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THE CANCELLATION LAW 
FOR P S E U D O - C O N V O L U T I O N 1 

ANDREA STUPŇANOVÁ 

Cancellation law for pseudo-convolutions based on triangular norms is discussed. In 
more details, the cases of extremal t-norms TM and To, of continuous Archimedean t-
norrns, and of general continuous t-norms are investigated. Several examples are included. 
Keywords: cancellation law, t-norm, pseudo-convolution 
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1. INTRODUCTION 

In algebraic structures, a commutative binary operation * is said to be cancellative 
if for all elements g, h, v it holds 

g*v = h*v=>g = h. 

The cancellation law ensures for example the uniqueness of solution of equation 
x * v = u (if a solution exists). 

The aim of this paper is investigation of the cancellativity of pseudo-convolutions 
introduced in [16]. Recall that the standard probabilistic convolution of distribution 
functions is cancellative. 

The paper is organized as follows. In the next section, pseudo-convolutions are in
troduced. In Section 3, cancellation law for pseudo-convolutions based on boundary 
t-norms is discussed. Section 4 and Section 5 are devoted to the study of cancella
tion law in the case of continuous Archimedean t-norms and more general continuous 
t-norms based pseudo-convolutions. 

2. PSEUDO-CONVOLUTIONS 

2.1. Pseudo-convolution of real functions 

Let [a, b] be a closed subinterval of the extended real line (sometimes also semiclosed 
subintervals are taken into account). 

1 Presented at the 7th FSTA international conference held in Liptovský Mikuláš, Slovakia, on 
January 26-30, 2004. 
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Definition 1. A binary operation © on [a, b] is called a pseudo-addition on [a, b] if 
it is commutative, nondecreasing, associative, continuous (possibly up to the points 
(a,b), (6,a)) and with a neutral element, denoted by 0, i.e., for each x G [a,6] 
0 © a; = a: holds. 

So, © is either a t-norm, or a t-conorm or a uni-norm on [a,b], see [4]. Because 
of the duality, it is sufficient to deal with t-conorms and uninorms only. Denote 
[a, 6]+ = {x\ x G [a, 6],x > 0}, 

Definition 2. A binary operation ® on [a, 6] is called a pseudo-multiplication 
with respect to © if it is commutative, associative, distributive with respect to ffi, 
positively nondecreasing (i.e., x < y =.> x ® 2 < y ® 2 if z G [a, b] + ) with a unit 
element, denoted by 1, (i.e., for each x G [a,6] 1 <g> x = x holds). We suppose, 
further, 0 ® x = 0, i. e., 0 is annihilator. 

The structure ([a, 6], ©, ®) is called a semiring, see e. g., [2]. 

Let ([a, 6],©, (g>) be a semiring with continuous operations (possibly up to the 
continuity of ® in points (0,a), (0,6), (a,0) and (b, 0)). The standart building 
up of an integral with respect to ©-decomposable measures based on the pseudo-
addition and pseudo-multiplication leads to the definition of a pseudo-integral [12]. 
The pseudo-convolution of the functions defined on [0, oof with values in [a, 6] was 
introduced in [16], see also [12, 14], by means of the corresponding pseudo-integral, 

g * h(z) = / g(z — x) eg) h(x)dx. (1) 
J[o,z] 

In our paper we will deal with the special semiring only, so we will not describe 
some details here. (It is possible to find them in [14, 16].) 

2.2. Pseudo-convolution with respect to the semiring ([0,1], V,T) 

One of typical examples of a semiring is ([0,1], V,T), where V = sup and T is a 
t-norm, see [4]. This is the semiring with 0 = 0 and 1 = 1. In this case the formula 
for convolution (1) can be rewritten to 

g*h(z)= sup T(g(z-x),h(x)), (2) 
xe[o,z] 

where T is a t-norm. 
Observe that the pseudo-convolution * is commutative due to the commutativity 

of T, however, it need not be associative, in general. Nevertheless, for t-norms 
continuous on [0,1[2, * is also associative. 

Note that the kernel of a function g : [0, oo[-> [0,1] is defined as 

ker(#) = {xG [0,oo[;#(x) = l} . 
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Denote by V the class of all continuous distribution functions on [0, oo[ and by S the 
subclass of V such that the restriction of g on }ag, bg[:= suppg \kev(g) (if ker(g) = 0 
then bg = co) is strictly increasing, i.e., 

S = {g : [0, oo[-> [0,1]; g(0) = 0, g \}ag,bg[ -*]0,1[ is increasing bijection} . 

Lemma 1. Let ker(v) ^ 0 for a function v G P . Then for all g, h G S the following 
implication holds: 

g *y =z h*v =$> kei(g) = ker(h), i.e., bg = 6/t. (3) 

P roo f . Let ker(i>) ^ 0. We can get the formula (3) from the property ker(g*v) = 
ker(#) + ker(i;). First we suppose that bg < co. 

• Let z > bg 4- bv. Then 

g*v(z) = sup T(g(z-x),v(x)) 
x€[0,z] 

= m a x | sup T(g(z-x),v(x)), sup T(p(z - x),v(x)) \ , 
[xG[0,z-by[ xe[z-bg,z] J 

- if 0 < x < z — bg, i. e., z — x > bg 

>bv 

g*v(z)= sup T(l,v(x)) = sup v(x) = l, 
xe[0,z-bg[ x€[0,z-bg[ 

- if bv < z — bg < x < z, i. e., z — x < bg 

g*v(z)= sup T(g(z-x),l)= sup g(z-x) = g(bg) = l. 
xe]z-bg,z] x£]z-bg,z] 

• Let 0 < z < bq + bv. Then 

g * v(z) = max < sup T(g(z - x),v(x)), sup T(g(z - x),v(x)), 
I xЄ[0,z-ò9] x£)z~Ъg,Ъv[ 

sup T(g(z-x),v(x)) \ 

xЄ[6v,z] J 

if 0 < x < z - bg, i. e., z - x > Ьg 

g*v(z)= sup T(l,v(x))= sup Î;(X) = v(z-bg) < 1, 
xф,z-bg] xЄ[OìZ-bg] ^—v—' 
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- if z — bg < x < bv, i. e., z — x < Ьg 

g*v(z)= sup T(g(z-x),v(x)) < 1, 
xЄ]z-bg,bv[ 

— if bv < x < z 

g*v(z)= sup T(g(z-x),l) = sup g(z - x) = g(z - bv) < 1. 
x£[bv,z] x€[bvyz] v—v—' 

<bf] 

It is easy to see that if bv < co then bg = oo if and only if bg*v = oo, i. e., if bg = oo 
then bh = oo too. D 

3. THE CANCELLATION LAW FOR PSEUDO-CONVOLUTION BASED 
ON THE SEMIRING ([0,1],V,TM) AND ([0,1], V,TD), RESPECTIVELY 

Recall that T is a t-norm if it is associative, commutative, non-decreasing binary 
operation on [0,1] with neutral element 1. For more details we recommend [4]. For 
any t-norm T it holds TQ <T < TM, where the strongest t-norm TM = min and 
the weakest t-norm Tp (the drastic product) is given by 

{ min(x,y) if max(x, y) = 1, 

0, elsewhere. 
Theorem 1. Consider the strongest t-norm TM- Let g, h, v £ V. Then the 
cancellation law holds,i.e., 

g *v = h*v => g = h. 

P r o o f . We denote g^c) the c-cut of function g, i.e., </c) = {x;g(x) > c} for 
c G]0, 1]. Then for convolution based on the TM it holds 

(g * h){c) = g{c) + /i (c) for any c e]0,1]. 

An arbitrary c-cut of function g from V is interval [ag , co[. Suppose g *v = h* v. 
Then 

[a<c), oo[+[av
c), oo[= [a|x

c), oo[+[av
c), oo[ for all c e]0,1]. Thus [a(c) + av

c), oo[ 

= (4C) + 4C)* °°[ => 4 C ) = 4 C ) => ^(C) = ^(C) for a11 c e}°' l]^9 = h, 

i.e., the cancellation law holds. ---

Remark 1. The cancellation law with respect to TM fails if sup v < 1 or inf v > 0 
or if we deal with non-monotone functions. See Example 1. 
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Example 1. Consider the t-norm TM• Let v(x) = 

g(x) = { 

X, 

1 

2> 

X — 

1, 

x є [ 0 , ì ] 

x є ] ì , 2 ] 

x є ] 2 , f ] 

xЄ] f ,oo[ 

x, x Є [0,1] 

1, xЄ]l,oo[, 

x, x Є [0, ì ] 

and h(x) = l x — 1, 

1 
2 ' X Є ] Ì , 1 ] 

-x + §, 

X — 1, 

*Є]l,f] 

*€]},§] 
1 
2 ' XЄ]§,2] 

x - 2 
x 2 , 

XЄ]2,§] 

11, xЄ]f,oo[. 
The function /i is not a monotone function. Then pseudo-convolutions of functions 
g, v and h, v based on semiring ([0,1], V, TM) are the same, i. e. 

g * v(x) = h * v(x) = l 

±x 
2 X > 
l 
2> 
x _ Ҙ 
2 4> 

1, 

x Є [0,1] 

x є ] l , f ] 

x€]Ц] 

xЄ] ï ,oo[ . 

/ 

9(x) 

2 í 
Z 

m 9 * v(x) 

±_ £ 2 £ 1 5 7 

2 4 2 2 2 

Fig. 1. 

On the other hand, consider the weakest t-norm T/> Then the cancellation law 
holds only in special cases. 

Theorem 2. Consider the pseudo-convolution based on the TL). Let g, h, v G V. 
Moreover, let 

v(bv - x) < min (g(bg - x), h(bh - x)) for all x G [0,6], 

where b := min{bv, bg, 6^}. Then g *v = h*v <=> g = h. 

P r o o f . Applying the formula for sum of fuzzy quantities based on the drastic 
product from [9], we get 

g * v(x) = max{#(/x - bv/), v(/x - bg/)} 
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for all x G [0, oo[, where /x/ = min {max{0,x}, 1}. Now we can easily get condition 
for cancellativity. D 

4. THE CANCELLATION LAW FOR PSEUDO-CONVOLUTION BASED ON 
([0,1], V,T), WHERE T IS AN ARCHIMEDEAN CONTINUOUS t-NORM 

In this section at first we describe some Zagrodny's results [20]. Further we will 
apply them for investigation of validity of cancellation law for pseudo-convolution 
of functions based on a strict t-norm. Finally, the case of nilpotent t-norms will be 
discussed. 

4.1. The cancellation law for inf-convolution — Zagrodny's results 

Definition 3. Let g, / i : R - > R U {oo}. The inf-convolution of g and h at x G R 
is defined by 

gUh(x):= inf (g(y) + h(z)). 
y+z=x 

Definition 4. Let h : R —> RU {oo}. The function h is said to be uniformly convex 
i f f o r V e > 0 35 > 0 

i u ^ ufa + b\ ^ h(a) + h(b)-S\a-b\ w , _ 
\a-b\>e => h[ —— < -------- K—{- • L, V a,b G dom h. 

Note that the domain of functions g, h can be restricted to some intervals. 
Zagrodny in [20] deal with more general functions on Banach space. 

Theorem 3. Let X be a reflexive Banach space. If q, g, h : X —> R U {oo} are 
proper lower semicontinuous convex functions such that h is strictly convex and 
-iniiixii-,00 j ^ - = oo then qHh = gBh implies q = g. 

Theorem 4. Let X be a Banach space and q, g, h : X —> RU {oo} be proper lower 
semicontinuous convex functions. Moreover, suppose h is uniformly convex. Then 
qBh = gBh implies q = g. 

4.2. The cancellation law for pseudo-convolution 
based on a strict t-norm 

Recall that the pseudo-convolution of functions based on semiring ([0,1], V, T) with 
some Archimedean continuous t-norm T can be expressed by 

g * h(x) = / I " 1 ! ( inf (f(g(y)) + f(h(z))) = fl~1](f o g D f oh (x)) , x € [0, oo[, 
\y+z=x J 



The Cancellation Law For Pseudo-Convolution 291 

where / is additive generator of t-norm T, i.e., / : [0,1] —• [0,oo] is continuous 
strictly decreasing mapping verifying / ( l ) = 0, and pseudo-inverse / I" 1 ! : [0,oo] -> 
[0,1] of / is defined by 

fl-1](x) = f-1(mm(f{0)tx)). 

Archimedean continuous t-norms can be divided into two classes: strict and nilpo-
tent. An additive generator of a strict t-norm is unbounded, and then / ' _ 1 ' = f~l. 

Theorem 5. Consider a strict t-norm T with an additive generator / . Let g, h, v e 
S such that fog and / o h are convex on [ag, bg[ and [a/l? 6/^, respectively and f ov 
is either 

(i) uniformly convex on [av, bv[ or 

(ii) strictly convex on [av,6v[ 

and if bv = oo then lim fov(x> = oo. 
X'—>oo x 

Then g *v = h*v implies g = v. 

P r o o f . Assume fog, f o h and / o v verify conditions from theorem. Let 
g * v = h * v. This imply fogUfov = fohUfov and by Zagrodny's results 
f ° 9 ~ f ° h => g — h, i.e., the cancellativity is valid. • 

4.3. The cancellation law for pseudo-convolution 
based on a nilpotent t-norm 

The case of nilpotent t-norm is more complicated. Conditions from Theorem 5 are 
deficient. See Example 2. 

Example 2. Consider the Lukasiewicz t-norm TL with additive generator 

\ x, ^ x e [o, l] 
f(x) = 1 — x and functions g(x) = < 

[ 1, x G]l,oo[, 

0, xe [o,o.i] 

2 x - 0 . 2 , xG]0.1,0.2] ( l-(x-l)2, x e [0,1] 
h(x) = I and v(x) = { 

x, XG]0.2,1] [ 1, xG]l,oo[. 

1, x e] l ,oo[ 

The interval [av,bv[= [0,1[ and fov is given by formula fov(x) = l-(x-l)2 (i.e., 
strictly convex function). 

The interval [ag, bg[= [0,1[ too and fog(x) = l - . r o n [0,1[ (i. e., convex function). 
Finally, [ah,bh[= [0.1,1[ and 

f 1.2 -2x, xe [0.1,0.2[ 
f°h=l 

[ 1-x, xe 0.2,1 , 



292 A. STUPŇANOVÁ 

(i. e., convex function). 
However, the pseudo-convolution based on ([0,1], V , T L ) of functions v and g is 

the same as pseudo-convolution (based on the same semiring) of functions v and h. 

g * v(x) — h * v(x) = < 

0, x Є [0, | ] 

* є ] î , § ] 4 ' 

l - ( : r - 2 ) 2 , XЄ]|,2] 

1, жЄ]2,oo[. 

9 - v(x) 

Fig. 2. 

Thus Theorem 5 is not valid in the case when T is a nilpotent t-norm, in general. 
For nilpotent t-norms, we have only the following special cancellation theorems. 

Theorem 6. Consider a nilpotent t-norm T with normed additive generator /. 
Let g, h, v G S, such that / o p , / o h and / o v are concave on the interval [ag, bg[, 
[ah,bh[ and [a^b^f respectively. Moreover, 

v(bv — x) < min (g(bg — x), h(bh — x)) for all x G [0, b], 

where b := minjbu, bg, bh}- Then g*v = h*v <$> g = h. 

The p r o o f follows from the fact that under requirements of the theorem, 
the pseudo-convolution of function based on semiring ([0,1], V,T) with some nilpo
tent t-norm T behaves as the pseudo-convolution of function based on semiring 
([0,1], V , T D ) , see [7, 9]. Note that the same claim is true also for strict t-norms. 
However then bg = bh = bv = oo. 

Consider (a, b) G M2, a ^ b, then 0(a,b) is the linear*transformation defined by 

Ф(a,Ъ)(X) = x — a 
b — a 

L-l л f i :„ „:, u „ J .-1 Note that the inverse mapping 0 ( a^6 ) of 0 (a,6) is given by <t>(ayb)(x) = a + (b- a)x.D 
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Theorem 7. Consider a nilpotent t-norm T with normed additive generator / . 
Let g, h,v G S, such that bg, bh, bv < oo and / o v o (j)~l(x) = / o g o 4>~l(x) = 
f oho (f>hl(x) = 1 - (1 - x)p on the interval (0,1) for some p e (l,oo), where 
0v = <t>(av,bv) and similarly for functions g, h. Then g*v = h*v=>g = h. 

P r o o f . Following [8], under requirements of the theorem, 

fo(g*v)od>^v(x) = l-(l-xy, 

where bg*v = bg + bv and 

(bg*v - ag*v)v~l = (b^ - ag)v~l + (bv - av)p~l. 

Similarly, 

fo(h*v)o<l>-}v(x) = l-(l-x)-, 

where bh*v = bh + bv and 

(bh*v - ah*v)
Ji~l = (bh - ah)*"1 + (bv - av)T>~1. 

Now, it is evident that g *v = h*v if and only if ag = a^, bg = b^, i. e., g = /i.D 

5. THE CANCELLATION LAW FOR PSEUDO-CONVOLUTION BASED 
ON ([0,1], V,T), WHERE T IS A CONTINUOUS t-NORM 

5.1. Ordinal sums of t-norms 

Definition 5. Consider a family (Tk)k^K of t-norms and a family (]<Xk,Pk[)keK 
of pairwise disjoint open non-degenerate subintervals of [0,1]. The [0, l ] 2 —* [0,1] 
mapping T defined by 

m N Ukl(Tk((f)k(x),(!>k(y))), if (*,V) G [ak,(3k]2 

T(x,y) = < 
[ TM (x,y), elsewhere, 

w h e r e (j>k = <t>(akli3k), -s a t-norm. T is called the ordinal sum of the summands 
(ak,(3k,Tk), and is denoted by T = ((ak,Pk,Tk) \keK). 

Note that in the foregoing proposition the case of an empty index set is also 
allowed, and obviously leads to the minimum operator TM- The notion 'ordinal 
sum' has led to the following important characterization of continuous t-norms. 

Theorem 8. A [0, l ] 2 -> [0,1] mapping T is a continuous t-norm if and only if it 
is an ordinal sum of continuous Archimedean t-norms. 

5.2. Cancellation law for pseudo-convolution 

Theorem 8 and the results from [1] allow to transform the cancellation law for 
pseudo-convolution based on a continuous t-norm T to the cases discussed in the 
previous sections. 
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Definition 6. Consider a real function g and (a, b) G [0, l ] 2 , a < b. 

(i) The function g'a '6 ' is defined as 

5 M 1 = M a , 6 ) O g / , 

i.e. g^b\x) = l & ^ j , where /x/ = min {max{0,x}, 1} 

(ii) The function g\a^ is defined by 

( ч J Ч Л Л ) t ø ( * ) ) . i f .7(г)>0 

elsewhere. 

T h e o r e m 9. Consider an ordinal sum T = ((a^b^T^) | i G I) written in such a 
way that UiGI[ a*'^l = [0? 1]? a n d functions g, h e S, then the pseudo-convolution 
based on the semiring ([0,1], V,T) is given by 

g * h(x) = sup (gla*M *Ti hlai>bA (x), 
iel V /[ai,6i] 

where *T; is pseudo-convolution based on semiring ([0,1], V,Ti). 

T h e o r e m 10. Let T be a continuous t-norm represented as an ordinal sum of 
Archimedean continuous t-norms, T = ((a*, biyTi) \ i G I) and let g, h, v G 5. Then 
cancellation law for pseudo-convolution based on the semiring ([0,1], V,T) is valid 
iff for Vz G I holds 

g[aiA] ^T y[aiM _ folaubi] ^ y[aiM] -^ g[a-iM] _ folaiM < 

Example 3. Consider the continuous t-norm T = {(0, ^ ) , T p } and g, h, v G 
5. Let — \nv(x) be strictly convex on the interval [av,v~ (^)] and — \ng(x) and 
— lnh(x) be convex on [ag,g~l(\)} and [a^,/i - 1(^)] respectively. Then g * t> = 
/i * i; => # = h. 

6. CONCLUSION 

We have discussed the cancellation law for pseudo-convolutions based on triangular 
norms. While for the case of TM the cancellation law is valid without special require
ments, in all other cases it holds only under special restrictions. Note that T-based 
pseudo-convolutions acting on (continuous) distribution functions are special trian
gle functions, see e.g. [4, Chapter 9 ], and thus our results provide a partial answer 
to an open problem of V. Hohle posed in [3, Problem 13]. As a continuation of our 
work, we aim to discuss the cancellation law for another types of triangle functions. 
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