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DESIGN OF REACHING PHASE FOR 
VARIABLE STRUCTURE CONTROLLER 
BASED ON SVD METHOD 

GOSHAIDAS RAY AND SlTANSU DEY 

This paper considers a design of variable structure with sliding mode controller for a 
class of uncertain dynamic system based on Singular Value Decomposition (SVD) method. 
The proposed method reduces the number of switching gain vector components and per
forms satisfactorily while the external disturbance does not satisfy the matching conditions. 
Subsequently the stability of the global system is studied and furthermore, the design of 
switched gain matrix elements based on fuzzy logic approach provides useful results for 
smooth control actions and decreases the reaching phase time. The efficacy of the pro
posed method is demonstrated by considering an interconnected power system problem. 

Keywords: reaching-phase, sliding mode, matching condition, singular value decomposition, 
fuzzy logic, Lyapunov function 
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1. INTRODUCTION 

Variable structure control (VSC) owing to its insensitiveness to parametric uncer
tainties and disturbances has drawn wide attention in the literature over the past 
two decades [10]. It is powerful in controlling the system with bounded unknown 
disturbance and can provide very robust performance and transient performance [3]. 
The first step of VSC with sliding mode control is to select a sliding surface that 
models the desired closed-loop performance in state-space form. Then the control 
law is designed in such a way so that the system state trajectories are forced towards 
the sliding surface and stay on it. The system state trajectory in the period before 
reaching the sliding surface is known as the reaching phase in the control literature. 
The system trajectory sliding along the sliding surface to the origin is the sliding 
mode. The most salient feature of variable structure sliding mode control is that it 
is completely robust to matched uncertainties [1, 12]. It is certainly true that the 
many physical systems can be classified under these categories. However, there are 
even more systems which unfortunately are affected by mismatched uncertainties 



234 G. RAY AND S. DEY 

and do not enjoy nice matching condition. Thus the system behavior in the slid
ing mode is not invariant to the mismatched uncertainty; the system performance 
cannot be assured. Other remarkable advantages of sliding mode control approach 
are the simplicity of its implementation and the order-reduction of the closed loop 
system [4, 6]. Pole assignment or Linear Quadratic (LQ) techniques are often used 
as a component of sliding mode control. However, to be fair, one should also point 
out two foremost difficulties in the application of VSC with sliding mode control. 
One is the general necessity of full state vector measurements to implement the 
switching surface and the other is the possible occurrence of real sliding mode (chat
tering phenomena) instead of the ideal one. However, since a discontinuous control 
action is involved, chattering will take place and the steady-state performance of the 
system will be degraded. To overcome this problem, numerous schemes have been 
reported in the literature and one of the most common techniques to alleviate this 
drawback is to introduce a boundary layer about the sliding plane [8, 9]. The basic 
idea consists of introducing a boundary layer of the switching surface in which the 
control law is chosen to a continuous approximation of the discontinuous function 
when the system is inside the boundary layer. However, this approach provides 
no guarantee of convergence to the sliding mode and involves a trade off between 
chattering and robustness. Reduced chattering may be achieved without sacrificing 
robust performances by combining the attractive features of fuzzy control with slid
ing mode control [2]. The fuzzy sliding-mode controller takes the advantages to the 
both fuzzy and sliding mode controller characteristics and will result chattering in 
the system dynamic response. 

In this paper, we shall discuss how to design a reaching phase based on Singu
lar Value Decomposition (SVD) technique with static a state-feedback control law. 
The control law consists of linear feedback term plus a discontinuous term, which 
guarantee that the sliding mode exits and is globally reachable under a very mild 
restriction. This paper extends the work of White et al [11] in order to design a 
simple sliding mode with variable structure controller based on SVD method. This 
in turn reduces the number of switching gain vector components as compared to 
White et al [11] method and moreover, for the non-switched gain components no 
additional inequality constrains are required to drive the state trajectory into the 
sliding surface. The significant advantage of the proposed method is addressed for 
full/reduced switching control gains. A fuzzy logic approach is also adopted in order 
to avoid hard switching control gains and subsequently the corresponding control 
signals ensure the reaching conditions and decrease the reaching phase time. 

This paper is organized as follows. In Section 2, a mathematical description 
of the problem is given. Reaching phase design technique, based on SVD method 
is developed in Section 3. Subsequently, the stability of the sliding mode state 
trajectories is studied in the same section. In Section 4, design of an equivalent switch 
gain matrix based fuzzy logic approach is considered. In Section 5, the effectiveness 
of the proposed VSC control scheme based on SVD technique is demonstrated by 
considering the load-frequency control problem of interconnected power systems. 
Section 6 provides a brief conclusion. 
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2. PROBLEM FORMULATION 

X(t) = AX(t) + BU(t) (1) 

Y(t) = CX(t) (2) 

where X(t) = state vector G 5Rnxl, U(t) = input vector G 5Rmxl and Y(t) = output 
vector G 5Rpxl. It is assumed that the system is observable and controllable. All 
the states are directly measurable and the linear system is assumed to be in regular 
form and the state equation (1) explicitly is described by following pair of equations: 

Xi(t) = AnX^+AuX^t) (3a) 

X2(t) = A21Xx(t)+A22X2(t)+B2U(t) (3b) 

where Xx(t) G ft^-™)*1, X2(t) G 3? m x l , B = [ 0 B2 ]
T and B2 G K m X m . If the 

original system is rot in a form of equation (3), it is required to transform the system 
(1) into a regular form by using a linear transformation matrix [4]. 

Before we propose the new VSC based on SVD method, a brief discussion on 
sliding surface is given below. 

o = SX(t) (4) 

which with no loss of generality, we can rewrite the equation (4) in more explicit 
form 

<7mxl(*) = SXXX(t) + S2X2(t) 

= SxXx(t) + X2(t) (5) 

where Si(t) G sft™*("-™), ^ £ ^mxm w i t h s<2 = / m x m < if t h e system state trajec
tory is on the sliding surface, 

a(t) = S1X1(t)+X2(t) = Q 

and,thus 
X2(t) = -SiXtit). (6) 

Substituting equation (6) into equation (3), we get 

X1(t) = (A11-A12S1)X1(t). (7) 

It can be noted that the reduced order dynamics of equation (7) on the sliding 
surface is independent of control input U(t) and exhibits a state feedback struc
ture where S1 and A12 represent a 'state feedback' matrix and an 'input' matrix, 
respectively. 

If the system (-4n,Ai2) is stabilizable, it is possible to find the optimal control 
law, a 'feedback' control gain Si , such that the control law minimizes performance 
index 

CO 

J = f [XfQX! + X?RX2] dt (8) 
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where the lower limit of the integration refers to the initiation of sliding, Q > 0 
and R > 0. This optimal gain S\ minimizes index J and asymptotically stabilizes 
X\(t). It is needless to state that the system exhibits desirable dynamical behaviour 
when its trajectories are confined to the sliding surface (a = SX = 0). A necessary 
condition for the system state trajectory to remain on the sliding surface a = 0 is 
a (X, t) = 0 and the equivalent control for the nominal system has the form 

Ueq = -(SB)~lSAX(t) = -KeqX(t) (9) 

Then equivalent control gain cICeq' can then be obtained from the above equation 
and the closed-loop system (A — B Kec]) having same (n — m) eigenvalues as that of 
reduced order system (7) and remaining 'm' eigenvalues are at equilibrium point. 

For the system (3), it is assumed that the control law 

U(t) = Uf(t) + Us(t) 

= -KfX(t)-AKsX(t) (10) 

is employed with the choice of fixed control gain Kf (with AKS = 0mXn) such that 
the closed-loop system has (n — m) eigenvectors lying with in the null space of S and 
the remaining eigenvectors will exhibit the range-space dynamics of S. On the other 
hand, the role of switched dynamically gain vector AKS is to maintain a switching 
function a as close to zero as possible and also to drive the state vector into the null 
space of S. 

Consider a linear uncertain dynamic system described by the following state space 
form 

X(t) = (A + AA) X(t) + (B + AB) U(t) + T d(t) (11) 

Y(t) = CX(t) =[d C2] X(t) (12) 

where X(t) G 5Rnxl is the measured current value of the state, U(t) G 5ftmxl is 
the control function, Y(t) G UJpxl is the output of the system, d G 5ftrxl is the 
external unknown constant disturbance vector bounded by ||d|| < dmax, A, JB, T, C 
are constant matrices with appropriate dimensions, with B of full rank, and the 
matrices AA, AB represents uncertainty of the system matrix and input matrix, 
respectively. 

Assumpt ion I. (i) Matching Conditions: There exists matrices of appropriate 
dimensions F and E such that [4, 13] 

AA = BF, AB = BE, \\E\\ < fi < 1 (13) 

the above condition is satisfied, and then the sliding mode is invariant due to param
eter perturbation. The physical meaning of (13) is that all parameter uncertainties 
enter the system through the control input matrix or channel. It is assumed that 
the external disturbance component does not satisfy the matching condition. The 
constraint imposed on E is to ensure that the level of the uncertainty AB is not so 
large. 

(ii) The pair (A, B) is completely controllable. 
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Assume that a sliding mode control is employed for controlling the system under 
structural assumption, all uncertain elements can be lumped and the system (11) 
can be written as 

X(t) = AX(t) + BU(t) + Br]p(t) + fd(t) (14) 

where fd(t) = Fd(t) and r\p G 5Rmxl represents the system total uncertainty or total 
perturbation [8] and it is given by 

Vp(t,X) = FX(t) + EU(t). (15) 

Solely based on the knowledge of the bound on the uncertainty, we consider the 
following assumption. 

Assumption II. There are positive constants CQ and c\ such that [13] 

\\riP(t,X)\\2 < co + ci ||X||2 = p(t,X) for all (t,X) (16) 

where p(£, X) is the upper bound of the norm \\r]p(t, X)\\2 and CQ and Ci are estimated 
by solving a pair of differential equations and it is discussed later. 

We now consider the system (14) with (15), (16) and the solution of X(t) at time 
'F is obtained when the system equation (14) is forced by the input {£/(£), r]p(t), fd(t)}. 
The basic stability condition question is to find a control strategy U(t,X(t)) such 
that the system has a sliding mode and the origin is uniformly asymptotically stable 
in the large. 

SMC design is broken down into two phases. The first phase entails constructing 
a switching surface so that the system restricted to the switching surface produces a 
desired behaviour. For convenience, it is assumed that the system (14) is in regular 
form 

X\(t) = A\\X\(t) + A12X2(t) + fd\ 

X2(t) = A21X1(t) + A22X2(t) + B2(U + r1p) + fd2 (17) 

X\ 
Y(t) = [ d C2] X-2 

(18) 

where fd = [ fJi fd2 ] • ^ ls t o ^ e n o^ ed that the first part of the external 
disturbance vector fd\ directly affects the states X\ (t) even after the system states 
are on the sliding mode. This in turn drives the system states away from the sliding 
surface and finally system response deviates from the desired behaviour. 

Associated control law. In this subsection, we present the new sliding surface 
as 

t 

<7mxi(i) = SX(t) + W f(Y(t)-Yre{(t))dt = SX(t) + WZ(t) 
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[5i S2] 

SaXa(t) 

XI 
X2 

+ WZ(t) = [ si w s2] 
X\(t) 
Z(t) 

x2(t) 
(19) 

and the corresponding control law that drives the states on the sliding surface is 
given by 

u(t) = - (Kaf + AKas) xa(t) + v; + v; (20) 

where the choice of Kaf is in such a way so that (n+p—m) eigenvectors of augmented 
closed-loop system (using equation (20)) are in the null space of Sa. The switched 
gain matrix AKas maintains switching vector a as close to zero as possible. The 
terms V; and Vf represent the nonlinear feedback control for suppression of the 
effect the uncertainty and external disturbance. In addition to the switching gain 
matrix AKas, the terms V; and Vf are also help to drive the system trajectories 
toward the switching surface until intersection occurs. 

Consider the augmented system and it is described by using the equations (17)-
(19) 

Xa(t) = 
An 0 A12 " 0 0 fd\ 
d 0 O2 Xa(t) + 0 U(t) + 0 vP(t) + 0 

A21 0 A22 в2 в2 
fd2 

= AaXa(t) + BaU(t) + BaГÌP(t) + fad (21) 

where Xa(t) = [ X?(t) ZT(t) X% ] and YTef = 0. Using the expression (20) in 
equation (21) the dynamic model of the closed-loop system is 

Xa(t) = AacXa(t) - BaAKasXa(t) + BaV; + BaVf* + Bar)v (t, Xa(t)) + fad (22) 

where Aac = (Aa - BaKaf), Ba = [ 0 0 B2
T ] T and fad = [ fjx 0 /J 2 ] T . 

As we have mentioned earlier that the selection of Kaf is made in such a way so that 
(n + p — m) eigenvectors of Aac are placed in the null space of Sa with 52 = Imxm 
and the matrix Kaf can be calculated using the following expression 

^ai-^-ac — Aridaí) Z — 1, Z, . . . , 771 (23) 

where Sa = [ S ^ sт 
a2 a m J m x m 

is assumed to be the left eigenvectors 
of the matrix Aac corresponding to the eigenvalues A ri, A r 2,.. ., A r r n respectively. 
Switching surface Sa is designed by following the steps as discussed in this section 
(from equations (4)-(8)). It can be noted that the matrix Kaf can be determined 
in such away so that the range space (n + p — m) eigenvalues of the system Aac are 
placed at desired locations and the corresponding distinct left eigenvectors of Aac 

are within the null space of Sa. So, for any state X(t) lying in the null space of Sa, 
X(t) will also lie in the null space. 
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3. REACHING PHASE DESIGN USING PROPOSED SVD METHOD 

Singular Value Decomposition (SVD) technique is employed in equation (19) and 
the corresponding switching surface is written as 

<7mxl(0 = WDVTXa(t) 

=> WTa(t) = DVTXa(t) 

=> a(t) = DXa(t) (24) 

where WmXm and V( n + p ) X ( n + p ) are the orthogonal matrices and -Dm X(n+P) is the 
rectangular matrix with diagonal elements are the singular values (a\ > a<i > • • • > 
am > 0) of Sa [7]. White et al [11] treated the problem of reachability in variable 
structure control for single input systems and developed inequality conditions on 
the switch gain components to ensure reaching the null space of sliding surface from 
anywhere in the state space domain. The main idea of using SVD technique is to 
obtain the reaching phase conditions in a simpler form for multi inputs systems by 
exploiting the structure and properties of D matrix that arises from the decomposi
tion of the matrix Sa and moreover, it decreases the number of switching gain vector 
components. 

Let us consider the transformed state Xa(t) = VTXa(t) and the corresponding 
augmented transformed system model is given by 

xa(t) = Aacxac(t) - вaAкasxac(t) + вav; + вav; + вaГ}p(t, xa) + fad (25) 

where Aac = V1 AacV, Ba = V1 Ba, AKas = AKasV and fad = V1 fad. To 
guarantee the sliding condition a = 0 implies a = 0, we differentiate the equation 
(24) and use equation (22) to get the following expressions 

j(t) = DX(t) 
a 

= DVTXa(t) 

= DVT [AacXa(t) - BaAKasXa(t) + BaVp* + BaVf* + BaVp (t, Xa(t)) + fad] 

= WTWDVT[AacXa(t)-BaAKasXa(t) + BaV;+BaV;+Bar)p(t, Xa(t))+fad] 

= WT diag [Ar l, A r 2 , . . . , A r m] SaXa(t) - WTB2AKasXa(t) + WTB2Vp* 

+ WTB2V; + WTB2T)p(t,Xa(t)) + WTSafad 

[note, SaAac = diag[Ari, A r2, . . . , ArTO] Sa 

= WTdiag[Arl A r2 ••• A r m ] WDVTXa(t) - WTB2AKasXa(t) 

+ V*p + V*f + % + Tad 

= WDXa (t) - AKasXa (t) + V*p + V) + tP + Tad ( 2 6 ) 

where W = WT diag [ Ari A r2 • • • A r m ] W = Symmetric matrix, AKas = 

WTB2AKas, V*p = WTB2Vp*, V) = WTB2V;, % = WTB2r,p(t, Xa(t)) and 

Tad = WTSafad. 
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Equation (26) is written in different form 

m n + p 

k=1 j—m-J-1 

(27) 
i = 1,2,... ,m. 

A sufficient condition for the existence of sliding mode is aT(t)a(t) < 0 for a ^ 
null vector. This condition can be also be written in the following form 

aTWTWa < 0 => (Wa)TWa < 0 

aTã => ] Г ăĆi < ° ( 2 8) " ~ => 
i=ì 

and to meet the above condition, we need to consider the equation (27) and require 
to satisfy the following inequality conditions. 

OLi \Wik\ for GiXaik{t) > 0 

W M<a.,ik = { _ Q i |Jp I f ( ) r ^ (t) < 0 ' 

i / k and AKasii = cti\Wu\, <JiXayu > 0 and aiXajii < 0 does not exist i = 
1,2,... ,m, A; = 1,2,... ,m. 

It can be observed that the quantity aixa%i is always + we since oti > 0 [11] and 
^ t - ^ a , ѓ — C*ixa i' 

, í > 0 for ajXa ,(í) > 0 
(ii) A/C ťí- =A " 

' " [ < 0 for OiXa j(t)<0 
i = 1,2,..., m, j = m + 1, m + 2 , . . . , n + p. 

- | | W T ß 2 | | Цł7 P (t,X в ) | | 2 for ãi>0 

\\WTB2\\ ||т|p (í, -Y._)||2 for õi<0 
i = 1,2,... , m. 

" Hd for *. > 0 
OO 

\Tad\ for <7i<0 

(ffi) ^ . « = , „ „ Г , 

(iv) Vfti = 

i = 1,2,... ,m where 1^1^ = max* |gi|, ||r/p (£, -X"a)||2 are the infinity and Euclidean 
norm of a vector respectively. ||PVT-52|| is the spectral norm of the matrix VVT_52. 

Consider the equations (15) and (16) and rewrite the upper bound of the norm 
\\rjp (£, Xa)\\ and is synthesized by 

\\r,p(tt Xa)\\ < p(t, Xa) = Q,(t, Xa) + C l ( t , Xa) \\Xa\\ (29) 

where co(£, Xa) and cr(£, X a) are parameters. These parameters are computed 
using the following dynamic equations (see [8]) 

Co(t, Xa)=q0\\BjSja\\ (30) 
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c1(t,Xa) = ql\\BjsTa\\ \\Xa\\. (31) 

It may be noted that the matrix AKas can be expressed in terms of transformed 
switching gain matrix AKas = (WB2)-1 AKasV

T. 
It is important to note that the reachability condition for multi input system based 

on SVD technique can be obtained by adopting only 2 m ^ - 1 ^ switching gain vector 
components and moreover it does not require any stringent condition need to be 
satisfied to ensure reachability. A detail comparative study on number of switching 
components and additional stringent conditions between the proposed method and 
White et al method [11] is given in the following table. 

Table 1. Comparative study on number of 
Switching components and stringent condition. 

Description Proposed method White et al 
(SVD) method 

Number of state = n 

Number of input = m 

Number of switching gain vec-
tor components: 
(a) Full switching gain vector c\тn(m— 1) cyTПП 

components AKas 

(b) Reduce switching gain 2 m 0' _ 1 ) 2rnj 

vector components AKas Inequality conditions Inequality conditions 
(up to j t h component, j>m) need not to be satisfied. should be satisfied. 

3.1. Sliding motion and equivalent control 

Equivalent control determines the behavior of the system restricted to the switching 
surface and a necessary condition for the state trajectory to remain on the sliding 
surface cr is a (t, Xa(t)) = 0. The motion in the sliding mode may be determined 
by differentiating (19) with respect to time and inserting the value of Xa given in 
(21) gives 

& = Sa [AaXa(t) + BaUEQ(t) + Banp(t, Xa) + fad] = 0 (32) 

and equivalent control law in the sliding mode is obtained from (32) as 

Ueq(t) = -(SM-1 [SaAaXa(t) + SaBar}p(t, Xa) + Safad] 

= -(SM-1 [SaAaXa + SaBa (FaXa(t) + EUeq(t)) + Safad] 

=> (Im + E) Ueq(t) = - [(SM-^S^Xa + Safad) + FaXa(t)} 

=> Ueq(t) = -(Im + E)-1 [(5 a B a )" 1 (5 a A a X a + Safad) + FaXa(t)] (33) 

T 
where Fa = \ F? 0 m x p E2

T ] . / U s i n g t h e f o l l o w i n g relation [7] 

1 . . . . . 1 

1 + И1 
íWilm + E)-1 < 1 - \\E\\ 
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in equation (33), we obtained 

/ 

Ueą(t) = -- (5„Бa)- »ja •**a •**• a + -5a 

V 

s i g n ( / a d i i ) | / a a > i | m а x 

S І g n ( / a d i 2 ) | / a t i . 2 І m a x 

_ s i g n ( / a d i П + p ) | / a a ) П + p | n 

+ FaXa(t) 

/J 

(34) 

where \\E\\ is the spectral norm of E, | /ad , i | m a x 1s the upper bound of |/ ad,i | and 
0 < 7 < 1. Here, we need to adjust 7 in such away so that the control law Ueq(t) 
will drive the states on the sliding surface and the corresponding control law (34) 
can then be expressed in terms of states X(t) and rewritten in the following form 

u 
Гeq(0 = "Û Ш l L2 ] 

Xг(t) 

x2(t) 

+ _£ Sh i S\gn( fad, i) \fad, i\m&x+ ]__. eJSl&n(fad,j)\fad,j\r 

j=n—m+1 i=l 

= - « | LX(t)+ J2 Siti8Í&l(fad,i) | /ad, i |m a x+ _>_. eJSÍSn(/a<U) l/at..j| r 
I i= l j=n—m+1 

( n — m n 

J2 Si,i SÍgIl(fad, i) |/ad,i|max+ X e3 SÍSn(/»«í,i) l/ad, jlmax J> (35) I І=l j=n—m+l 

where Li = (B2)
 l(S\Aiii + WCi +A2yi) +Fi, i = 1, 2. ej is the unit vector whose 

jth element is 1 and a = y^—. 

3.2. Composite system stability study 

Consider a Lyapunov function candidate V (X(t)) = XT(t)PX(t) of the system (14). 
Taking derivative of V (X(t)) along the sliding trajectories, using Assumptions I, II 
and combining with (35), we obtain 

V(X(t)) = XT(t)(ATP+PA)X(t) + 2UTBTPX(t)+2r)TBTPX(t) + 2fTPX(t) 

= XT(t)(ATP+PA)X(t)-2a(LX(t) + M)TBTPX(t) + 2r]TBTPX(t) + 2fJPX(t) 

where ' M ' is assumed as equal to the second part of the right hand side of equation 
(35). 

V (X(t)) = XT(t)(ATP + PA)X(t) - 2aXT(t)LTBTPX(t) 

+ 2 (r)T - aMT) BTPX(t) + 2fjVPVPX(t) 

= XT(t)(ATP + PA)X(t) - 2aXT(t) LTBTPX(t) 

+ 2fjT BTPX(t) + 2fJy/FVPX(t) (36) 

where nT = (np — aM)T. 
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We need to use the following useful lemma to obtain a simplified expression. 

Lemma. (See [14].) For any matrices or vectors 'V'and W with appropriate 
dimensions, we have 

VTW + WTV < pvTv + l-wTw 

for any positive constant (5. Using equation (37) in equation (36), we obtain 

(37) 

я т = V (X(t)) < X1 (A1 P + PA- ßiPBB1 P + ß2P + аQ)X + -^ Lъ 
ßi 

< XҶ í ) 

+ 2(ílX
TPBBTPX - 2aXTLTBTPX + —fJPfd - XTaQX, 

where Q > 0 

X(t) (л + ̂ ) r я + ł.(л + f) P + P[A+'-ү\ -ß{PBBтP + аQ 

TuTj X1 (t)аQX(t) + 2Xт(t) (ßxPBBтP - аLтBтP) X(t) 

^т + Ҡ% Ь + тfi Pf ßi 

< Xт(t) 

+ 2 

ß2 

Л+I~¥) P + pU+^-yj-ßiPBBTp + аQ 

\m&ЖPBBтP) - ^\mш(а(LTBTP + (а- 1)Q)) 

X(t) 

\\x\\l 

- \min(Q) \\X\\l + -^-Am a x(P) \\fd\\l + -±- \\řjp\\* (38) ih *--'"""" ' A 
where /3i and /^are the positive constants and a is the tuning parameter of the 
control law (35). Examination of equation (38) revels that sufficient conditions for 
V < 0 are 

T 
P + P(A+ I-^\ - piPBBTP + aQ (-?) = 0 (39) 

1 
-A m i n (LTBTP + PBL + (a- 1)Q) > \max((JlPBBTP) (40) 

,(Q)>^Amax(P)(| |x
dJ + £(pjjf (41) 

It can be noted that the solution of Riccati equation (39) along with the above two 
additional conditions ensure V < 0. Thus, we conclude that the sliding mode state 
trajectories of the uncertain system (14) and (15) under the equivalent control action 
(35) are robustly asymptotically stable in the large. Thus, we have successfully 
developed a new constructive reaching phase design based on SVD method and 
subsequently the stability condition for completely uncertain system is established. 
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4. DESIGN OF SWITCH GAIN COMPONENTS (AKas y ) 
FUZZY LOGIC APPROACH 

BASED ON 

It is well known that each control method always has its advantages and drawbacks, 
or we can say that all control techniques have their individual characteristic features. 
Combining several control theories to design a new controller may have possibly 
better system performance than one based on single control theory only. In this 
section, the design of switch gain control components based on fuzzy logic approach 
is proposed with a view to achieve good dynamic system response, smooth control 
actions and to decrease the reaching phase time. Here we recall the reaching phase 
control law (20) for our convenience and ready reference. 

U(t) = - (Kaf + AKas) Xa(t) + V; + V; (42) 

where the feedback gain Kaj is kept constant, but the proper choice of fuzzy switch
ing gain AKas can accelerate the state trajectories to reach the sliding hyper plane, 
and thus the dynamic performances will may be improved. The function of each part 
of the control (20) is already discussed in detail in Section 2. Now, we consider the 
design procedure of the fuzzy switching gain matrix AKas as a part of the control 
signal that will drive the state trajectories from any initial state condition to the 
sliding surface. 

4.1. Design of switch gain matrix elements AKasij based on fuzzy 
logic approach 

We have considered aiXaj (see equation (26)) as the linguistic input fuzzy variable 
and the corresponding transformed switch gain elements AKasij as the output 
variable. Non-fuzzy variable aixaj is quantized into five/six linguistic variables 
and similarly the qualitative linguistic variable AKasi- is quantized into five/six 
linguistic output variables. The universe of discourse for each membership function 
is selected based on some trials and these are shown in Figure 1. 

Table 2. 

Input variables — • Linguistic variables 

Õ г̂-Ča.i, i = 1,2,. . . , m 
Positive 

Large 
(PL) 

Positive 
Big 

(PB) 

Positive 
Medium 

(PM) 

Positive 
Small 
(PS) 

Zero 
(ZE) 

øiXaj i = 1 ,2 , . . . , m 

3 Фi 
Positive 

Large 
(PL) 

Positive 
Medium 

(PM) 

Positive 
Zero 
(PZ) 

Negative 
Zero 
(NZ) 

Negative 
Medium 

(NM) 

Negative 
Large 
(NL) 

Output variables —> Linguistic variables 

&к*as,n>i= 1 , 2 , . - . , m 

Positive 
Large 
(PL) 

Positive 
Big 

(PB) 

Positive 
Medium 

(PM) 

Positive 
Small 
(PS) 

Zero 
(ZE) 

3. — l , - V - - - m 

3 Фг 
Positive 

Large 
(PL) 

Positive 
Medium 

(PM) 

Positive 
Zero 
(PZ) 

Negative 
Zero 
(NZ) 

Negative 
Medium 

(NM) 

Negative 
Large 
(NL) 
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0 L 2L ЗL 4L 

- 1 

1 

, A , / 

ZE 

X 
PS 

0 
PM 

0 
PB 

0 
PL 

< \ . 
o -ҷw.. 

NL 

— 2L, 

Ц(a,xa,p j 
NM NZ 

• 2L, • 2L, — 

P Z PM PL 

. XX XX 
- 2 L 2 2L2 Oj x 

NL NM NS 
^ ( A K a * s a i ) . 

1 + 

-ré 

PS 

i a,j 

PM PL 

2L3 
_ 2 L 3 — OC,W 0 a.Wjj _ * 2 - 3 .- 2 L 3 ^ Aк аs,ij 

Fig. 1. Membership functions for each input and output. 

Based on the expressions (27)-(28) (derived in the previous section), we can com

pute the switch gain matrix elements AKasij using the following decision rules. 

Fuzzy rules for i = j and i = 1,2,..., ra are given below: 

Ri: If OiXaj is PL then AKasH is PL for i = j and i = 1,2,... ,ra. 

This rule indicates that when the transformed state is leaving the sliding surface 
quickly, then a positive large Aif * s a is required to decrease b quickly to make Oi 
near the sliding hyper plane. 

R2: If o{xa,i is PB then &KasJi is PB. 

R3: If o{Xa,i is PM then &Kasii is PM. 

R4: If OiXa i is PS then Ai?* s H is PS. 

R 5 : If &iXa9i is ZE t h e n &Kasii is ZE. 
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For i / j and i = l , 2 , . . . , m and j = l , 2 , . . . , m , the following fuzzy rules are 
described as 

RQ: If GiXaj is PL then AKasiJ is PL. 

R7: If äixaj is PM then AKasij is PM. 

R8: If aiXatj is PZ then AKasij is PS. 

R9: If aiXaj is NZ then ~EE*asij is NS. 

Ri0 : If öiXaj is NM then AKasij is NM. 

R n : If GiXaj is NL then AKasij is NL. 

Defuzzification. The crisp output AKas t- is obtained by choosing the center-of-
area (centroid) defuzzification method and it is given by 

- _ / > ( д 7 ľ ; , , І J . ) Д / C i J d (AK*a;ij) 
AKas, a = —±-^^ \ ' . (43) 

It has been observed that a large switching gain with proper sign of AKasiJ will 
drive the state trajectories to approach the sliding surface rapidly and vice versa. 
Transformed switch gain matrix AKas {- is then changed to switch gain matrix AKas 

by using the inverse of the matrix WTB. Furthermore, when the state trajectories 
hitting the sliding surface an equivalent control law (35) is then applied to maintain 
the motion of the states along sliding hyper plane and ensures the trajectory remains 
on the surface once it gets there. 

5. SIMULATION RESULTS 

We consider load-frequency control problem of two area interconnected power system 
to demonstrate the effectiveness of the proposed controllers in presence of parameter 
perturbation and external disturbances. The nominal system is represented in the 
state space form by the equation 

X(t) = AX(t)+BU(t)+Td(t) (44a) 

Y(t) = CX(t) (44b) 

where, X(t) = [ A/x APgl AXgl APtie A/2 APg2 AXg2 ]T, Af, and 
Af2 are the deviation in frequencies, APtie is the change in tie-line power, APgi and 
APg2 are the change in turbine-generator outputs, AXg\ and AXg2 are the change 
in outputs of the governors. Furthermore, 

U= [ APcl APc2 ] T , d= [ dx d2 f . 

i 



Design of Reaching Phase for Variable Structure Controller Based on SVD Method 247 

Area-control error in Area-1 ACE_ = Afx+APtie and in Area-2 ACE2 = Af2-APtie 

are the outputs of the composite system. The following are the nominal system 
matrices: 

i 
тP1 

0 
i 

_____ 

_T_L 
TTl 

0 

0 

0 
1 

Tтi 

~Ťа 
0 

Kp\ 
тP1 

0 
0 

1 

0 

0 

0 
0 

_т* 
J 1 2 

0 
0 
0 
0 

0 
0 
0 
0 -4 = 

R i T G l 

T* J 1 2 

_____ 

_T_L 
TTl 

0 

0 

0 
1 

Tтi 

~Ťа 
0 

Kp\ 
тP1 

0 
0 

1 

0 

0 

0 
0 

_т* 
J 1 2 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 

0 

0 
0 
0 

0 

0 

0 

K P 2 
TP2 

0 

0 

1_ 
Тp2 
0 

1 

K P 2 
TP2 

TТ2 

0 

0 
_1_ 

Т7-2 

T02 . 

0 
0 

0 

0 
0 
0 

0 

0 

0 

K P 2 
TP2 

0 

0 R2T02 

K P 2 
TP2 

TТ2 

0 

0 
_1_ 

Т7-2 

T02 . 

" 0 0 

0 0 

^- 0 
TGÌ 

0 0 

0 0 
0 0 

0 " 
1 

ТG2 -
, rт = 

_____ 
т P 1 

0 

0 0 

0 0 

0 

0 

0 
KP1 

тP1 

0 0 " 

0 0 в' 

The following nominal parameters are used [5]: TP = TP\ = TP2 = 20.0 s; TT = 
TTi = TT_ =0.3 S; TG = TG1 = TG2 =0.08 s; KP = KP_ = KP2 = 120Hz/p.u.MW; 
R = Rl=R2 =2.4 Hz / p.u.MW. 

There are always errors present in such models due to linearization, unmodelled 
dynamics, e t c Moreover, the power system operating conditions change with time 
leading to changes in system linearized parameters and the following range of system 
parameter variations are considered: 

-}r G [ 0.025 0.075 ] , ^ E f 3.0 9 . 0 ] , ^ - G [ 2.333 4.333 ] 
l p l p IT 

^ - e [ 2.6041 7.8124 ] , ±- G [ 8.75 16.25 ] . 

The nominal system matrices are as follows: 

A = 

Bт = 

Гт = 

and C = 

-0.05 6.0 0.0 -6.0 0.0 0.0 0.0 
0.0 -3.33 3.33 0.0 0.0 0.0 0.0 

-5.2083 0.0 -12.5 0.0 0.0 0.0 0.0 
0.545 0.0 0.0 0.0 -0.545 0.0 0.0 

0.0 0.0 0.0 6.0 -0.05 6.0 0.0 
0.0 0.0 0.0 0.0 0.0 -3.33 3.33 
0.0 0.0 0.0 0.0 -5.2083 0.0 -12.5 

| 0.0 0.0 12.5 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 12.5 

ľ -6.0 0.0 0.0 0.0 0.0 0.0 0.0 -

[ 0.0 0.0 0.0 0.0 -6.0 0.0 0.0 .1 

' 1.0 0.0 0.0 1.0 0.0 0.0 0.0 ' 
L 0.0 0.0 0.0 -1.0 1.0 0.0 0.0 
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Note that our nominal system is not in a regular form of equation (17) and (18). 
One can use a suitable sate transformation to get the desired form. In the present 
example, the states are rearranged to obtain the system description in regular form 
and it is given by 

X(t) = [ A L APgi APg2 APtie A/2 AXgl AXg2 }T 

B' 

-0.05 6.0 0.0 -6.0 0.0 0.0 0.0 
0.0 -3.33 0.0 0.0 0.0 3.33 0.0 
0.0 0.0 -3.33 0.0 0.0 0.0 3.33 

0.545 0.0 0.0 0.0 -0.545 0.0 0.0 
0.0 0.0 6.0 6.0 -0.05 0.0 0.0 

-5.2083 0.0 0.0 0.0 0.0 -12.5 0.0 
0.0 0.0 0.0 0.0 -5.2083 0.0 -12.5 

' 0.0 0.0 0.0 0.0 0.0 12.5 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 12.5 

Note that the physical interpretation of the states is remaining same after transfor
mation and in general, it is not true. Corresponding transformed nominal system 
matrices are 

" -6.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 

г т = 
0.0 0.0 0.0 -6.0 0.0 0.0 

and 

T 
Define Xx 

1.0 0.0 0.0 1.0 
0.0 0.0 0.0 -1.0 

0.0 0.0 0.0 
1.0 0.0 0.0 

[ A L A P s l APg2 APtie A/2 ] and x[ = [ AXgl AX 92 

Case A. It should be pointed out that if the original system parameters are free 
from perturbation and not excited by external disturbance then we need to design 
a P-type sliding surface. When the system state trajectory comes on the sliding 
surface the closed loop dynamics are described by reduced order model (7). The 
state feedback control gain Si of the reduced order model (7) (switching function) 
can be found out by minimizing the performance index 

J 
t 

J(XTQX x+X2RX2)át (45) 

where Q = 15I5X5 and R = 10I2x2- The resulting value of switching surface gain 
matrix 

5 = 
1.2053 1.6153 -0.0016 -0.8141 -0.0023 1 0 
-0.0023 -0.0016 1.6153 0.8141 1.2053 0 1 

(46) 
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The equivalent control law (9) is given by 

Ueq{t) = 

-0.4568 0.1479 -0.0007 -0.5797 0.0355 -0.5693 -0.0004 
0.0355 -0.0007 0.1479 0.5797 -0.4568 -0.0004 -0.5693 

X(t). 

(47) 

The range space eigenvalues are located at 0.4 and 0.3 that are unstable and the 
corresponding fixed gain matrix is given by 

кf = 
-0.4954 0.0962 -0.0006 -0.5536 0.0356 -0.6013 -0.0004 
0.0356 -0.0006 0.1091 0.5601 -0.4857 -0.0004 -0.5933 

To satisfy the reaching conditions (28) based on SVD method the value of switch 
gain matrix is chosen as 

Д K = 
5 ± 2 0 0 0 0 0 

± 2 5 0 0 0 0 0 

Computation of AKaSjij based on fuzzy logic approach (see Figure 1) yields: 

axWn = 1.1275, axW22 = 1.1275, axWl2 = axW2l = 0.1611. 

For i = j , i = 1,2,... ,ra and j = 1,2,.. .,ra. 

Width of input (iTiXa,i) membership function, 2L = 1.0. 

Width of output ( A K a s i j ) membership function 2Li = 2. 

For i / j , i = 1,2,.. . ,ra and j = 1,2,.. .,ra. 

Width of input (aiXaj) membership function, 2L2 = 2. 

Width of output (AKasjj) membership function 2L3 = 2. 

The computer simulation of the composite system has been performed taking a 
rp 

initial state disturbance of X(0) = [ 0.5 0 0 0 0 0 0 ] . Design of switch 
gain matrix based on fuzzy logic approach (soft computing) is compared with that of 
hard switching gain matrix and comparison of system responses using the proposed 
control strategies are shown in Figures 2-7. It is observed that the switched gain 
components designed based on fuzzy logic approach are much smooth than the hard 
switched gain components (see Figures 5-6). As a result, the system responses 
based on soft switching seem to be better than the hard switching control actions. 
Furthermore, Figure 3 shows that the reaching time to a final sliding surface based on 
soft switching is decreased in comparison with the hard switching. Figures 7 shows 
the robustness of the proposed controller in presence of parameter perturbation and 
external disturbances. 
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SVD method 
Fuzzy controller 

Fig. 2. Comparison of nominal system responses with state disturbance only. 
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Time Time 

Fig . 3 . Area control errors and Sliding surface trajectories 
(— with hard switching structure AJ.Tas, with soft switching structure AK&S). 

Fig . 4 . Comparison of Control input sequences 
(— with hard switching structure AKas, with soft switching structure AKas). 
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ДA-i 

Д/;2i 

Tim e ( S e c ) 

10 

Tim e (S e c ) 
10 

Tim e ( S e c ) Tim e ( S e c ) 

Fig. 5. Hard switching structures (SVD method) AIifa3. 

Fig. 6. Soft switching structures (Fuzzy Logic Controller) A ^ . 
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Case B . A PI-type sliding is chosen as in equation (19) when the system is per
turbed with parameter perturbations and external disturbances. Switching function 
is then designed by adopting the procedure as discussed in Section 2. 
Selecting the value of Qa = 15Frx7 and Ra = 10/2x2, the corresponding sliding 
surface gain matrices are 

5 = 
1.5874 1.8662 0.0167 
0.0266 0.0167 1.8662 

and 

W = 
1.2247 
0 

-1.0052 0.0266 1 0 
1.0052 1.5874 0 1 

0 
1.2247 

The range space eigenvalues are placed at 0.4 and 0.3 and the corresponding fixed 
gain matrix Kaj of the augmented system is obtained using the expression (23) 

Kaf = 

-0.4195 0.2046 0.0078 -0.6190 0.0429 -0.0392 0 -0.5344 0.0045' 
0.0431 0.0079 0.2196 0.6271 -0.4068 0 -0.0294 0.0045 -0.5264 

To satisfy the reaching conditions (28) based on SVD method the value of switch 
gain matrix is chosen as 

AKa* = 
5 ±2 0 0 0 0 0 0 0 

±2 5 0 0 0 0 0 0 0 

and simultaneously the reaching conditions must be satisfied. 

Simulation results are shown with an initial state disturbance of 
rp 

X(0) = [ 0.5 0 0 0 0 0 0 ] and 10 % step change in load demand in area-1. 

Performance of the system based on the proposed variable structure control 
schemes has been studied qualitatively and system responses are shown in Figure 6, 
which proves the robustness of the designed techniques. When the system trajectory 
reaches the sliding surface an equivalent control law (35) where 

Ueq(t) = 

-0.3687 0.2644 0.0083 -0.6512 0.0437 -0.5824 0.0845 
0.0437 0.0083 0.2644 0.6512 -0.5770 0.0045 -0.8024 

X(t) 

is employed to maintain the state trajectory on the sliding surface. 
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Fig. 7. System responses for state disturbance and 10 % step 

change in the load demand in area-1 (SVD method). 
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6. CONCLUSIONS 

A state feedback VSS with sliding mode controller is designed based on singular value 
decomposition technique. A proportional plus integral type-sliding surface has been 
developed while disturbance-matching condition is not satisfied. It has been shown 
in table tha t the proposed technique requires less number of switching gain vector 
components as compared to t h a t of White et al method [11] and moreover, the 
proposed method does not need to satisfy any additional inequality constraints to 
reach the sliding surface. This method allows the system to drive from any initial 
state to the sliding surface in finite interval of t ime. Design of transformed switch 
gain matr ix elements via fuzzy logic approach provides a smooth control action and 
also requires less t ime to hit the sliding surface. Simulation results have confirmed 
the robustness of the proposed controller in presence of parameter uncertainties and 
external disturbances. 
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