn->-foo d(Ty,Txn) = 0. Since for 
each n, Txn = xn+i, it follows from Hausdorffness of (X, d), that y = Ty. Hence y 
is a fixed point of T. D 

The following easy example deals with some natural questions that one can con
sider in the light of Theorem 5. 

Example 3. Let X = {x,y}. Define d(x,y) = d(y,x) = +00 and d(x,x) = 
d(y,y) = 0. Then (X, d) is a Hausdorff right K-sequentially complete extended 
quasi-metric space. (Note that actually d is an extended metric on X.) 

Let Tx = x and Ty = y. Clearly T satisfies all conditions of Theorem 5 and x 
and y are fixed points of T, so it does not have a unique fixed point. 

Now let Tx = y and Ty = x. Then T is a contractive mapping without fixed point 
and d(Tx,x) = d(Ty,y) = -foo. This shows that condition "d(Txo,xo) < +00, for 
some xo G X", cannot be omitted in the statement of Theorem 5. 

In Section 6 of [23], Schellekens applied his theory of complexity spaces to the 
complexity analysis of Divide & Conquer algorithms. In particular, he proved that 
Divide & Conquer algorithms induce contraction mappings from the complexity 
space (C,dc) into itself. Via the inversion mapping * defined in Section 2, it was 
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shown in [21] that these applications can be also obtained based on the dual complex
ity space (C*, dqi). Here we shall prove that Divide & Conquer algorithms also induce 
contraction mappings for any extended quasi-metric space (C*,egp), p G [1,+co). 

Let a, b, c G N with a, b > 2, let n range over the set {bk : k G u) and let h G C. A 
functional <_> corresponding to a Divide h Conquer algorithm in the sense of [23], is 
typically defined by $ ( / ) ( l ) = c, and $( / ) (n) -= af(n/b) + h(n) If n e {bk : k e N}. 

This functional intuitively corresponds to a Divide & Conquer algorithm which 
recursively splits a given problem in a subproblems of size n/b and which takes h(n) 
time to recombine the separately solved problems into the solution of the original 
problem (see Section 6 of [23]). 

Extending Theorem 6.1 of [23], it was shown in Section 4 of [21], that for the dual 
complexity space (C*-,cigi),the functional <_>* given by 

*'</)(") = 1 ! ! k f e «»€{*"=*€«}. 
is a contraction mapping with contraction constant \/a. 

In our context, for each p G [1, +oo), define 

C* |&)C-= {/ : / is the restriction to arguments n of the form bk, k G CO, 
of / ' G C; such that / ' ( l ) = 1/c}. 

Observe that each f £ C£ |&jC can be considered as an element of C*, by defining 
f(n) — 0 whenever n £ {bk : k G u). Thus, if for each f € C£ |&,c, $*(/) is defined 
as above, we obtain the following contraction mapping theorem. 

Theorem 6. Let / , j G C * |& C • Then the following statements hold. 

(1) *•(/), **(s)_c;kc; 
(2) $*(/) < $*(#) whenever / < g; 
(3) e , p ( _ * ( / ) , * * ( 5 ) ) < i e , P ( / . » ) • 

P r o o f . Since statements (1) and (2) follow directly from the definitions we only 
show (3). If e9p(/,g) = +oo, the conclusion is obvious. If eQp(f,g) < +oo, we have 
/ < g,and by (2), $*(/) < $*(g). Therefore 

(e,p($*(/),$*(g)))P = (qp(^(g)-^(f))r 

n = 0 

= E(-"П((Ф*(i7)-Ф*(/))(n)))p 

0 

y> t 2 _„ ( ö(n/ò) /(n/ò) 

< 

nЄ{6 fc:A:ЄN} 

£ (2-n( 
nЄ{bk:keЩ 

a + g(n/b)h(n) a + f(n/b)h(n)' 

a(g(n/b)-f(n/b))^p 

i °° i 
-- "J E( 2 _ n ^W - /W)P = ^K, (/,_»'• 

n=0 

Hence e g_($*(/), $*(_/)) < ^ p (/,#). This completes the proof. • 
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T h e o r e m 7. Let p G [1 ,+co) . Then the mapping $* : C* |e,iC-> C* \byC has a 
unique fixed point. 

P r o o f . We shall apply Theorem 5. To this end, first note tha t (C* \b,c,eqp) is a 
Hausdorff extended quasi-metric space because C* \bjC is a subset of C*. 

Next we show tha t (C* \b,c^Qp) is right If-sequentially complete. Indeed, let 
(fj)jeN be a right i f -Cauchy sequence in (C* \b,c,eQp). By Theorem 4, (fj)j^N con
verges to a function / G C*. Moreover, there is n0 G N such that f(n) = infj>no fj(n) 

for all n G u (see the proof of Theorem 4). Since each fj is in C* \b,c, it follows tha t 
f(n) = 0 for all n <£ {bk : k e u), and thus / G C*p \hjC . 

Now let /o G C* \b,c defined by fo(bk) = 1/c for all k G u and fo(n) = 0 otherwise. 
We show tha t $*(/o) < /r> Indeed, for n(£ {bk : k G a;}, we have $*(/o)(n) = 0. On 
the other hand $*( /o ) ( l ) = 1/c = / o ( l ) . Finally, for n = bk,ke N, we have 

*-<A»<") = ̂ W W ) £ /* '" ' ) = 3 = AW-
Therefore $*(/o) < /o , so e<-p($*(/0), /o) < +oo. Since by Theorem 6, $* is a 

contraction mapping from (C* \b,c,eQp) into itself, we may apply Theorem 5, and 
thus $* has a fixed point, namely, g. Suppose that gi G C* \b,c satisfies $*(gi) = gi. 
We shall prove, by induction over k, tha t g = g\. In fact, g(l) = $*(g)(1) = 1/c and 

9l(l) = $*(gi)(l) = 1/c. Moreover 

g(b) = **(g)(b)= gW - 1 

a + g(l)h(b) ac + /i(6)' 

and, similarly, 

0i(6) = * • ( $ ! ) ( & ) = * 
ac + /i(6) 

S o 5 ( 6 ) = 3 l ( 6 ) . 
Now let p (6* _ i ) = ffi(6*_1), where k > 2. Then 

,(6*) = #•(,,(.*) = a + ^ m - ••fo)<f) = »(.*). 

Hence g = gi} and consequently $* has a unique fixed point. • 

(Received February 3, 2003.) 
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