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BUILDING ADAPTIVE TESTS 
USING BAYESIAN NETWORКS 1 

JlŘÍ VOMLEL 

Wc propose a framework for building decision strategies using Bayesian network models 
and discuss its application to adaptive testing. Dynamic programming and AO* algorithm 
are used to find optimal adaptive tests. The proposed AO* algorithm is based on a new 
admissible heuristic function. 

Keywords: Bayesian networks, adaptive testing, heuristic search 
AMS Subject classification: 68T37 

1. BAYESIAN NETWORKS 

Bayesian networks are probabilistic graphical models that are capable of modelling 
domains comprising uncertainty. They were introduced to the field of expert systems 
by Pearl [17] and Spiegelhalter and R. P. Knill-Jones [21]. The first applications were 
an expert system for electromyography Munin [2] and the Pathfinder system [3]. 
Since then Bayesian networks were successfully applied in several areas. Strength 
of graphical models is not only that they enable efficient uncertainty reasoning with 
hundreds of variables (e.g. using the method of Lauritzen and Spiegelhalter [13]), 
but also they help humans to understand better the modelled domain. This is 
mainly due to their comprehensible representation by use of directed acyclic graphs 
representing dependencies between domain variables. See [14] where some recent 
applications of Bayesian networks are discussed. 

Bayesian network consists of an directed acyclic graph (DAG) G = (V,E), to 
each node i G V corresponds one random variable Xi with a finite set X; of mutually 
exclusive states and a conditional probability table (CPT) P(Xi \ (Xj)jepa^), where 
pa(i) denotes the set of parents of node i in graph G. See Figure 1 for an example 
of Bayesian network. 

Bayesian network encodes qualitative and quantitative knowledge. Quantitative 
knowledge is represented by CPTs, while qualitative is encoded by use of a DAG. The 
DAG implies certain conditional independence relations between variables (Xi)i^v 

^ h i s work was supported by the Grant Agency of the Czech Republic through grant No. 
201/02/1269. 
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Fig. 1. An example of a Bayesian network. 

A concept called d-separation, introduced by Pearl [19], can be used to read the 
conditional independence statements from a DAG. 

In order to define d-separation we need few graphical concepts. A path in an 
undirected graph H is a sequence of nodes {n i , . . . , n^} such that (ni,n^\),i = 
1 , . . . , k — 1 are edges in graph H and for i, j = 1 , . . . , k and i y£ j it holds that 
ni / nj. A trail in an oriented graph G is a sequence of nodes that forms a path in 
the undirected version of G, i. e. when the directions of arrows are ignored. We say 
that edges meet head-to-head in a node Ui of a trail { n i , . . . , n*. } if there are directed 
edges n2_i -> n* and n; <- n^+i in the graph G. 

Two different variables Xi and Xj are d-separated by ^ if, for all trails between 
nodes i and j there is an intermediate node k such that edges either 

• do not meet head-to-head in k and Xk G y, or 

• meet head-to-head in k and neither Xk nor any of its descendants belongs to 

y. 

Xi,Xj are conditionally independent given a set of variables y if P(Xi \ y) = 
P(Xi \y,Xj). It is required that all variables Xi,Xj d-separated by a set y are 
conditionally independent given y in a probability distribution P represented by 
the Bayesian network model. It is not difficult to show that the joint probability 
distribution P(Xi)i^y) satisfying the above property and having its CPTs equal to 
P(Xi I (Xj)jepa(i)),i e V is unique and equals to the product of the CPTs, i. e. 

P((XІ)ІЄV) = П ^ l f t W й ) 
ІЄV 

The representation of the joint probability distribution by a Bayesian network 
has several advantages. One of the most important properties is that it allows 
computationally efficient reasoning with new evidence. 

For a detailed introduction to Bayesian networks we refer to Jensen [10]. 
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2. BUILDING STRATEGIES USING PROBABILISTIC MODELS 

A strategy describes steps that the user should perform in order to achieve a required 
goal. For example, a step can be: the user performs an action, the user makes an ob­
servation, or the user answers a question. Since outcomes of steps are uncertain each 
strategy must specify the next step the user should do for all possible combinations 
of outcomes of previous steps. Thus a strategy can be represented by a directed tree. 
It is convenient to define two types of nodes in the tree - chance nodes and terminal 
nodes. Each chance node corresponds to a single step of a strategy. Terminal nodes 
are leaves of the tree where the strategy terminates. One session corresponds to a 
path in the tree, i, e. to a sequence of steps, starting at the root of the tree and 
ending at a terminal node. In Figure 2 we present an example of an adaptive test 
consisting of two questions. Ovals denote chance nodes. Diamonds denote terminal 
nodes. Each chance node is labelled by the corresponding step. Every edge coming 
out from a chance node is labelled by an outcome of the step corresponding to that 
node. The strategy represented by the tree is: If the answer to the first question X2 

is correct then the second question is X% otherwise the second question is X\. 

Xз = yes 

F i g . 2 . E x a m p l e of a strategy . 

The space of all possible strategies can be represented by an AND/OR-graph [18], 
where AND nodes correspond to chance nodes and OR nodes to decision nodes. See 
Figure 3 for an example of the space of all possible test strategies for an adaptive 
test consisting of two questions when the bank of all possible questions X contains 
three questions. One strategy is highlighted. It starts with question X2 and the 
second question is either X3 or Xi - selected according to the answer of X2. 

Let S denote the set of all strategies admissible for a given problem and £(s) 
denote the set of all terminal nodes of a strategy s G S. An evaluation function 
/ :

 US<E<S£(S) ^ K is defined. The goal is to minimise this function at the end 
of a session. The outcomes of the steps proposed in a strategy s are unknown, 
only the probabilities P(ee) of terminating in a node I G C can be computed from 
the domain model represented by a Bayesian network. The expected value of the 
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ф Xi = 0, X2 = 0 

л-i = 0, X3 = 0 

XІ = 1 , X 2 = 0 

ф X i = 0 , X 3 = 0 

X2 = 0, X3 = 0 

X2 = 0, A'з = 1 

Xi = 0, X2 = 1 

Xi = 1,A2 = 1 

Fig. 3. The space of all possible test strategies consisting of two questions selected from a 
bank of questions containing three questions. One admissible test strategy is highlighted. 

evaluation function is defined for each strategy s G S as 

Ef(s) = £ P(ee)-f(ee). 
eec(s) 

(-) 

We search for a strategy s * G 5 minimising the value of -E/(s) from all s G S. 
In this paper we apply this framework to adaptive testing. In Section 3 we 

describe a Bayesian network model that is used to model students solving a test. 
In Section 4 we discuss methods that can be used to design an adaptive test using 
a Bayesian network model. We propose an admissible heuristic function that can 
be used within an AO* algorithm. We prove admissibility of the proposed heuristic 
function. The paper is concluded by an experiment that illustrate presented results. 

3. ADAPTIVE TESTING 

In this section we present an example of an adaptive test that was used to diagnose 
person's skills. The adaptive test uses Bayesian networks to model a tested student 
and the given questions. 

Tests that are automatically tailored to the level of the individual examines are 
called adaptive tests. After each response on a question the system selects next 
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question based on the answers of the previous questions. A simple example of 
adaptive test was presented in Figure 2. Since this approach requires computers 
for the test administration it is often referred to as computerised adaptive testing 
(CAT) [26, 23]. 

Almond and Mislevy [1] proposed to use graphical models for CAT. Their model 
consists of one student model and several evidence models, one for each task or 
question. Typically, a test designer specifies the tested skills y = {Y\,..., Y*.} and 
a bank of questions X = \X\,... ,Xm}. We will use Y to denote multivariate 
(Yi,...,Yfc) and y = (yi,...,yk) will denote a state of Y. The student model 
describes relations between student's skills, abilities, misconceptions. The knowledge 
about a student is expressed by use of a joint probability distribution P(Y) = 
P(Y\,... ,Pk), which is represented by a Bayesian network. 

Classical approach used in educational and psychological testing since 1960's is 
item response theory (IRT) [15, 20]. Within this method the student is modelled by 
a single variable 0 . These models are suitable when the task is to grade students, 
but their application is problematic if more information about the tested student is 
required. In multidimensional IRT several variables are used to represent a student. 
The presented application of Bayesian network can be regarded as a generalisation 
of the multidimensional IRT. It brings two basic advantages: 

• It can better reflect the student reasoning process and provides better insight 
into the modelled problem. 

• The student model encode dependence between skills. Therefore adaptive tests 
can be substantially shortened while the test precision is kept. 

Next we will briefly describe the learning process of a Bayesian network model 
used for testing basic operations with fractions [24]. 

First, a group of students from Aalborg University prepared paper tests that were 
given students of Br0nderslev High School. Four elementary skills (addition, sub­
traction, multiplication, and comparison), four operational skills (cancelling, con­
versions between improper fractions and mixed numbers and vice-versa, common 
denominator), and abilities to apply operational skills to complex tasks were tested. 
The university students summarised the results as a list of data records. Several 
misconceptions were discovered and included as variables into the model. 

Second, a model structure was learned using the PC-algorithm [22], implemented 
in Hugin [9]. It provided a first insight into the relations between skills and miscon­
ceptions. Then a "domain expert" explained some relations with the help of hidden 
variables and introduced certain constraints on edges. Applying different constraints 
on the resulting model the final model was learned, again using the PC-algorithm. 
The final model was calibrated using the EM-algorithm as proposed in [12]. 

In Figure 4 the final version of the student model is presented. Nodes in the first 
level (from bottom) correspond to the observed misconceptions, grey nodes in the 
second level to elementary skills, nodes with no fill in the second level correspond 
to operational skills, and grey nodes in the third level to application skills. The top 
node corresponds to a hidden variable. See [24] where a more detailed description 
can be found. 
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(2D C5D C5D 

Fig. 4. Student model describing relations between skills and misconceptions. 

For each question or task Xj G X one evidence model is created by a domain 
expert. It describes the dependence of Xj on relevant skills from the student model. 
For every question the expert specifies which skills are related to the question. An 
example of a task 1 s | - 7 V = 1 ^ - i ^ = i | - = : 4 - In order to be able to solve 
the task the student should have skills SB (subtraction) CL (cancelling), ACL (ap­
plication of cancelling), CD (common denominator), ACD (application of common 
denominator), and should not have MSB (a misconception in subtraction). Thus, 
the relation between a variable Tj and related skills and misconceptions is described 
by a Boolean function. However, a student can make a mistake even if she has all 
abilities necessary to solve a given task and a correct answer does not necessarily 
mean that the student has all abilities. This uncertainty was modelled by a con­
ditional probability distributions P(Xj \Tj) estimated from the collected data. See 
Figure 5 for the model of the example task given above. 

Fig. 5. Model describing relations between skills, misconceptions, and the example task. 

The task models are connected to the student model when the corresponding 
tasks are solved by the tested student. Each time the corresponding variable Xj is 
instantiated with the answer provided by the student. 
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4. BUILDING ADAPTIVE TESTS 

Typically, an adaptive test terminates after a given number of questions is answered 
or if sufficient information about the tested student is achieved. This defines the 
set of all possible test strategies S. Every examiner tends to maximise information 
about the student at the end of a test. A way to formalise this preference is to aim 
at a probability distribution P(Y\,... , Y )̂ minimising the Shannon entropy at the 
end of the test [3]. The entropy of P (Y1 , . . . , Yk) is defined2 as 

H(P(Y)) = - J2 P(Yi=yi,...,Yk=yk)-logP(Y1=yl,...,Yk = yk). 
yi,---,yk 

In every terminal node I of a test strategy s we will compute entropy of the condi­
tional probability distribution P ( Y i , . . . , Yjt | e^) given the evidence collected as far. 
Using substitution f(ei) = H(P(YU ..., Yk \ ei)) formula (1) can be written as 

E„(s) = Yl P(ei)'H{P(Yu...,Yk\ee)). (2) 
eec(s) 

The goal is to find a test strategy s G 5 minimising the expected entropy Ejf(s). 
We will call such a strategy an optimal strategy and denote it s*. 

4.1. Relation to sequential fault diagnosis 

The problem defined above differs from sequential fault diagnosis [16] (or the test 
sequencing problem) in several aspects. 

First, we allow imperfect questions, i.e., questions that have the conditional prob­
ability of at least one answer given a combination of values of skills different from 
one and zero. 

Second, we terminate test after certain number of questions was asked, in contrast 
to sequential fault diagnosis, where a test terminates only if a faulty state was 
identified. 

Third, we represent the modelled system by a probabilistic model over several 
•ariables probabilistically related to each other. In the sequential fault diagnosis the 

state of the system is modelled by a probability distribution over one variable. 
Fourth, in our problem definition, the costs of all questions (tests) are equal. 

4.2. Efficient computation of entropy 

An important fact is that in any node n of a strategy the value of H(P(Y\en)) can 
be computed efficiently exploiting the representation of Bayesian network P(Y) by 
a junction tree [11]. 

The nodes of a junction tree corresponds to cliques of a moralized and triangular-
ized graph of the Bayesian network. During the computation of entropy H(P(Y\en)), 
first, the clique potentials are updated by the evidence en , e. g., using a junction tree 

2It will be convenient to have defined ^ = 0 and 0 • logO = 0. 
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propagation method [11, 13]. Then the entropy is computed locally by adding en­
tropy of potentials associated to cliques of the junction tree and subtracting entropy 
of potentials associated to separators of the junction tree. The complexity of this 
computation is proportional to the total clique size. In many real situations this 
allows to work with domains with hundreds of variables. 

4.3. Myopic approach 

In practice, quite often, a greedy approach is used to construct a myopically optimal 
test. A myopically optimal test is a test that consists of questions such that each 
question minimises the expected value of entropy after the question is answered. 

Written formally, for each node n of a myopically optimal test s it holds that 
em i = e n U {A(en) = xi}, where for i = 1 , . . . ,t evidence e m i corresponds to child 
m* of node n, 

X(en) = a r g m i n ^ P ( X = x | e n ) . H ( F ( y | e n , A = x) ) , 
X 

and t is number of states of A(e n ) . 

4.4. S t ra tegy decompos i t ion 

Next we will propose a decomposition of a strategy s. Latter it will be used to de­
scribe a search algorithm based on dynamic programming and to define an admissible 
heuristic function used during the search of an optimal strategy. 

Let s' denote a strategy that is a substrategy3 of an admissible strategy s and 
that has the same root d as strategy s. If s' ^ s we will call s' an incomplete strategy. 
If v is a node of strategy s then by s^v we will denote the substrategy of s that 
has node v as its root and C(s~*v) C C(s). We can do following decomposition of a 
strategy s (see Figure 6). 

Using nodes r from the set of leaves of strategy s', C(s'), we get a set of strategies 
{ s ^ r G C(s')} where each strategy s~*r is rooted in one node from C(s'). Note 
that UreC(s>)C(s-+r) = C(s). 

For leaves of a strategy4 s we define conditional expected 

EH(ei) = H(P(Y\ee)). 

For evidence e n associated with a non-leaf node n with set of children ch(n) in s we 
define conditional expected entropy recursively 

£ H ( s | e n ) = 5Z p(em\en)'H(em). 
m£c/i(n) 

Note that EH(S) = -E//(0). By E^j(en) we will denote the conditional expected 
entropy of an optimal strategy s* given a evidence e n . Note that we can use the 

3In the same sense as a subtree of a tree. 
4For simplicity, we omit s in the index since the strategy should be clear from the context. 



Building Adaptive Tests Using Bayesian Networks 341 

£(--»•«) 

£ ( s - > r 2 ) 

£ ( s " * r ł ) 

F i g . 6. Decomposi t ion of strategy s'. 

partition of strategy s to compute the expected entropy of s using following formula 

En(s) = Y. P(er)'EH(er). (3) 
reC(s') 

4.5. Dynamic programming approach 

Having this decomposition, we can easily construct a search algorithm based on 
the dynamic programming approach. The algorithm first evaluate all leaves £ of all 
possible strategies 

EH(et) = H(P(Y1,...,Yk\ec)) 

and than processes upwards so that in each chance (AND) node n it computes 

EnK) = J2 p ( e m | e „ ) • EH(em) 

m£ch(n) 

and in each decision (OR) node n it selects a child node minimising EH 

E^(en) = min E*H(em). 
?7iGc/i(n) 

It finishes in the root node with -E^(0) being the minimal value of the expected 
entropy from all possible strategies. The optimal strategy s* can be easily traced up 
if the best children of decision nodes are stored. 
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A problem is that the search space is typically very large. Assume we aim at 
an optimal adaptive test of length n consisting of questions chosen from m possible 
questions. If we use dynamic programming approach we need to evaluate all nodes 
in a state graph. If all questions have two answers (e.g., correct and wrong), the 
number of expanded nodes is: 

• Er=i 2*"1 • G™) o f decision (OR) nodes, 

• EILi 2 i _ 1 ' G_i) -(m-i + 1) of chance (AND) nodes, and 

• 2n • (™) of leaves. 

In each decision node a maximisation operation is performed, in each chance node 
an addition is performed, and in each leaf we compute the conditional entropy 
H(P(Y\ef)). 

4.6. Admissible heuris t ics 

One can try to avoid an extensive search by performing a top-down heuristic search 
driven by an admissible heuristic function. The goal of this section is to propose 
such an heuristic function. First, we will state and prove two lemmas that will be 
used to prove the main theorem. 

Lemma 1. Let P(^4, B) be a probability distribution defined on Cartesian product 
of values of possibly multidimensional discrete variables A and B and P(B = b) = 
£ „ P(A = a,B = b). Then H(P(A, B)) > H(P(B)). 

P r o o f . Since P(B = b) = £ a P(A = a, B = b) and P(A = a, B = b) > 0 

P(A = a,B = b) < P(B = b) 

log P( A = a,B = b) < log P(B = b) 

P(A = a,B = b)-\ogP(A = a,B = b) < P(A = a,B = b)-logP(B = b). 

Since H(P(A, B)) = £ a i 6 -P(A = a,B = b)- log P(A = a,B = b)we get 

H(P(A,B)) > ^2~P(A = a,B = b)-logP(B = b) 
a,b 

> ] T -P(B = b) • log P(B = b) 
b 

H(P(A,B)) > H(P(B)), 

which proves the lemma. D 

Recall that U r G £ ( s 0 £ ( s ^ r ) = £(s). Therefore £re£(s ') ~Zerec(s->r) p ( e O = l 

and P(eer),£r E £(s ' ) , r G C(s') is a probability distribution over the leaves of s. 
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Thus we can define the entropy of the probability distribution over the leaves of 
strategy s in two equivalent ways 

H(P(ee)) = £ -P (e , ) - l ogP(e* ) = £ £ - P ( e , r ) • logP(e, r) . 
£ec(s) rec(s')?rec(s->r) 

It will be convenient to have defined also the entropy of the probability distribution 
over the leaves of strategy s' 

H(P(er)) = Y, -P(*r)-\ogP(er). 
reC(s') 

Lemma 2. Let s' be an incomplete strategy and let ur be the number of leaves of 
strategy s~*r for r G -C(s'). Then 

H(P(ei))-H(P(er)) < £ P(e r ) • logu r . 
reC(s') 

Proof . Since entropy is maximised by a uniform distribution it holds for each 
r G C(s!) that 

H(P(e£r\er)) < H(—) = \ogur 
ur 

Therefore 

2 P(er)-H(P(eer\er)) < ] T P ( e r ) - l o g u r (4) 
reC(s') reC(s') 

The left hand side of inequality (4) can be rewritten as 

2 P ( e r ) - H ( P ( e c | e r ) ) 
reC(s') 

= Z , p(er)- 2_, —p77Y''l0g 
P(er) ' & P(e r ) 

re£(s') <r££(s-") K rJ K r' 
= E E - E ( e U - l o g P ( e , r ) + ~ ] P ( e r ) - l o g P ( e r ) 

reC(s') £reC(s^r) reC(s') 

= H(P(ee))-H(P(er)), 

which, when substituted to inequality (4), proves the lemma. • 

Theorem 1. Assume an incomplete strategy s' having entropy H(P(Y \er)) in 
each leaf r G £(s ') . Then for the expected entropy of any strategy s G S such that 
strategy s' is its substrategy it holds that 

EH(S) > Y, P(er)-(H(P(Y\er))-\ogur). (5) 
re£(s') 
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P r o o f . Using the decomposition of strategy s proposed in Subsection 4.2 we can 
write the definition of EH(s) (given by formula (2)) 

£ " ( s ) = £ £ P(etr)-H(P(Y\eer)) 
reC(s') £reC(s^r) 

= E E E ">-(*,)-PfalecHog^) 
re£(s')* re£(s-"-) y K tr> 

= / / ( P ( y , e f ) ) - f f ( P ( e < ) ) . (6) 

Prom Lemma 1 it follows that 

H(P(Y,ee) > H(P(Y,er)) (7) 

and from Lemma 2 we have 

-H(P(ee)) > -H(P(er))- £ P ( e r ) - l o g u r . (8) 
r6£(s') 

Substituting inequalities (7) and (8) to formula (6) we finally get 

E„(s) > H(P(Y,er))-H(P(er))- ] T P(e r)- log*i r 

r€£(s') 

> £ P ( e r ) . H ( P ( y | e r ) ) + £ £ P ( i / , e r ) . l o g P ( e r ) 
re£(s') r€£(s') V 

-H(P(er))- Y, P(er)-\ogur 

reC(s') 

> £ P ( e r ) - H ( P ( Y | e r ) ) - Yl E(er)-logur, 
rG-C(s') reC(s') 

which corresponds to inequality (5) we wanted to prove. • 

R e m a r k 3. Assume the set of admissible strategies S consists of all test strategies 
n questions long. If each question has two possible outcomes then each test strategy 
corresponds to a tree that has u — 2n leaves. Even before the search starts we can, 
using the Theorem 1, constraint the optimal value of the expected entropy by 

EH{**) > H(P(Y))-n\og2. 

This provides a natural interpretation of entropy in the context of adaptive testing. 
If our knowledge about a student is represented by a probability distribution P(Y) 
with entropy H(P(Y)) then we would need at least H\^^ perfect questions, with 
two outcomes each, to yield precise information about a student knowledge state. ( 
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Theorem 1 naturally leads to a lower bound on EH(s) given probability dis­
tributions P(Y \eer) in the leaves r E -C(s') of an incomplete strategy. For each 
incomplete strategy s' we can define 

EH(sf) = £ P(er)-(H(P(Y\er))-\ogur). 
r6/C(s') 

It is a consequence of Theorem 1 that EH(s') is an admissible heuristics. 

4.7. AO* algorithm 

We can use heuristics EH(s') in an AO* algorithm [18]. In each step of the algorithm 
we select a strategy s' that has minimal value from all strategies expanded as far. 
Then we expand a non-expanded node n that is a child of a node from the selected 
strategy s'. We set the value of P?//(en) = EH(en) and using recursive formula (3) 
we recompute the values of all ancestor nodes of n. 

The algorithm can proceed in a similar manner as it is described in [25], where 
an AO* algorithm was used to search a troubleshooting strategy minimising the 
expected cost of repair of a device. The only difference are the admissible heuris­
tics. The usage of admissible heuristics guarantee that the first expanded complete 
strategy is an optimal strategy [18]. 

5. EXPERIMENTS 

In the experiments probability distribution P(Y) modelled a student solving basic 
operations with fractions. It was represented by a Bayesian network having the 
structure presented in Figure 4. A bank X of twenty question was available. 

We have performed experiments with this model on a real data set consisting of 
149 data records, one for each tested student [6, 24]. The model was learnt from all 
but one data records and then tested on the remaining one. This was repeated for 
each data record. In Figure 7 we present how in average the entropy of conditional 
probability of skills H(P(Y \e)) evolved for three different strategies - ascending, 
descending5, and myopic. The straight line on the left hand side corresponds to the 
.alue of heuristics EH($) computed in the root node with no evidence as far. No 
strategy can get bellow this line. 

Assume we want to construct a test of length n = 10. The straight line on the 
right hand side is parallel to the former. If a strategy ever crosses this line then 
it cannot be better than the myopic strategy after answering ten questions and 
consequently it cannot be optimal. Thus during the search of an optimal strategy 
using the AO* algorithm exploiting heuristics proposed in this paper no strategy 
crossing this line is further expanded. In our example, the AO* algorithm would 
stop expanding the ascending and descending strategies after the seventh questions. 

More detailed results of experiments with myopic adaptive test of basic operations 
with fractions were presented in [24]. Bayesian network used in myopic adaptive 

5The questions in these two strategies were simply chosen according to their index in the as­
cending and descending order, respectively. 
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Fig. 7. Comparison of test strategies. 

tests provided good predictions of skills. In average more than 90% of skills were 
correctly predicted after seven questions were answered. In paper and pencil tests 
twenty questions were typically needed to get the same prediction quality. See 
also [5] and [4] for results of experiments with Bayesian networks applied to adaptive 
diagnosis and tutoring. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed a framework for building decision strategies. We 
first learn a probabilistic model of the domain of interest and then we search for a 
best decision strategy. When building a probabilistic model we can exploit expert 
knowledge of the modelled domain as well as collected data. Another approach is 
to learn the best strategy in a integrated fashion [7]. This approach uses collected 
data only. 

We have proposed an admissible heuristic function that can be used in the con­
struction of a most informative adaptive test of a fixed length, e. g., within an AO* 
algorithm. In future we intend to implemented the AO* algorithm and perform ad­
ditional experiments with real data that would show how significant is the reduction 
of the searched space. 

In many applications (e. g. in troubleshooting man-made devices or in medical 
diagnosis) the observations do not have equivalent costs and miscellaneous criteria 
should be used to terminate strategies. This makes the search of an optimal strategy 
more complicated [25] and provides a motivation for further research. 

(Received October 3, 2003.) 
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