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EXACT AND APPROXIMATE DISTRIBUTIONS 
FOR THE PRODUCT OF DIRICHLET COMPONENTS 

SARALEES NADARAJAH AND S A M U E L K O T Z 

It is well known that X/(X -f Y) has the beta distribution when X and Y follow 
the Dirichlet distribution. Linear combinations of the form aX + pY have also been 
studied in Provost and Cheong [24]. In this paper, we derive the exact distribution of the 
product P = XY (involving the Gauss hypergeometric function) and the corresponding 
moment properties. We also propose an approximation and show evidence to prove its 
robustness. This approximation will be useful especially to the practitioners of the Dirichlet 
distribution. 
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1. INTRODUCTION 

Since the 1930s, the statistics literature has seen many developments in the theory 
and applications of linear combinations and ratios of random variables. Some of 
these include: 

— Ratios of normal random variables appear as sampling distributions in single 
equation models, in simultaneous equations models, as posterior distributions 
for parameters of regression models and as modeling distributions, especially 
in economics when demand models involve the indirect utility function (details 
in [32]). 

— Weighted sums of uniform random variables - in addition to the well known ap
plication to the generation of random variables - have applications in stochas
tic processes which in many cases can be modeled by these weighted sums. In 
computer vision algorithms these weighted sums play a pivotal role ([10]). An 
earlier application of the linear combinations of uniform random variables is 
given in connection with the distribution of errors in nth tabular differences 
A" ([15]). 

— Ratio of linear combinations of chi-squared random variables are part of von 
Neumann's [31] test statistics (mean square successive difference divided by 
the variance). These ratios appear in various two-stage tests ([30]). They are 
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also used in tests on structural coefficients of a multivariate linear functional 
relationship model (details in [2, 25]). 

— Sums of independent gamma random variables have applications in queuing 
theory problems such as determination of the total waiting time and in civil 
engineering problems such as determination of the total excess water flow into a 
dam. They also appear in test statistics used to determine the confidence limits 
for the coefficient of variation of fiber diameters ([8,14]) and in connection with 
the inference about the mean of the two-parameter gamma distribution ([6]). 

— Linear combinations of inverted gamma random variables are used for testing 
hypotheses and interval estimation based on generalized p-values, specifically 
for the Behrens-Fisher problem and variance components in balanced mixed 
linear models ([32]). 

— As to the Beta distributions their linear combinations occur in calculations of 
the power of a number of tests in ANOVA ([18]) among other applications. 
More generally, the linear combinations are used for detecting changes in the 
location of the distribution of a sequence of observations in quality control 
problems ([13]). [20]-[23] and [19] provided applications of sums and ratios 
to availability, Bayesian quality control and reliability. 

— Linear combinations of the form T = a\tfx + a2^/2, where tj denotes the Stu
dent t random variable based on / degrees of freedom, represents the Behrens-
Fisher statistic and - as early as the middle of the twentieth century - Stein [29] 
and Chapman [1] developed a two-stage sampling procedure involving the T 
to test whether the ratio of two normal random variables is equal to a specified 
constant. 

— Weighted sums of the Poisson parameters are used in medical applications for 
directly standardized mortality rates ([3]). 

In this paper, we consider the distribution of P = XY when X and Y are distributed 
according to the joint pdf 

t( x r(a + 6 + c ) x a - 1 y t - 1 ( l - x - y ) c - 1 

/ ( x ' y ) = r(a)r(6)r(c) (1) 

for x > 0, y > 0, x + y < 1, a > 0, b > 0 and c > 0. This is known as the Dirichlet 
distribution (see, for example, [12]). It has received applications in many areas, 
including Bayesian statistics, contingency tables, correspondence analysis, environ
mental sciences, forensic science, geochemistry, image analysis, life testing, misclas-
sification, molecular biology, neural networks, non-parametric statistics, PERT, and 
statistical decision theory (see, for example, [7]) for illustrations of some of these 
application areas). 

The paper is organized as follows. In Sections 2 and 3, we derive exact expressions 
for the pdf and moments of P = XY, involving the Gauss hypergeometric function 
defined by 

*(-.**-> - £*%£-£ 
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(where (c)k = c(c + 1) • • • (c + k — 1) denotes the ascending factorial), the properties 
of which can be found in [26] and [5]. In Section 4, we propose an approximation 
for the distribution of P and show evidence to prove that the it is quite robust. 
This approximation will be useful especially to the practitioners of the Dirichlet 
distribution. 

2. PDFS 

Theorem 1 derives the pdf of P = XY when X and Y are distributed according to 

(i). 

Theorem 1. If X and Y are jointly distributed according to (1) then 

r (q + b + c)r-(c) ft_t _ 1/2 / _ vrz^)a-b-c 

JP\P) 2a-fc-T(a)r(&)r(2Cr \ y v) 

x ^ ^ + c - a ; ^ - 1 ^ ) 

for 0 < p < 1/4. 

Proof. From (1), the joint pdf of (X,P) = (X,XY) becomes 

(2) 

where P l = (1 - y/1 - 4p)/2 and p2 = (1 + V- - 4p)/2. Thus, the pdf of P can be 
written as 

By equation (2.2.6.1) in Prudnikov [26, Vol. 1], the integral in (3) can be calculated 
as 

T V " 6 - * (X - px)0"1 (P2 - X)0"1 dx 

JP1 

= fl(c, c ) P r 6"C (P2 " P i ) 2 ' " 1 2F1 ( c , 6 T c - a ; 2c; 1 - ^ . (4) 

The result in (2) follows by combining (3) and (4). • 

The following corollary notes two special cases where (2) reduces to elementary 
forms. 
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Corollary 1. If c = 1 then (2) reduces to 

for 0 < p < 1/4. If 6 = a + c then (2) reduces to 

4°+T (a + c + 1/2) p ^ - 1 (1 - 4PY-1!2 

" W - r (a)r (c+i/2) ( 1 _ v T z ^ ) f c 

for 0 < p < 1/4. 

P r o o f . The proof follows by standard properties of the Gauss hypergeometric 
function, see [26] and [5]. D 

3. MOMENTS 

Here, we derive the moments of P = XY when A' and Y are distributed according 
to (1). 

Theorem 2. If X and Y are jointly distributed according to (1) then 

E(pn) = r(q + 6 + c)r(a + n)r(b + n) 
1 ' r(o + b + c + 2n)r(a)r(6) W 

for n > 1. Using properties of the gamma function, (5) can be rewritten as 

= a(a + 1) • • • (a + n - l)b(h + 1) • • • (6 + n - 1) 
(a + b + c)(a + 6 + c + l ) - - - ( a + b + c + 2 n - l ) 

for n > 1. In particular, the first two moments of P are 

£ ( P ) = (a + 6 + c)(a + 6 + c + l ) ( 6 ) 

аnd 

E ŕ p 2 ч = a(a + 1 ) 6 ( 6 + 1 )  
^ > (a + 6 + c)(a + 6 + c + l)(a + 6 + c + 2)(a + 6 + c + 3)* 

P r o o f . Note that E(Pn) = E(XnYn) and this is the product moment of the 
Dirichlet distribution, which is well known (see, for example, [12]). 0 
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4. APPROXIMATION 

In view of the fact that 4 P has support in the interval [0,1], we are motivated to 
approximate its distribution by a suitable member of the two-parameter beta family 
of distributions: 

f(x) = 
„<*-l (l-x) ,0-1 

B(а,ß) (8) 

f o r 0 < x < l - a > 0 and 0 > 0. The choice of the beta parameters (a and 0) is 
made using the method of moments. Equating the first two moments of 4P with 
those of the beta distribution, we have 

4E(P) = а 
а + ß 

and 

1 6 £ ( P 2 ) = 
а(а + 1) 

(а + ß)(а + ß + l) 

which we must solve simultaneously to find the beta parameters a and 0. After 
some algebraic manipulation, we find the solutions as 

а = E(P) 
E(P)-4E(P2) 

E(P2)- E2 (P) 

and 

ß = { ï" E ( P ) } 
E(P)-4E(P2) 

E (P2) - E2 (P) 

(9) 

(10) 

The two moments E(P) and E(P2) can be computed using (6) and (7), respectively, 
for given values of the parameters a, b and c 

T a b l e 1. Est imates of {OL,0) for selected (a ,6 ,c ) . 

a 6 c a ß 
0.5 0.5 0.5 0.375 1.031 
0.5 0.5 3 0.239 4.543 
0.5 3 0.5 0.474 1.105 
0.5 3 3 0.497 3.539 
3 0.5 0.5 0.474 1.105 
3 0.5 3 0.450 3.539 

1 3 3 0.5 2.831 1.003 
3 3 3 2.429 3.643 
1 3 3 0.978 3.584 
1 1 0.5 0.854 1.014 
1 3 1 1 1.5 
1 1 1 0.778 1.556 
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Approximations of the above kind have been proposed before; see, for example, 
[4, 28] and [8]. But this is the first time it has been proposed for correlated beta 
random variables. In order to show robustness of the approximation, we selected 
twelve values for the parameters (a, b, c) and computed the corresponding estimates 
for (a,/3) using (9) and (10). The selected parameters (a, b, c) and the estimates 
are shown in the table above. We checked robustness by comparing the exact and 
approximated pdfs of 4 P as given by (2) and (8), respectively. These comparisons are 
illustrated in Figures 1, 2 and 3. It is evident that the approximation is quite robust. 
We hope that this approximation will be useful - especially to the practitioners of the 
Dirichlet distribution - since it avoids the use of the Gauss hypergeometric function 
and since the beta distribution is widely accessible in standard statistical packages. 

(•) (b) 

, °1 
—| | I I I I I г~ 
0.0 0 2 0 4 0 8 0 8 1.0 0 0 0.2 0.4 0 8 0.8 10 

(C) (d) 

Fig. 1. The exact pdf (solid curve) and the approximated pdf (broken curve) 
of P = XY for (a): (a,6,c) = (0.5,0.5,0.5); (b): (a,b,c) = (0.5,0.5,3); 

(c): (a,b,c) = (0.5,3,0.5); and, (d): (a,6,c) = (0.5,3,3). 
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(•) (b) 

(c) «0 

Fig. 2. The exact pdf (solid curve) and the approximated pdf (broken curve) 
of P = XY for (a): (a,6, c) = (3,0.5,0.5); (b): (a,6,c) = (3,0.5,3); 

(c): (a,b,c) = (3,3,0.5); and, (d): (a,b,c) = (3,3,3). 
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(•) (b) 

00 02 04 08 1 0 

(c) (d) 

Fig. 3. The exact pdf (solid curve) and the approximated pdf (broken curve) 
of P = XY for (a): (a,6,c) = (1,3,3); (b): (a,6,c) = (1,1,0.5); 

(c): (a,6,c) = (1,3,1); and, (d): (a,6,c) = (1,1,1). 

(Received April 30, 2004.) 
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