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APPROXIMATION AND ESTIMATION 
IN MARKOV CONTROL PROCESSES 
UNDER A DISCOUNTED CRITERION* 

J. ADOLFO MINJAREZ-SOSA 

We consider a class of discrete-time Markov control processes with Borel state and ac
tion spaces, and Revalued i.i.d. disturbances with unknown density p. Supposing possibly 
unbounded costs, we combine suitable density estimation methods of p with approxima
tion procedures of the optimal cost function, to show the existence of a sequence {ft} of 
minimizers converging to an optimal stationary policy /oo-
Keywords: Markov control processes, density estimation, discounted cost criterion 
AMS Subject Classification: 93E10, 90C40 

1. INTRODUCTION 

To study a stochastic control problem associated to a Markov control model under 
discounted cost criterion, typically it is required the following: First to prove that 
the optimal cost function V* is a solution to the optimality equation (Dynamic 
Programming Equation) - problem 1; and then to solve a minimization problem to 
calculate optimal policies - problem 2. 

However, the solution of problems 1 and 2 generally is difficult, and it is there
fore of great importance to propose efficient approximation algorithms for V* and 
construction methods of optimal policies. 

Our main objective in this paper is to study both problems for a class of discrete-
time Markov control processes of the form 

xt+1 = F ( r r t , a t , 6 ) , * = 0 , 1 , . . . , (1) 

where F is a known function, xt, at and & are the state, action and random distur
bance at time t, respectively. Moreover, {&} is an observable sequence of indepen
dent and identically distributed (i.i.d.) random vectors in 3?* having density p which 
is unknown to the controller. In addition, we suppose that the one-stage cost (and 
therefore the optimal cost V*) is unbounded. In this context, our approach consists 
in the following. First, we introduce an approximation algorithm of V* based in 

*Work supported partially by Consejo Nacional de Ciencia y Tecnologia (CONACyT) under 
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the combination of suitable density estimation methods of p with a value iteration 
scheme. Then, this approximation algorithm is used to show the existence of a se
quence of minimizers {ft} (which depends of the estimators pt of p) converging, in 
the sense of Schal [13], to an optimal stationary policy /oo-

The assumption of unbounded costs generates serious difficulties. For instance, 
the nice contractive-operator techniques do not work for the discounted criterion. 
For this reason, in previous papers where similar problems are analyzed (see, e.g., 
[5, 12]), it was necessary to impose restrictive conditions on the unknown density 
p and apply a density estimation process which is difficult to implement. This set 
of assumptions might be strong even for very simple applied problems. In contrast, 
our results here are obtained exploiting some easy facts in the theory of density esti
mation. Others papers where similar problems are studied but considering bounded 
costs are, for instance, [1, 4, 7, 8, 11]. 

The paper is organized as follows. In Section 2 we introduce the Markov control 
model we deal with. Next, Section 3 contains the assumptions on the control model 
and some preliminary results on the discounted criterion, which are used to state 
our main results in Section 4. The proofs are presented in Section 5, and finally, an 
example of a storage system is introduced in Section 6 to illustrate our results. 

2. MARKOV CONTROL MODELS 

Notation. Given a Borel space X (that is, a Borel subset of a complete and separa
ble metric space) its Borel sigma-algebrais denoted by B(X), and "measurable", for 
either sets or functions, means "Borel measurable". In addition, we denote by M(X) 
the space of real-valued bounded measurable functions on X with the supremum 
norm ||i>|| := supx \v(x)\. 

Control model . Let 

M := (X, A, {A(x) cA\xeX}^\F,pyc) (2) 

be a discrete-time Markov control model where the state space X and the action 
or control space A are Borel spaces endowed with their Borel cr-algebras. To each 
x G X it is associated a nonempty set A(x) G B(A) whose elements are the admissible 
controls when the system is in state x. The set 

IK = {(x,a) :x e X,ae A(x)} 

of admissible state-action pairs is assumed to be a Borel subset of the Cartesian 
product of X and A. The dynamics is defined by the system equation (1) where 
F : X x _4 x 5ft* -> X is a given (known) measurable function, and {&} is a sequence 
of independent and identically distributed (i.i.d.) random vectors (r.v.'s) on a prob
ability space (fi,JF, P ) , with values in 5ft* and common distribution with a unknown 
density p. Finally, the cost-per-stage c(x,a) is a nonnegative measurable real-valued 
function on IK, possibly unbounded. 

Throughout the paper, the probability space (fi, J7, P) is fixed and a. s. means al
most surely with respect to P. In addition, we assume that the realizations £o,£i, • • • 
of the disturbance process and the states xo,£i, • • • a r e completely observable. 
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Control policies. We define the spaces of admissible histories up to time t by 
Mo := X and Ht := (IK x 9?*)f x X, for t G N := {1 ,2 , . . . } . A typical element of 
He is written as ht = (:rn,ao,fo, • • • ,xt-i,at-i,£t-i,xt). A control policy ix = {nt} 
is a sequence of measurable functions -nt : Ht —> A such that 7rt(ht) G A(xt), for all 
ht G Ht, t G N. We denote by II the set of all control policies. 

Let F be the family of measurable functions / : X —» A such that f(x) G A(x) for 
all x € X. A sequence {ft} of functions ft G F is called a Markov policy. A Markov 
policy {/t} is said to be stationary if / t = / for all £ = 0 , 1 , . . . and some / G F. In 
this case we use the notation 

c(z, ft) := c(x, ft(x)) and F(x, ft,s) := F(x, ft(x),s) 

for all x G X, 8 G 5R*, and t > 0. 

3. DISCOUNTED OPTIMALITY CRITERION 

When using a policy ir G II, given the initial state x0 = x, we define the total 
expected a-discounted cost as 

V{ҡ,x):=E% ^2alc(xtyat) 
t=o 

(3) 

where a G (0,1) is the so-called discount factor, and E* denotes the expectation 
operator with respect to the probability measure P£ induced by the policy n, given 
the initial state xo = x (see, e.g., [3] for the construction of P£). 

The optimal control problem associated to the control model M, is then to find 
an optimal policy ir* G II such that V(ir*,x) = V*(x) for all x € X, where 

V*(x) := inf V(n,x), x G X, 
/TG-I 

is the optimal a-discounted cost, which we call value function. 

Assumptions. To guarantee the existence of "measurable minimizers", we need 
the following standard continuity and compactness conditions on the components of 
the control model M. 

Assumption 3.1. (a) For every x G X, the one-stage cost c(x,a) is nonnegative 
and continuous on a G A(x). Moreover, there exist a measurable function W : X —> 
[l,oo) and constants c > 0 and /3 > 0, such that 0 < a(5 < 1, s u p ^ ) c(x,a) < 
cW(x) and 

/ W[F(x, a, s)]p(s) ds < PW(X). 
JKfc 

(b) For each i E l , A(x) is a compact set. 

(c) For each x G X and v G B(X), the function a -> JRkv[F(x,a,s)]p(s) ds is 
continuous and bounded on A(x). 
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(d) For each x G X, the function a -> f^kW[F(x, a, s)]p(s) ds is continuous on A(x). 

We denote by Mw (X) the normed linear space of all measurable function u : X -+ 
Kwith 

. . ii \u(x)\ IH I^ :=2$Ww<00-
A first consequence of Assumption 3.1 is the following (see, e.g., [10]): 

Proposition 3.2. Suppose that Assumption 3.1 holds. Then: 
a) V* G Mw (X) is a solution to the a-discounted optimality equation 

V*(x)= min \c(x,a) + af V*(F(x,a,s))p(s) ds \ , xeX. (4) 
aeA(x) [ Jftk ) 

b) There exists / G F such that f(x) G A(x) attains the minimum in (4), i.e., 

V*(x) = c(x,f) + a f V*(F(x,f,s))p(s)ds, xeX, (5) 
Jxk 

and moreover, the stationary policy {/} is optimal. 

4. APPROXIMATION AND ESTIMATION 

R e m a r k 4 .1 . In [9] there were presented several approximation schemes to the 
value function V*, for instance, the "recursive bounded-cost approximations" defined 
as follows. Let { c n } n 6 N be a sequence of nonnegative bounded and continuous 
functions on K such that cn /* c. We define the sequence {un} of functions on M(X) 
as: 

u0 = 0; 

(6) un(x) := min < cn(x, a) + a un-\(F(x, a, s))p(s) ds > , x G X, n > 1. 
aeA(x) { Jmk ) 

Then, under Assumption 3.1, un /* V*. Our approach is motived by this approxi
mation scheme. 

Let fojfi---- ,^n-i be independent r.v.'s (observed up to time n — 1) with the 
unknown density p. We consider the control model 

Mn= (X,A,{A(x)C A\xeX},Uk,F,Pn,cn) 

satisfying the following conditions. The state space X, the control space A and the 
function F are as in (2); pn(s) := pn(s;£0 ,£i . • • • >£n-i), s G 5R*, is an estimator of 
p such that, for some 7 > 0, 

# / \Pn(s)-p(s)\ ds = 0 ( n - 7 ) as n -+ 00; (7) 
Jxk 

and, finally, cn : K —> 3? is the truncated cost defined as 

cn(x,a) := min{c(x,a),n} , (x,a) G K (8) 

Estimators satisfying (7) are given, for instance, in [2, 6]. 
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Remark 4 .2. a) In particular, observe that (see Remark 4.1) 

Un /* V* as n -> oo, (9) 

where {Un} is the sequence of function on B>(X) defined in (6) corresponding to the 
truncated cost (8). That is, 

f/o = 0; 

Un(x) := min \cn(x,a)+a Un-i(F(x,a,s))p(s)ds>, x G X, n > 1. (10) 
aeA(x) { J#k J 

In fact, since cn(x,a) < n for each n > 0, it is easy to see that 

k=i k=i 

b) In addition, under Assumption 3.1, sup^^) cn(x, a) < cW(x) for all x G X, n > 0. 
Furthermore, {Un} is a sequence of functions on M\y(X), such that, 

£t (x) < ™™ Un[X)S 1 - a / T 

For each fixed t > 0, we define the sequence {l^f*} of functions on M(X) as: 

V0
Pt = 0; 

V ^ ( x ) : = min \cn(x,a) + af V^t_1(F(x,a,s))pt(s) ds} , xeX, n > l . (12) 
aGA(x) t Jftk ) 

Now, let us choose an arbitrary real number v G (0,7/3) (7 as in (7)) and define 
a sequence {nt} of integer numbers as nt := [tv], where [x] represents the integer 
part of x. 

Remark 4.3. Applying standard arguments on the existence of minimizers (see, 
e-6-> [7, 9] and references therein), under Assumption 3.1 we have that for each 
t G N, there exists ft = f*\ G F such that 

Vn
J;(x) = cnt(x,ft) + a [ V^_1(F(x,ft,s))Pt(s)ds, Vx G X, (13) 

where the minimization is done for every u G fi. Moreover, by a result of Schal 

[13], there is a stationary policy {/oo} for the control model M such that for each 

x £ X, /oo(x) G A(x) is an accumulation point of |:/t(x) \ . That is, there exists a 

subsequence {U} of {t} (U = U(x)) such that fu{x) -> /oo(z) as i -> 00. 
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Theorem 4.4. Suppose that Assumption 3.1 holds. Then: 
a) E || V* - Unt || -> 0 as t -+ oo. 

b) For each x G X, 
E\V^(x)-V*(x)\-^0 as *->oo. 

c) If moreover, the set-valued mapping x i—> A(x) is upper semicontinuous and F 
is continuous in a G A(x) for all x E l , then the stationary policy {/oo} 1s optimal 
for the model M. 

Remark 4.5. (a) Observe that from (13), letting U = i for notational convenience, 
we have for each i G N, 

V£;(x) = cn.(xji) + a f V^ІFІxJusЂpiWds a.s., Vi > 0, x Є X. (14) 

(b) Upper semi-continuity of x i—r -4(x) means: for each open set A' C A, the set 
{x G -K : -4(x) C -4'} is open in X. This assumption together Assumption 3.1 implies 
that the value function V* is lower semi continuous (see, e.g., [9]). 

5. PROOF OF THEOREM 4.4 

a) From (12) and (10), adding and subtracting the term a J^k Unt-\(F(x,a,s))pt(s) ds 
we have 

\Vn°:(x)-Unt(x)\< sup 1 / V^_x(F(x,a,s))pt(s) ds- f Unt-i(F(x,a,s))p(s)dt 
aeA(x) \J?Rk Jftk 

< sup ( / \V1

p

i;_l(F(x,a,s))-Unt-l(F(x,a,s))\Pt(s)ds 
aeA(x) {Jmk 

+ f Unt-i(F(x,a,s))\pt(s)-p(s)\ds) 
Jxk J 

< 1 1 ^ - 1 - ^ - 1 1 1 + 1 1 ^ - 1 1 1 / \pt(s) - p(s)\ ds, t>0. 
Jnk 

Hence, 

| |V^ - I7w e | | < ||V^_X — C^._x|| + ||C7„._i|| / \pt(s)-p(s)\ds, t>0. 
J^fc 

Iterating this inequality and using that VQ1 = UQ = 0, we obtain 

| |V^«-£I„, | |<( | |Eto| | + --- + | | £ t „ , _ i | | ) / \Pt(s) - p(s)\ ds, t>0, 
J?Rk 

which in turn yields 

| |V£ - £ t „ , | | ZntWUnt-iW I \Pt(s)-p(s)\ ds 
Jftk 

nf(nt - 1) 
/ \pt(s) - p(s)\ ds a.s. t > 0, (15) 
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since {Un} is a increasing sequence, and from (11). 

Now, by the definition of nt we have 

V&LZV = Otfn as *->«,. 

Thus, from (7) and taking expectation on both sides of (15), we get 

E \\V» - Un, || = 0(t3")0(t.-^) = 0 ( ( 3 " - 7 ) -> 0 as t -> oo 

because v < j/3 (see the definition of nt). This completes the proof of the part (a). 

b) This result is a consequence of part (a) and (9). Indeed, for each x € X and 
t>0, 

\V»(x) - V(x)\ < \V»(x) - Unt(x)\ + \Unt(x) - V*(x)\ a.s. 

Taking expectation on both sides of this inequality and letting t —> oo, we obtain 
the desired result. 

c) We fix an arbitrary x G X. Adding and subtracting the terms 

JftjtUni-\(F(x,a,s))p(s)ds and J^kUni-i(F(x,a,s))pi(s)ds, we have, for each i > 0 , 

1 / V*(F(xJU8))p(8)d8- f V^1(F(xJU8))pi(8)d8 
|J3Rfc J^k 

<\f V*(F(xJi(x),s))p(8)ds- f Uni-i(F(x,fi(x),s))p(s)ds 
\jRk ' J^k 

+ sup / Un.-i(F(x,a,s))\pi(s) - p(s)\ ds 
aeA(x)J^k 

+ sup / \Uni-l(F(xiai8))-V^l(F(xtai8))\pi(s)d8. (16) 
aeA(x)Jftk 

Now, the facts fa -> /oo, Un G Bw (X) (see Remark 4.2 (b)), Fatou's Lemma (see 
Lemma 8.3.7 in [10]) and (9) yield, 

\f V*(F(xJi,s))p(s)ds- f Uni-i(F(xJus))p(s)ds -> 0 as i -> oo. (17) 
\J^k Jxk 

Now, from (11) and (15) we get 

Pi := sup / Uni-i(F(x,a,s))\pi(s)-p(s)\ds 
aeA(x)Jxk 

< {ni"1)ni f \Pi(s)-p(s)\ds<n2
if \pi(s) - p(s)\ ds, x e l ; (18) 

* Jftk Jftk 
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and 

SÍ:= sup / \Uni^i(F(x1a,s))-V^l(F(xia9s))\pi(s)ds 

(m-i)2(m-2) r \Pi{s) - p{s)\ ds < n* f \Pi{s) _p{s)\ d5j xeX. (19) 
1 Jttfc JHfc 

< 

Thus, taking expectation on both sides of (18) and (19), the definition of n» together 
with (7) implies, 

Eh = 0(i2y)0(i-^) -r 0 as i -> oo; (20) 

and 

ESi = 0(^)0^) -> 0 as i -> oo. (21) 

Hence, from (16)-(21) we get, 

E\f V*(F(xJus))p(s)ds- f V^_l(F(xJi,s))pi(s)ds ->0 as 2->oo, (22) 
IJftfc JKfc 

which implies that 

liminf £ ? / ^ . . ( F ^ / ^ ^ ^ ^ d s ^ / ^ ( F ^ / c x ^ ^ ^ ^ d s . (23) 
t-*°° Jxk Jnk 

Indeed, for each i G N, 

/ V'?_l(F(xJi,s))pi(s)ds=\f V^1(F(xJils))pi(s)ds 
JKfc Unk 

- / V(F(xJi,s))p(s)ds] + / V*(F(s, £,*)),(*) d*. 
JHfc J Jxk 

Now, taking expectation and lim inf as i -> oo on both sides of this equality, from 
(22) we get 

liminf F / V^_1(F(xJus))pi(s)ds > liminf E f V(F(xJus))p(s)ds. 
*-*°° JHfc * ^ o o Jftfc 

Thus, (23) follows from the lower semicontinuity of V (see Remark 4.5(b)), the 
continuity of F in a G -4(x), and Fatou's Lemma. Hence, taking expectation and 
liminf as i -> oo in (14), and using the fact supaGi4(x) |c(x,a) — cni(x,a)\ -» 0 (see 
Assumption 3.1), we obtain 

:(x,/oo) + a í V*(F(x,f00,s))p(s)ds < V*(x). (24) 

Finally, as x was arbitrary, by (4), the equality holds in (24) for every x e X, and 
therefore (see Proposition 3.2 (b)) {/oo} is optimal for the model M. 
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6. EXAMPLE 

We consider a storage system of the form 

xt+l = (xt +at- &)+, t = 0 , 1 , . . . , (25) 

xo given, with state space X = [0,co) and action set A(x) = A = [0,0] for all 
x G X and some 9 > 0. In addition the random variables fo-fi- • • • > a r e i.i.d. with 
a continuous and bounded density, satisfying 

£[&] > 9. (26) 

In particular, relation (25) describes an inventory-production system where xt 

represents the stock level at the beginning of period t, the control at is the quantity 
ordered or produced at the beginning of period t, and the random variable & is the 
demand during that period. 

Let $ be the moment generating function of the random variable 9 — £o, that is, 
V(t) = .E[exp<(0-fo)]. Then, (26) implies *'(0) < 0, and since *(0) = 1, there 
exists A > 0 such that 

Po := tf(A) < 1. (27) 

Now we fix a discount factor a = 1/2, and let c(x,a) be a nonnegative and 
continuous one-stage cost function such that 

supc(x,a) < ceXx, 
a£A 

for all x G X and some c > 0. Defining W(x) := ceXx, we have for all x G X, a G -4, 

/•OO pOO 

/ ceH*+*-)+p(s) ds<d+ ceA(*+a-*V(s) ds 
Jo Jo 

<d + ceXx[ ex^e-s^p(s)ds 
Jo 

= i + p0ceXx </?ceAx, 

where /? := (1 + /?o). Observe that from (27) /? < 2, and therefore Assumption 3.1 
(a) is satisfied. 

To verify Assumption 3.1 (c), let v b e a bounded measurable function on X, and 
for every a G A(x), let p a be the density of a — fo- Observe that 

Pa(y) = P(a - 2/), - c o < y < a. 

In addition, for each y G 5ft, a -> ^a(y) is continuous on A. Then, 

/•CO /» — z /»oo 

/ i;(x + y)+pa(y) Ay = ^(0) / pa(y) dy + v(x + y)pa(y) Ay 
JO «1~oo J-x 

/

—X rOO 

Pa(y) Ay+l v(y)pa(y - x) Ay. 
-oo JO 
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Thus, by Scheffe's Theorem, 
/•CO 

a —> / v[(x + a — s)+]p(8) ds 
Jo 

defines a continuous function on A. Finally, replacing v by the function W, and using 
similar arguments, we obtain tha t Assumption 3.1 (c) and (d) hold. 

(Received December 17, 2003.) 
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