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K Y B E R N E T I K A — VOLUME 41 (2005) , NUMBER 3, P AGES 3 9 7 - 4 2 2 

MULTIPLICATION, DISTRIBUTIVITY. 
AND FUZZY-INTEGRAL I 

WOLFGANG SANDER AND JENS SlEDEKUM 

The main purpose is the introduction of an integral which covers most of the recent 
integrals which use fuzzy measures instead of measures. Before we give our framework 
for a fuzzy integral we motivate and present in a first part structure- and representation 
theorems for generalized additions and generalized multiplications which are connected by 
a strong and a weak distributivity law, respectively. 
Keywords: fuzzy measures, distributivity law, restricted domain, pseudo-addition, pseudo-

multiplication, Choquet integral, Sugeno integral 

AMS Subject Classification: 28A25, 20M30 

1. INTRODUCTION 

In the last years many books and survey articles on so-called fuzzy-integrals ap
peared, where the name fuzzy-integral comes from the fact that these integrals are 
defined with respect to a fuzzy measure (which is an increasing set function which 
disappears on the empty set) instead of an additive set function. 

We mention here [2], all articles in [8, 9, 16], and [21]. 
The two most well-known fuzzy integrals are the Choquet integral and the Sugeno 

integral. Having at least two different integrals a natural question is always to look 
for a more general notion of an integral which covers the known ones. 

In the above mentioned literature there are many proposals for such 'general 
integrals'. We are here interested in the different methods for arriving at 'general 
integrals', in structural aspects and of course, in the general integrals themselves. 

The two main approaches in [15] and [2], which lead to the most general fuzzy-
integrals which are known at present, use the same basic ideas. We first want 
to point out these ideas since an understanding of these ideas is essentially for 
getting a deeper insight into more technical problems which occur naturally in our 
considerations. The main idea is to consider generalized operations as functional 
equations not on the whole domain but on a restricted domain. Thus we arrive at 
a larger variety of solutions. This idea of using 'restricted domains' was already 
used in [15] but it was not mentioned that this is a special successful technique used 
rather often in the theory of functional equations. 



398 W. SANDER AND J. SIEDEKUM 

2. ADDITION, MULTIPLICATION, AND DIFFERENCE 

Let (X, A) be a measurable space, let / : X —* [0,1] be ,4-measurable, and let \x : A 
-» [0,1] be a fuzzy measure (fi(A) < fi(B) if A C B and /i(0) = 0). 

If / is a simple function then there are several equivalent representations, namely 

f = J21Ei-ai, ' (1) 
t = i 

/ = V ( ^ A a i ) , (2) 
l < i < n 

n 

/ = 5 ^ ( a i - a i - i ) . l F i . (3) 
i = i 

Here the Ei £ A, 1 < i < n, are pairwise disjoint, E\ U . . . U En = X, a$ = 0 < 
ai < a2 < . . . an < 1 and Fi = \J"=i Ej, so that X = FXD F2D ... D Fn = En and 
Fi = {x e X : f(x) > ai). 

From (l)-(3) we get 

(L) Ifdli = Yjli(Ei)-ai, (4) 
J i=i 

(S) /"/dA i=V/-(-3 , i)Aa i , (5) 
^ i = l 

(C) / , /d/i = f ] ( a i - a i _ i ) . / i ( F i ) , (6) 
^ i = i 

that is, the Lebesgue integral, the Sugeno integral and the Choquet integral of a 
simple function / . 

Now, (4) and (5) with n = 2 imply for / = l£iUE2 and a\ = a2 = 1 

n(El\JE2)=n(El) + fji(E2) and ^(Fx U F2) = /i(P\) V /i(F2), (7) 

that is, /i is additive and maxitive, respectively. 
Using (7) we get from (4) and (5) with n = 2 and / = 1E!UE2 *

x 

(fi(Ei) + fi(E2)) • x = /i(Si) • x + fi(E2) • x, 

(/i(Fi) V /i(F2)) • x = /i(Fi) • x V /i(F2) • x (8) 

whereas (6) with / = a • lEl + b • 10, a > b > 0 leads to 

(a - b) • /i(Fi) + (6 - 0) • /i(Fi) = (a - 0) • /i(Fi). (9) 

This means that (8) and (9) lead to distributivity laws of the two types 

(a + b)-x = a-x + b-x, (10) 
((a-b)-x) + ((b-c)-x) = (a-c)-x, a>b>c, (11) 
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respectively. 
If we replace in (1) and (2) sum + and max V for example by a t-conorm A and 

multiplication • by a t-norm o, then we have a so-called generalized addition and 
a generalized multiplication, which we will call from now on pseudo-addition and 
pseudo-multiplication. 

In (3) and (6) we need - and this is an essential fact - an additional operation, a 
generalized difference or pseudo-difference —A (with respect to the pseudo-addition 
A). Prom (10) and (11) we see that A,o and —A satisfy 

(aAb)ox = (aox)A(box) and (12) 

((a — A b) ox)A((b — A C) OX) = (a—Ac) ox, a>b>c, (13) 

respectively, that is, they satisfy distributivity laws for pseudo-additions and pseudo-
differences. 

Thus we have seen that 

a) the Lebesgue integral of a simple function depends on the usual addition + 
and multiplication •, 

b) the Sugeno integral of a simple function depends on the operations V and A, 

c) the Choquet integral of a simple function depends on the usual addition +, 
difference — and multiplication • . 

In a more general framework we need a pseudo-addition A, a pseudo-multiplication 
o, but in addition we need a pseudo difference —A, too. 

It is clear that A,o and A,o, —A must satisfy (12) and (13), respectively. So 
the problem is to find appropriate big classes of operations A,o, —A satisfying (12) 
and (13), and perhaps some additional requirements which are compatible with nice 
properties of a 'generalized integral'. 

In Section 3 and 4 we give an overview of the results presented in [15] and [2], 
respectively. 

Starting from Section 5, our results will be presented. 
Let us remark, that the pseudo-addition A is - up to some modifications - es

sentially a t-conorm in all approaches. The problem of getting a so-called A-fitting 
pseudo-multiplication satisfying (at first) (12) will be attacked differently and is 
explained in the following sections. 

3. t-CONORM INTEGRAL 

In [20] a fuzzy integral for continuous t-conorms as pseudo-additions is presented, 
whereas in [15] a fuzzy integral for Archimedean t-conorms as pseudo-additions 
is presented. Nevertheless we want to report on the last mentioned paper since 
it presents a progress in comparison to the results of the first mentioned paper 
(Let us add a remark: The two authors mentioned in [15] that they restrict their 
investigations to Archimedean t-conorms because of their decomposition theorem in 
[20] and because of the ordinal sum representation for a t-conorm. Exactly this small 
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remark was essentially the reason for starting our investigations: It turns out that 
it is not so obvious to restrict the investigations only to Archimedean t-conorms). 

In [15] so-called t-conorm systems for integration are introduced. 
A t-conorm system is a quadruplet (A, J_, II, o) consisting of three pseudo-additions 

A,_L,II : [0, l ] 2 —> [0,1], which are continuous Archimedean t-conorms, and a 
pseudo-multiplication o : [0, l ] 2 —> [0,1] satisfying 

o is increasing in both places, (14) 

o is continuous on (0, l ] 2 , (15) 

aox = 0 <=> a = 0 or x = 0, (16) 

a A b < 1 ==» (aAb)ox = (aox)U(box), (17) 

x _L y < 1 => a o (x _L y) = (aox)U(aoy). (18) 

Thus we see that the pseudo-multiplication satisfies the 3 conditions (14)-(16), 
whereas (17) and (18) express the compatibility between pseudo-addition and pseudo-
multiplication. 

It is interesting that a generalized left-distributivity law and a generalized right-
distributivity law is required on a restricted domain. The idea behind this is that 
functional equations (like (17) or (18)) have rather often a bigger variety of solutions 
if they are required on a restricted domain and not on the whole domain (see also 
Theorem 5.21 in [11]). 

If some trivial and/or useless solutions are ignored the authors present two es
sential solutions: 

— Maximum type solutions: 
All three t-conorms A, _L, II are the maximum operator V. 

In this case there are a lot of pseudo-multiplications, for example, a strict t-norm 
(note that in this case (17) is automatically satisfied (because of (14)). 

— Archimedean type solutions: 
If the t-conorms A,_L,II have additive (increasing, continuous) generators k,g and 
h from [0,1] into [0, oo] respectively, then 

aox = h{-l)(k(a)-g(x)) a,x G [0,1], (19) 

where g is an appropriate generator of _L and h^~l\x) = h~l(x A h(l)) is the quasi-
inverse of h (see for example [12]). 

Note that g and g differ only by a multiplicative constant. 
The fuzzy-measures /i considered in [15] are called normal with respect to ± if 

[i is J_-decomposable (that is, \i{X) = 1, \i(A U B) = JJL(A) _L fi(B) if A and B 
are disjoint sets of X), and either (_L= V) or (_L has a generator h and ft o /i is a 
measure). 

Finally the pseudo-difference —A of an Archimedean t-conorm A is defined by 

a - A b := inf{c G [0,1] | 6Ac > a}. (20) 
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Then —A satisfies 

(a-Ab)Ab = aVb and (21) 

(a - A b)A(b - A c) = a - A c (22) 

(if a > b > c and a A 6 < 1). Obviously (22) implies (13). 

Now the t-conorm integral of the quadruplet (A, J_, U, o) is defined in analogy to 
(6) (we use the notations of Section 2): 

Let a simple function / be given by (1) and let the fuzzy measure \i be normal 
with respect to J_. 

Then the triple (A,U,o) will be used to define the t-conorm integral 

(F) J fdfi:=U^1((ai-Aai-1)oti(Fi)). (23) 

If / is measurable, and (/n) is an increasing sequence of simple functions which 
converges pointwise to / , then 

(F) ffdfi:= lim (F) / / n d / i . (24) 
J r w o ° J 

Here we need that the fuzzy measure is continuous from below, since otherwise it is 
not defined. 

Now, in the case of maximum-type solutions the integral has the form 

(F) [fdfi= sup [aoli(f>a)l (25) 
J a€[0,l] 

which is a generalization of the Sugeno integral (which we get by choosing o = A). 
In the case of Archimedean-type solutions there exists an additive generator g such 
that 

(F) Jfdfi = h ^ Jk(f)d{gon) (26) 

where the integral on the right hand side in (26) is the Choquet integral, which 
reduces to the Lebesgue integral if the fuzzy measure /i is a measure. 

Thus the t-conorm integral is a generalization of the Choquet integral, too (take 
h = k = g = id and for o the usual product). 

Let J_ be a continuous, Archimedean t-conorm with additive generator g. More
over let [i be -L-decomposable. Then there are three cases: 

(S): _L is strict and g o /j, is thus a measure, 

(NSA): _L is not strict and g o ̂  is a measure, 

(NSP): _L is not strict and g o ji is not a measure. 
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Defining 

aox:=g~1(a-g(x)), a,x£ [0,1], (27) 

then (+, _L, JL,o) (where + is the Lukasiewicz t-conorm) is a t-conorm system (with 
k = id) and we get (26), which is the Weber integral (see [22]). We remark that 
in the case (NSP) Weber introduced a modification of his integral which doesn't 
coincide with the t-conorm integral. 

For further examples and properties of the t-conorm integral we refer to [9]. 

4. MONOTONE SET FUNCTIONS-BASED INTEGRALS 

In [2] the authors take as pseudo-addition A a function A : [0,B]2 —» [0,B], 
0 < B < oo satisfying 

(xAy)Az = xA(yAz) associativity, (28) 

xAO = OДx = x neutral element, (29) 

A is increasing in each place monotonicity, (30) 

Д is continuous in each place continuity. (31) 

Equations (28)-(31) imply that ([0,B],A) is an ordinal sum of Archimedean t-
conorms ([an,bn],Sn),n G K&, where K& is at most countable. 

Thus each Sn has an additive generator gn : [an, bn] —+ [0, oo], which is continuous, 
strictly increasing and which satisfies gn(an) = 0 and 

Sn(a,b) =gn-
l\g(a)+g(b)), a,be[an,bn]. (32) 

Especially, A is a t-conorm (and thus commutative, so that commutativity must 
not be required). Equivalently, we can say that ([0, B], A) is an I-semigroup in the 
sense of Mostert and Shields (see [14]), and again we get that A is a t-conorm (see 
Theorem 2.43 in [11]). 

As pseudo-multiplication a function o : [0, M]2 —» [0, M], 0 < M < oo 
is chosen so that the following holds: 

o is increasing in both places, (33) 

o is left continuous, (34) 

a o 0 = 0 o a = 0, zero element (35) 

(aA6) o y = (a o y)A(b o y), left distributivity law (see (12)). (36) 

In comparison with Section 3 we see, that (15) and (16) are weakened to (34) and 
(35), whereas the left distributivity law is required on the whole domain. Since we 
have only one pseudo-addition A, we say that o is a A-fitting pseudo-multiplication 
(instead of: A and o satisfy the compatibility condition (36)). 

Note that we have two ranges here, [0, B] as range of the functions, which we 
want to integrate, and [0, M] as range of the fuzzy measure //. This is a little bit 
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more general than in Section 3, but when defining an integral the most important 
case is B = M. 

The idea of determining o is to interpret (35) - for fixed y - as a Cauchy functional 
equation: 

fy(aAb) = fy(a)Afy(b), where fy(x) :=xoy. (37) 

T h e o r e m 1. The function o, defined by (37) is a A-fitting pseudo-multiplication 
iS {fy : y e [0,M]} is a non-decreasing system of left-continuous solutions of the 
Cauchy equation (37) satisfying 

fy(0) = 0, f0(x) = 0, fy(x) = sup fz(x) (38) 

z<y 

for all x e [0, B] and for all y G (0, M]). 
Since the structure of the solutions fy of (37) is known (see [3]) the A-fitting 

pseudo-multiplication o can explicitly be described in specific cases, that is, if A as 
ordinal sum of Archimedean t-conorms is explicitly given. 

Let us take the most simple example to point out the idea how to get the pseudo-
multiplication o: 

If in the ordinal sum n = 1, [a\, b\] = [0, B] and the generator k : [0, B] —+ [0, oo] 
is an increasing bijection, that is 

aAb = k~l(k(a) + k(b)), 

then 
fy(x) = k~x(k(x)'h), he [0,oo]. 

Letting y vary again, we arrive at k : [0, M] —> [0, oo] and 

xoy = k~l(k(x) • h(y)) ,xe[0,B],ye [0,M]. (39) 

for some function h : [0, M] —> [0, oo]. For further, more complicated and interesting 
examples (which can be constructed in the same manner like in the last example) 
we refer to [2]. 

In [2] the following is needed to define an integral: 
A measurable space (X, A) together with a fuzzy measure \x : A —* [0, M],M = 

/-po. 
Moreover, let A and o be the above pseudo-addition and the A-fitting pseudo-

multiplication, respectively. Thus to each pair (A,o) a fuzzy integral will be associ
ated as follows. 

If / is a simple function with the representation (1), then - like in Section 3 -
the integral is defined by (using the notations of Section 1) 

/ 

A 
fodfi = ň?=l((ai-&ai-1)ofi(Fi)). (40) 

Then it is shown that this integral in (40) satisfies the following 4 properties (we 
use the notation f ~ g to express that / and g are comonotone (here comonotone 
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stands for common monotone (see [6]), moreover a is a real constant, A G A, f and 
g are simple): 

A 

(a-lл)odџ = ao џ(A). (41) 

r A /.Д 
/ 

fodn<J godfx. (42) 

/

A /.A /.A 

(fAg)odn= I /od/iAf godn- (43) 
f = (fAa)A(f-Aa) (44) 

/
A /.A /.A 

/ o d/i = / (/ A a) o d/i A / (/ - A a) o d/i. 
Note that (44) is the so-called 'horizontal A-additivity' which is a weaker form 
of comonotone A-additivity (42) because the two functions f A a and / —A a are 
comonotone. 

Then, supposing that \x is continuous from below, the integral can be defined on 
T = {/ : X —> [0, B] : f is ^-measurable}: 

r-A f лД 

f 6 .E =*> / / o d/z := sup < / sod/j. : s < f, s simple 

For the example after Theorem 1 we arrive at the following integral 

/ sodn — k'1 fk(f)d{hofx) (45) 

where the integral on the right hand side is the Choquet integral. 

There are a lot of nice and interesting examples in [2]: 
They show for example that this integral is a generalization of the Sugeno integral, 

the Choquet integral, and the Weber integral, too. 
In [2] we also find the following nice characterization theorem: 

T h e o r e m 2. Let I : T —> [0, B] be a functional. Moreover let \i : A —> [0, B] be a 

fuzzy measure which is continuous from below. 

Then /(/) = J A / o d/i for all / G T iff 

I(a •l i4) = o o / ( 1 A ) , a G [0, B], A e A, 

f = (fA a )A(/ - A a) = * / ( / A a)AI(f - A a), a G [0, B], 

I is continuous from below. 

Note that the Sugeno integral and the Choquet integral are characterized by the 
three properties of Theorem 2 (take A = V, o = A and A = +,o = •). 



Multiplication, Distributivity and Fuzzy-Integral I 405 

For further properties and extension problems we refer to [2], 

If we compare the results of Section 3 with the results in Section 4 we see: 

(I) If the pseudo-addition A is A = V then we can take as pseudo-multiplication 
o every function o satisfying the minimum requirements for a pseudo-multiplication. 
This result holds in Section 3 and Section 4. 

In [2] it is thus proposed to take as appropriate pseudo-multiplication a left con
tinuous t-norm or a left continuous uni-norm (see for example [11]). 

We remark that for Archimedean t-norms T the left-continuity of T is equivalent 
to the continuity of T (see [11], p. 30). 

(II) If the pseudo-addition is a continuous, Archimedean t-conorm (that is, the 
ordinal sum representation for continuous t-conorms is degenerated to one interval) 
then the pseudo-multiplication has the form (19) in Section 3 whereas the pseudo-
multiplication in Section 4 is given by (39). 

The result in Section 3 is more general because of working with two pseudo-
additions and by using restricted domains for the distributivity laws. 

(III) In Section 4 pseudo-additions are always continuous, but they are no longer 
restricted to be Archimedean t-conorms like in Section 3. The result is: If the ordinal 
sum representation of the pseudo-addition A is given then (if possible) the fitting 
A-pseudo-multiplication can be calculated by using Theorem 1. 

We should mention that Sugeno and Murofushi have also considered arbitrary 
continuous t-conorms as pseudo-additions (see [20]) whereas their pseudo-multiplications 
satisfy (14)-(16), but in addition they have a left unit (which is a strong condition, 
as we will still see). 

Since in Section 4 it can happen that there is no A-fitting pseudo-multiplication 
or the only A-fitting pseudo-multiplication is the usual multiplication the question 
is how to improve this situation. In our approach we can give an answer: 

We require distributivity laws on appropriate restricted domains. 

So the process of integration consists of three steps: 

(a) Introduce a generalized distributivity law on an appropriate restricted domain 
to get a big variety of possible pseudo-additions and pseudo-multiplications. 

(b) Determine possible pseudo-additions and possible pseudo-multiplications and 
show that pseudo-differences are compatible with the introduced distributivity 
law. 

(c) Using (a) and (b) define a general integral which satisfies 'nice' properties. 

These three steps correspond to the three parts of our paper: 
In Multiplication, Distributivity and Fuzzy-Integral I - III we investigate (a) - (c), 

respectively. 
We remark that when doing this approach, which is mainly contained in the 

Ph.D. Thesis of Siedekum (see [19]), we were not aware of the paper [2]. 
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5. DISTRIBUTIVITY 

Prom now on we want to report on our main results. 
Let us start with pseudo-additions in the sense of Section 4, but now defined on 

arbitrary intervals (which will be done to formulate structure theorems for pseudo-
additions, pseudo-multiplications and pseudo-differences on arbitrary intervals, in
dependent upon applications to integration theory). 

Definition 1. Let - c o < A < B < oo. A mapping A : [-4,JB]2 -» [A,B] is called 
a pseudo-addition on [.A, B] iff 

(xAy)Az = xA(yAz) associativity, 

xAA = AAx = x neutral element, 

A is increasing in each place monotonicity, 

A is continuous in each place continuity. 

It is again important that ([A, B], A) is an ordinal sum of Archimedean t-conorms 
([an,bn],Sn), n G K& (cf. Chapter 4). 

In the following (throughout the rest of the paper) we consider 3 pseudo-additions 
A, _L, II : [A, B]2 -> [A, B] with generator sets 

{km : [am,bm] -> [0,oo] : m G KA}, (46) 

{gk:[a£,b£]->[0,oo]:keK±}, (47) 

{hr.[aY,by]->[0,oo}:leKu}, (48) 

respectively (see (32) for the properties of fcm, g^ and hi). 
If A is especially an Archimedean pseudo-addition with generator k then 

An
=lUi := u\A ... Aun, Ui G [A, B], 1 < i < n, has the representation 

A?=1u. = fc<-xM f > K ) ) • (49) 

Moreover we remember the following two statements: 

A l i m A ? = 1 « = £ , (50) 
' x n—•oo 

u € ( A , B ] 

Astrict^fc(5)-oo^ f\ f\An
=lu<B& \ / / \ An

=1u < 5.(51) 
ue(A,B) n€N u G ( A , B ) nGN 

Only the last equivalence seems to be new. (Let Vue(A,B) AneN ^?=i < B be 
valid, but we assume that k(B) < oo. Now for arbitrary u G (A,B) we get from 
k(u) > 0 that there is n G N such that nk(u) >k(B). Thus we get the contradiction 
An

=l = k(~l\nk(u)) > k(-Vk(B) = B). 

In all theorems and definitions we assume that A and/or 1_ and/or II are pseudo-
additions satisfying (50)-(52). 

We now give the definition of a pseudo-multiplication. 
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Definition 2. A mapping o : [A, B]2 —> [-4,5], - co < A < B < oo is called a 
pseudo-multiplication iff 

o is increasing in both places, (52) 

(-)ox and ao( - ) are continuous on(A,B], x,a £ (A,B) (53) 

(•) o B or B o (•) is continuous in B. (54) 

This means that a pseudo-multiplication is only an increasing function of two 
variables which satisfies a weak regularity assumption. 

Let us point out the following consequences of Definition 2, which are used rather 
often in proofs (and to which we don't refer) and which are easy to prove (by 
representing the boundary point B through a monotone increasing sequence of points 
oi(A,B)): 

(•) o x and x o (•) are left-continuous on (.A, B] for all x G (A, B], 

( (•) o B is continuous in B) and (B o (•) is continuous in B). 

The problem of characterizing pseudo-multiplications o is (from our point of 
view) to add to the minimal requirements (56) - (58) a list of desiderata for pseudo-
multiplications o, so that we get a characterization with a minimal number of 'essen
tial' and 'natural' properties. As certain properties will occur repeatedly in our re
sults, we present the following list of additional properties for pseudo-multiplications. 

(CLB) (•) o B is continuous on (A,B] (55) 

(CRB) B o (•) is continuous on (A,B] (56) 

(CLZ) (•) ox is continuous in A, continuity in zero, first place (57) 

(CRZ) a o (•) is continuous in A, continuity in zero, second place (58) 

(C) Aoa = aoA = A zero element (59) 

(RU) aoe = a for some e G (A,B], right unit (60) 

(LU) eoa = a for some e G (A,B], left unit. (61) 

Let us briefly comment these properties (C, L, R, Z, U stand for continuity, left, right, 
zero and unit, respectively). 

We first remark that we require continuity (instead of left-continuity in compar
ison with Section 3) because a main tool in our considerations is the intermediate 
value theorem which is not valid for one-sided continuity. 

The conditions (CLB) and (CRB) seem to be rather naturally. 
The conditions (CLZ) and (CRZ) will be assumed often, but for many statements 

these conditions are not necessary (but simplify the proofs). 
The condition (Z) is necessary to describe pseudo-multiplications on {A} x [A, B]U 

[A,B)x{A}. 
If (Z) is valid we get for each unit immediately that e G (A, B] and e G (A, B]. 

The asymmetry of our assumptions will be continued also in the following defi
nition. 
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Definition 3. Let o be a pseudo-multiplication. 

(a) o satisfies the left distributivity law with respect to (A, II) iff 

(DL) / \ (aAb) oy = (aoy)U(boy), left distributivity law. (62) 
a,b,xe[A,B] 

(b) o satisfies the right distributivity law with respect to (-1,11) iff 

(DR) / \ a o (x _L y) = (a o x) II (a o y), right distributivity law. (63) 
a,b,xe[A,B] 

(c) A pseudo-multiplication o satisfies the left-right distributivity law with re
spect to (A, _1_, II) iff o satisfies the left distributivity law (DL) and the right 
distributivity law (DR). 

Let us mention that we always get two results because of the asymmetry of our 
assumptions: A 'left distributivity version' and a cright distributivity version'. Often 
we will only mention one result, the other one follows obviously in the same manner. 

We present now the following structure theorem for pseudo-additions which is 
surprising since the ordinal sum structure simplifies dramatically. Moreover there 
are no nonstrict Archimedean t-conorms in the ordinal sum. 

Theorem 3. Let A, _L and II be pseudo-additions and let o be a pseudo-multiplication 
satisfying (DL)-(CRB) and (RU). 

(a) If o satisfies (DR) and if e is idempotent with respect to _L then A = II = V. 

(b) If the right unit (RU) is also a left unit (LU), then there are two possibilities: 

— A = II = V and e is idempotent with respect to A, or 

— A = U, \K&\ = 1, ai = A, e G (A,bx), A] [ A , 6 l ] 2 is strict, f\a,xe[AM] a0 

x G [A,bi] (multiplication is compatible with the structure of A). 

If in addition o satisfies (Z) and (CLZ) then A = II is a strict t-conorm on [A, B}2. 

max 

strict 

We remark that (also in the following results) in the case A = II we denote the 
common generator set by {hi : [ai, b{\ -> [0, oo]|Z G K} where K = K& = Ku-
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The result in Theorem 3 shows that distributivity laws and unit elements are 
strong conditions: 

A right unit and the left distributivity law (DL) imply the equality of the pseudo-
additions under consideration. 

If the right unit and left unit coincide, then the corresponding ordinal sum con
sists of at most one Archimedean t-conorm, which must be strict (see the above 3 
pictures). 

To prove Theorem 3 we first prove the following Lemma which is also of indepen
dent interest. 

Here, and in the following, we say that la A-idempotent' instead of 'a is idempo-
tent with respect to A.' 

Lemma 1. Let A, _L and U be pseudo-additions and let o be a pseudo-multiplication 
satisfying (DL), (CRB) and (RU). Then we have: 

(a) A (a A — idempotent ==-> a o x H —idempotent); 
a,x€[A,B] 

a G (A,B] A -idempotent, x0 G (A,B), \JleKljaox0 = af => Axe[x ( ),B]ao 

x0 = af\ a G (A,B) A - idempotent, x0 G (A,B), \JlGKu a o x0 = bf =-> 

/\xe(A,x0]
a<>xv = b?-

(b) A = U (so that KA=KU=K, K = N or K = {1 ,2 , . . . , M}, and we put 
b0 = A and (if K is finite) aM+i — B); 
a A — idempotent <--> a H —idempotent <=> a idempotent. 

(c) / \ / \ [x G (A, e] V (at > A) V (Z) => a{ o x = a{). 
xe(A,B]ieK 

(d) / \ / \ [x G (A,e] V (ai > A) V ((Z) A (CLZ)) =>blox = bi). 
x€(A,B]l£K 

(e) A A A [ ^ ^ ( ^ e ] V ( a / > A ) V ( ( Z ) A ( C L Z ) - ^ a o x G [ a / , b / ] ] 
xe(A,B]leKae[at,bi] 

W A A A aox£[ahai+i]. 
x£(A,B]l€K a£[ai,bt] 

(g) / \ / \ A aoxe[bhal+1]. 
x£(A,B]l€K a€[bt,ai+i] 

\J y (aAa) o x < a j =» A|[ai6]2 strict 

ia€(oi,6.)a;6(o,B] 

W (a o A = A) A a o (•) continuous in A => A|[a,6]2 strict 

iae(aiM) 

(Һ) Л 
ІЄK 

0) л 
ІЄK 
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(j) (Z) A (CRZ) =-> / \ A| [o i f6 |p strict. 
l€K 

P r o o f of L e m m a 1. We remark that for the proof of the 3 statements of 
(a) the assumption (RU) is not needed. 

(a) Using (DL) we get (aox)U(aox) = (aAa) ox = aox. 

To prove the second statement of (a) we assume: Vxe(io BI a ° x ^ aY- ^ w e 

show 

V aox'e{af,bf), (64) 
x '€(x 0 ,B ] 

then we are done, since (68) contradicts that aoxf is II-idempotent (by (a), 
since a is A-idempotent). 

To show (68) we first consider the case that aox < b]1. Then we can choose 
xf = x because of a}1 = aoxo < aox < b}1. 

If a o x > bf then aox >bf > a* * l > af = a o xn. By the intermediate 

value theorem there is xf G (XQ,X) such that a o x ' = a* * l £ iaY^Y)-

The third statement of (a) can be proven in the same manner like (b). 

(b) If a, b e (.4, B] then a A6 = (aA6) oe = (aoe)U(boe) = aUb. 
If (a = A) V (b = A) then twice application of the theorem on ordinal sums 
yields aAB = aWb = aUb. 

To prove (c) and (d), which are the basis for the statements (f) and (g), we first 
prove 4 partial results (I)-(IV) (here we make use of (54)): 

(I) / \ f\[(al>A)V(Z)=>alox = al}. 
x£[e,B]l£K 

Proof of (I): In the case (a; > A) we apply the second statement of (a) with 
a := a/,xo := e. The case (at = A) A (Z) is obvious. 

(II) / \ /\blox = bl. 
x£(A,e]leK 

To prove (II) use the third statement of (a) with a := bi,xo := e. 

(Ill) / \ / \ [{at > A) V ((Z) A (CLZ)) => bt ox = bt]. 
xe[e,B]l£K 

First case: Let x < B. Using (I) we get bi o x > bi o e = bi > ai = a\ o x. 
Applying (CLZ) for a\ = A and the intermediate value theorem we obtain an 

element a E (a/,b\\ such that a o x = b\. This implies b\Ox = [limn_0 0(A^= 1a)]ox = 
limn-.00[(A^=1a) ox] = limn-.ootU^^aox)] = Ximn^o^^bx) = bx. 

In the last two steps of the calculation we made use of (DL) and the theorem on 
^ordinal sums. 

Second case: Let x = B. We simply apply the first case to arrive at b\ o B = 
bi o s u p ^ s x = sup : r<B(b/ ox) = 6/. 
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(IV) / \ f\aiOx = ai. 
xe(A,e]l€K 

Since Aox<Aoe<Awe may suppose w.l.o.g. ai > A. 
Assume that (IV) is not true, then we have Vxe(A,e) V te/ca\ox ^ a\. 
Using (II) we get a\ox < a/oe = a\ < b[ = b\OX, and again there exists a G (a/, b\) 

with aox = a\. 
We use again (DL) and the theorem on ordinal sums to obtain 

b{ox = [limn_oo(An
=ia)] ox = Xi^^^A^a) o x] = l i n i n g [Un

=1 (a o x)] = 
limn-.oofll^ia/] = a/, which is a contradiction to (II). 

Now (I) and (IV) imply (c) whereas (II) and (III) imply (d). 

To prove (e) to (h) we prove further statements (V)-(VIII). 

(V) A A A a o z > a * . 
xe(A,b)leKa£[ai,bi] 

(V) is valid since w.l.o.g. we may assume a\ > A (otherwise (V) is trivial) so that 
aox>a\ox = ai (here we have used (c)). 

(VI) A A A [xe(A,e]V(ai>A)\/((Z)A(CLZ))^aox<bl]. 
x£(A,b]l€K ae[ai,bt] 

Proof for (VI): Using (d) we obtain aox <biOx = bi. 

(VII) A A A a o x < a , + 1 . 

x£(A,b] l€K a£[ai,ai + i] 

By (c) we have aox < ai+\ ox < ai+\ (also if K is finite and if a/+i = B). 

(VIII) If x e [e, J5] then aox>btoe = bi. 
If x e (A, e] then aox>biOx = bi (see (II)). 

Using (V) and (VI) we get (e), using (V) and (VII) we arrive at (f), and (VII) 
and (VIII) imply (g). 

To prove (h) we assume that A|[a.^]2 is not strict. Then (55) yields 

ue(ai,bi)n£N 

We define m := min{n G N | A n
= ia = 6/} and [Y] := inf {n G Z|n > r} , r G R . 

Since a < bi we have m > 2 and [ y ] < m. Using (d) we get the contradiction 

bi < bi ox = [ A ^ a ] ox < [A^if ]a] ox = u f j 1 [(oAo) ox] < U^a < b{. 

(i), (j) We show that the suppositions of (h) are satisfied: Choose a' = hjl(^^-) G 
(ai.bi). Because of a o A = A and a o (•) is continuous in A there is x G (A, B] such 
that a' > aox = (a'Aa') ox. Finally (j) follows immediately from (i). 

Thus Lemma 1 is proven. • 
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Now we prove Theorem 3. 

P r o o f of T h e o r e m 3. By Lemma 1 (b) we have A = U. 

Proof of (a). For arbitrary a G (A, B] we get a II a = (a o e) U (a o e) = a o (e ± e) = 
aoe = a. Since also AUA = A, each element a G [A,B] is ll-idempotent, and 
thus II = V. 

Proof of (b). Note that (DR) now is not supposed, but (LU) and (RU) imply e = 
e o e = e. We distinguish two cases: 

Case A: e is A-idempotent. Then for all a G (A,B] we obtain aU a = 
(aoe) II (a o e) = (eAe) o a = e o a = a. Like in (a) we get II = V. 

Case B: e is not A-idempotent. Then (by the theorem on ordinal sums) 
there exists L G K such that e G (ai,bi). Thus Lemma 1(f) implies for all 
x G (A, B] : x = e o x G [aL,, aL,+i]. But this means aI, = A and aL,+1 = B, so 
that K = {L}. 

If in addition o satisfies (Z) and (CLZ) then Lemma 1 (e) yields for all x G 
(A,B] : x = e ox G [a/,, bL,], so that bL, = B. 

Thus we have shown: \K\ = 1,a\•= A,e G (A,bi), moreover bi = B if (Z) and 
(CLZ). 

To prove the final statement, let (an)ne^ C (A, B] with limn_oo an = A. Then 
A < e o A < limn_,00(e o an) = limn_>00 an = A. Thus (e o A = A) and e o (•) 
is continuous in A so that Lemma 1 (i) shows that A|y4^1]2 is strict. 

Finally f\a xe<A 6 i aox < bi ob i = bi so that a o x G [A,b\] for all a,x G [-4,bi]. 

Thus Theorem 3 is proven. • 

Let us remark that the weak but complicated looking assumption in Lemma 1 
cannot be omitted. For an example we refer to [19]. 

Example 1. If we take for o the classical multiplication and for A = II the classical 
addition (and restrict both operations to a finite interval) then the left distributivity 
law is not satisfied: Let A = 0 and 1 < B < oo, and define: 

aAb = aUb= (a + b) AB, a o x = (a • x) A B. 

Then (57) is not satisfied. Take a = b = |JB and x = \ to get: 

(aAb) o x = B o\ = \B <-B = \BU\B = (aox)U (box). 
2 2 4 o o 

This example shows how much the distributivity laws restrict the choice of pos
sible pseudo-additions. Thus it seems reasonable to restrict the domain of the dis
tributivity laws. 
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To do this we define for each pseudo-addition A, _L and II the sets (see (50) - (52)): 

Dд = { б £ : m Є f f д } , 

Dx = {bi : k Є Kx}, 

Du = {bУ:lЄ Ku}, 

(65) 

(66) 

(67) 

respectively. 

These notions will be used in the rest of the paper without any further reference. 

Definition 4. (a) A pseudo multiplication o satisfies the weak left distributivity 
law with respect to (A, II) iff 

(DL*)aAb(£D& = * {aAb)ox = {aox)U{box) for all a,6,x <E {A,B}. (68) 

(b) A pseudo multiplication o satisfies the weak right distributivity law with 
respect to (-1,11) iff 

{DR*)x ±y(£ D± =>ao{x ±y) = {aox)U{aoy) for all x, y, a E (i4,fl].(69) 

(c) A pseudo-multiplication o satisfies the weak left-right distributivity law with 
respect to (A, _L, II) iff o satisfies the weak left distributivity law (DL*) and the weak 
right distributivity law (DR*). 

Note that (72) and (73) mean that we omit in the domain of validity of the 
distributivity laws all 'right boundary points of Archimedean intervals' in the ordinal 
sum of A and J_, respectively. This condition seems to be much weaker than the 
condition 

aăb < B => (aЛò) o x = (aox) U (box) foг all a,b,x Є (A,B]. (70) 

which could be considered as natural generalization of (17). Indeed, let us show that 
(74) implies (DL*). 

The case Vm€KA
 bm = B i s trivial. So let AmeK* bm < B- T h e n t h e r e i s a 

sequence (an) C (-4,-3) satisfying an ] B and an is A-idempotent for all n G N. 
Now let a, 6, x G {A, B], Thus we get (a A an)A(b A an) < anAan = an < B and 

{aAb)ox = ( sup(aAa n ) Л sup(bAa n) 

= ( sup[(a Л a n )A(b Л an)] ) o x = sup([(a Л an)A{b Л an)] o: 
\nGN / nGN 

= sup([(a Л an) o x] II [(ò Л an) o x]) 
nЄN 

= ( sup[(a A an) o x]) II ( sup[(6 A an) o x] 
VnGN / VnčN 

• ( 
з и р ( а Л а п ) ox) U sup(ò Л an) 

nЄN 
o x ) = (а o x) II (òo x). 



414 W. SANDER AND J. SIEDEKUM 

Moreover, in (72) and in (73) we can omit also the left boundary points of Archimedean 
intervals in the ordinal sum of A (and _L), respectively. Thus (DL*) is equivalently 
to the following condition (DL**): 

(DL**) aAb (£ DA U {am\m G KA} = > (aAb) ox = (aox) U (box) (71) 

for all a,b e(A,B], x e (A,B). 

To prove this we have only to show that (DL**) => (DL*). 
We consider first the case x G (A,B). Moreover, let a,b G (A,B],aAb = a„\ £ 

D A - Then obviously am > A and a,b < am (a = aAA < aAb = am, analogously 
b < am). But now we obtain (a = am) V (b = am) (otherwise a, b < am and because 
of am T*- bm_l there is an element cG (a V b, am) which is A-idempotent. This gives 
the contradiction aAb < cAc = c < am). 

Because of (a = am) V (b = am) let w.l.o.g. b = am and choose a sequence 
(cn) C (am, bm) with Cn lb. Using a < am, the theorem on ordinal sums and (DL**) 
we arrive at aAc n = (a V cn) = Cn G (am, bm), and finally at 
(aAb) ox = limn_,00[(aAcn) ox] = limn_+00[(ao:r) II (cn ox)] = (aox) U (box). 

Now we consider the case x = B in which we obtain (using the case x G (A, B)) 
(aAb)oB = (aAb)o\imx-+B- x = limx_+£-[(czAb)o:r;] = limx->B-[((aox)U(box)] = 
[ l im^B-(aox)] II [ l im^B-(box)] = (aoB)U(bo B]. 

In the next remark we point out a connection between (DL) and (DL*). 
If (CRB), (RU), (Z) and (CRZ) are satisfied then the following equivalence holds: 

(DL) <=* (DL*) A / \ A|(aAbA]2 is strict. (72) 

The one implication is Lemma 1 (j). 

To prove the other implication, we distinguish 5 cases (see (66)): 

Case 1: y = A : (aAb) oA = A = (ao A) U (bo A). 

Case 2: a = A: (AAb) oy = boy = (Aoy)U (boy). 

Case 3: b = A : Analogous to Case 2. 

Case 4. a,b,y G (A,B] A aAb ^ F>A : (DL*). 

Case 5: a,b,y G (A,B] A aAb G D&: Thus let aAb = bm,me K& where w.l.o.g. 
a < b (since A, II are commutative). 

Then a,b < bm (for example, a = aAA < aAb = bm). Using the hypothesis of 
strictness we get 

k-^oo) = bm = aAb < (am V 6)A(a£ V 6) = km
1(2km(am V 6) 

which implies 2km(am V 6) = oo, that is (a£ V 6) = 6£, or 6 = 6£. 
Now we choose a sequence (6n) C (a^ ,6^ ) with 6n | 6 and show, that (an A 

6n)A6n $ DA for all n € N: am < bn = AAbn < (a A 6n)A6n < 6nA6n = 
km

i(2km(bn))<km\cc] = bm. 
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To prove (DL) we finally consider two subcases. If y G (A,B) then (DL*) implies 

(aA6) o y = ( lim [(a A bn)Abn]) o y = lim ([(a A 6n) A6n] o x) 
\n—•oo / n~*oo 

= lim ([(a A 6n) o y] U [6n oy])=( lim [(a A 6n) o y]) U ( l i m K o y]) 
n—*oo \n—•oo / \JI—'uu / 

= (aoy)U(boy). 

If y = B then the case y G (J4, JB) leads to 

(aAb)oB = lim [(aA6) o y] = lim [(aoy) U (6oy)] 
y—>B- y-+B-

lim (aoy) 
3/-.B-

U lim (бoy) 
«-»в-

= ( o o B ) U ( 6 o B ] ) . 

Thus (76) is proven. 
We remark that in the above case 5 the following result is included: 

(DL*) implies : 

A A [ A l [ a ^ , 6 ^ ] - s t r i c t A a A 6 = & m ^ (aA6)ox = (a o x) U (6 o x)]. (73) 
mGKA a,b,x€(A,B] 

Example 2. The following example shows that the classical addition and multi
plication (restricted to finite intervals) is now not excluded from our considerations: 
If we take for example A = 0 and 1 < B < oo, and aA6 = a _ I 6 = a U 6 = 
(a + 6) A JB, o o x = ( a - x ) A B , then o is commutative and left right distributive 
with respect to (A,_L,U). For example, o satisfies (DL*) since aA6 < B implies 
(aA6)ox = (a + b)ox = [(a + 6)-x] AB = [ax + bx]AB = [(ax) AB + (bx) AB] AB = 
[(a o x) + (6 o x)] A B = (a o x) U (6 o x). 

Before we present an analogous result to Theorem 3 in the 'weak distributive 
case (DL*)', we need a technical Lemma: In case of the 'strong distributive case 
(DL)' the implication '6 < A n

= 1a => 6ox < U n
= 1 (aox) ' is valid. This implication, 

which is very important and which will be used very often, will be generalized by 
the following Lemma. 

Lemma 2. Let A be a pseudo-addition and let o be a pseudo-multiplication sat
isfying (DL**). If m G KA then we have for all a G (a^,6^) : 

(a) A V V (A?=1c = o ) A ( 6 £ > A f = 1 c > 6 ) . 

(b) A V A box<UU(aox). 
6e(a,6£)-eNxe(.4,B) 

(c) A|[aA6A]2 not strict =*> \f f\ f\ box < Ua
i=1(aox). 

* € N 6 6 ( 0 i 6 £ ) i € ( / l , B ) 
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(d) / \ / \ 6 £ o „ < U £ 1 ( a o „ ) . 
aG(a£,6£]*e(A,B] 

(e) Al[a*,6*]' not strict =» A V A bmox<Ut=l(aox). 
a€(aS,6^]«GNxe(-4,.B] 

P r o o f . 

(a) Let 6 G (a, fc£) be arbitrary, but fixed. Using 6Aam = (6 V a£) = 6 < b£ the 
continuity of A yields d G (a, 6m) such that 6Ad < 6m. 

Because of fcm (0) = am and the continuity of fcm ' there is n G N such that 

Now choose c := A;^X) ( - - # - ) and H := \ j ^ ] G N (remember that \r] = 

inf{n G Z|n > r}) and get A?=1c = fe^"X) ( n - - ^ - ) = a and 

6* > 6Ad > bAk^ (*-£-) = fe^tM*) + ---£>) 

nkm(b) " fcm(a) > m(-i) ( r ^ W i . __0^i 
fcm(o) "J n J ~ \ km(a) n J 

= k^HN • km(c)) = AIIC > k^ (rpM. tuM) = b. 
\ km{a) n J 

(b) Let 6 G (a,6m). Making use of (a) we get Aj€{i,2,...,iV} A i = i c ^ ( f l ^ m ) -

Since N > n there is r/ G N and £ G {1 ,2 , . . . , n} such that N — q - n + t. 

Choose 5 := q + 1 G N to get for arbitrary x G (A, B) (using (DL**): 

6 o x < (A^c) o x - (A^+ 'c ) o x 

- [ U « = 1 ( A ? = 1 c ) o z ) ] U ( ^ 

(c) If A|[aA6A]2 is not strict then fcm(6£) < oo so that s' := [ ^ ( f ^ ' l + 1 G N. 

Now let 6 G (a, 6m) and let x G (J4, £?) be arbitrary. Choose n, TV, <7, G N like in 

(b). Then we obtain , < £ = I f ^ l < „ ^ + D < % f g ? + 1 < *'• 
Like in (b) we get (using the last inequality) 6ox < . . . < [U?=1(ao„)]U(aox) < 
UfUaox). 

(d) W.l.o.g let a G (a m ,6 m ) (otherwise (d) is trivially satisfied). By (b) we have 

A6_(a,6£) V5_N AxG(A,B) b ° X - U*=l ( a ° *) - U S l ( a < > ^ -

In case I we consider x G (A, B) : 6m o „ = lim6_>6A_(6ox) < U^_x(aox). 

In case II, where we treat x = JB, we use case I and monotonicity of o: 6mo£? = 
lim6_>_-(6mo„) < l i m 6 - , B _ U £ 1 ( a o x ) <Mf=l(aoB). 
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(e) Again, we assume w.l.o.g. that a G (a£,&£). 

Case Ixe(A,B). We get, using (c): b£ox = lim6_^6A_(box) < II?= 1(aox). 

Case II, x = .B:6£oB = l im 6^fl-(6£ox)<H^^ 

Thus Lemma 2 is proven. • 

Let us now present a structure theorem for pseudo-additions if the pseudo-
multiplication satisfies (DL*) (compare with Theorem 3). 

Theorem 4. Let A and II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*),(RU) and (LU). 

Then there are 3 possibilities: 

(a) A = II = V, e is idempotent with respect to A, e ^ D A -

(b) A = II , \K\ = 1, ai = A, e G (-4,bi], a o x G [_4,bi] for all a,x G [A,bx] 
(multiplication is compatible with the structure of A). 

If &i < B then A] [AM]2 ls strict. 

If o satisfies (Z) and (CLZ) then bi = B. 

(c) A = II, \K\ = l,6i = B,e G (a i ,£?] ,aox G [a\,B] for all a,x E [ai,J5] 
(multiplication is compatible with the structure of A). 

If ai > A and if o satisfies (CRB) then A][ai?Bj is non strict. 

non strict 

mаx 

We see that also weak distributivity laws and unit elements restrict the structure 
of the pseudo-additions: We get equality of the pseudo-additions under considera
tion. Moreover the corresponding ordinal sum consists of at most one Archimedean 
t-conorm. 

Let us now prove Theorem 4. 

P r o o f of T h e o r e m 4. We proceed like in the proof of Theorem 3 and prove 
at first a Lemma, to present a clearly structured proof of Theorem 3. 
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Lemma 3. Let A, ± and II be pseudo-additions and let o be a pseudo-multiplication 
satisfying (DL*) and (RU). Then we have: 

(a) / \ [ (a $ F)A V (a < B)) A a A - idempotent => a o x U -idempotent ], 
a,xG[A,B] 

a e (-4,-3) A -idempotent, x0 e (-4,2?], \J aox0 = af => A aox0 = ajP, 
lGKu x€[x0 ,B] 

a G (-4,5) A - idempotent, x0 e (.4,2?], \J aox0 = b]1 =-> A ao.x0 = bf. 
l£Ku xG(A,xo] 

(b) A = II (so that 2fA = Ku = K, K = N or K = {1 ,2 , . . . , M } , and we put 
bo = -4 and (if 2f is finite) aM+i = B; a A —idempotent ^ a II—idempotent 
^> a idempotent) 

(c) / \ / \ [[x e (A,e] Abi < B]V[x e [e,B] A (at > A] V [at = A A (Z)] => 
xGM.BWEK xЄ(A,B]ІЄK 

a/ o x = a{] 

(d) /\ /\ [[x e (A, e]Abt<B]\/[xe [e, B] A (at > A) V [(Z) A (CLZ)])] => 
xG(A,B]-GK 

btOX = bi] 

(e) A A A [ ^ M l V ( f c i < B ) ^ a o x G [ a i , a i 4 
xG(A,B]/EKaG[a/,6 f] 

( f) A A A [x G (i4,c] V (a/>i4)V((Z) A (CLZ)) => a o x G ^ - i , ^ ] ] . 
xG(A,B]/GKaG[a f,bi] 

( g) A A A a o x G [b/_i,a/+i]. 
xG(A ,B]^KaG[a f ,6i] 

(h) A A A [ ^ < - 5 ^ a o x G [ b / , a f + 1 ] . 
xG(A,B]/GKaG[bi,aH_i] 

P r o o f of L e m m a 3. Again, we remark that for the proof of the 3 statements 
of (a) the assumption (RU) is not needed. 

(a) First case: Let x G (A,B). 

Subcase (al). If a ^ 2) A then (DL*) implies (aox)II(aox) = (aAa)ox = aox. 

Subcase (a2). We may assume that there is m G K& such that a = bm < B . 

Since A is continuous and because of bm+1 > bm = bm Ab^ there is a sequence 

(an) C (bi\,B] satisfying limn_oo«n = &m a n d a n A a n G ( 6 m , b m + 1 ) for all 

n e N. Thus we obtain (using (DL*) 
[b£ox]II[b£ox] = [limn_oo(an0.x)] II [limn_oo(an<>.r)] = limn_>oo[(anox)II 
(an ox)] = l im n _oo[WAa n ) ox] = [limn_oo(anAan)] o x = (b£Ab£) o x = 
bn\ox. 
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Second case: x = B. We use the first case: 

[ao£]II[ao.B] = [\lmx-+B-(aox)]U[limx->B_(aox)] = \imx^B-[aox]U[aox] = 
limx_>£-(aO-E) = aoB. Thus the first statement of (a) is shown. 

The second and third statement of (a) are proven exactly like the second and 
third statement of (a) in Lemma 1. (No use of (DL), (DL*), (RU) or (CRB) . 
is made.) Note that the case ''Box'' is not II-idempotent can occur: In the 
example before Lemma 2 we have B o x = x • B is not II-idempotent. 

(b) We first show f\ae[A,B](a A-idempotent <& a II -idempotent). 

W.l.o.g. we may assume, that a G (A, B) (since AAA = A = A II A, BAB = 
B = B II B). If a A—idempotent, then the first statement of (a) implies that 
a = a o e is II—idempotent. 

To prove the converse we assume that a is II—idempotent, but not A—idempotent. 
Then there is m G K& such that a G (a^ ,b^) . Thus we get the contradiction 
(using Lemma 2 (d) and (RU)) 6* = b*oe < Uflx(aoe) = limn_00(UJ l

=1a) < 

e 
Thus the theorem on ordinal sums yields: K& = Ku =: K, [a^,b^] = 
[alU»6Pl = : [ahbi], and it suffices to show /\leK A(a,6)G(ai)bo2 a A b = aUb' 

Let / G K and let a G (ai,b{) be arbitrary, but fixed. We define M := {b G 
[a/,bj]|aAb < bi} and ba := supM. Then M ^ 0 (since aAa/ = aVai = a < bi) 
and aA6a = bi (If otherwise aAba < 6/ then - because of ba < bi - there is 
b G (ba,bi) satisfying aAb < bi which contradicts ba := supM. 

Case 1: If b G (a/, ba) then aAb G (aj, 6/) and using (RU) and (DL*) we obtain 
aA6 = (aAb) o e = (a o e) II (b o e) = a II b. 

Case 2: If 6 = ba G (ai,b{) then there is a sequence (bn) C (aj,ba) with 
limn_,00 bn = ba so that case 1 implies 
aA6a = limn_k00(aA6n) = l imn_0 0(a II bn) = a II ba. 

Case 3: If b G (ba,bi) then we get from the monotonicity of II and A bi = 
biUbi > aUb > aUba,bi = biAbi > aAb > aAba. Using aAba = h and case 
2 we arrive at a I I6 a = aA6 a = h so that finally aAb = a l ib = b/. This proves 
(b). 

To prove (b) and (c) we prove at first-like in the proof of Lemma 1-4 statements 
(I)-(iv). 

(-) A*6[e>B] A.e/c[(at >A) V (Z) =^ ^ o x = a,]. 

Proof of (I): Case 1. If (a. > A) then we use the second statement of (a) with 
a := ai,xo = e. Case 2. The case (a. — A) A (Z) is trivial. 

(H) Axe(^,e] A.e*[(&« < B) =^ 6, o x = 6,]. 

To prove (II) we use the third statement of (a) with a := 6,, XQ := e. 



420 W. SANDER AND J. SIEDEKUM 

( m ) A.€[c,fl] f\ieKKai >A)V ((Z) A (CLZ)) =» bt ox = b/]. 

Proof of (III). Case 1. Let x < B. Then we have by (I): 6/ o x > 6/ o e = 6/ > 
a/ = a/ o x. Applying (CLZ) for a/ = A and the intermediate value theorem 
we get a G (a/,6/] satisfying a o x = 6/. Using this and Lemma 2(d) we get 
bi < bi o x < U ^ - ^ a o x ) = limn_»00(II£==1&/) = 6/.par Note that in comparison 
with Lemma 1 we have used Lemma 2 (d) instead of (DL). 

Case 2. If x = B then case 1 leads to b/OF? = 6/Osupx<B x = supx<B(biOx) = b/. 

( IV) Axe(A,e] A / G K I ^ <B=>atox = a/]. 

Like in the proof for Lemma 1 (IV) we may assume that a/ > A. Assume that 
(IV) is not true, then we have Vxe(A e) V/e/c a/ o x ^ a/. 

Using (II) we get a/ o x < a/ o e = a/ < b/ = 6/ o x, and again there exists 
a G (a/, bi) with a o x = a/. Now we again apply Lemma 2(d) to get the 
contradiction a/ < b/ o x < I l g ^ a o x ) = limn_00(IIJ_1a/) = a/. 

Thus (I) and (TV) prove (c) and (II) and (III) prove (d). To show (e)-(h) we 
first prove the statements (V)-(VIII). 

(V) A*£(A,B] A/G/c Aae[a„6,][* G fcB] V (bt < B) =» a o x > a/]. 

We distinguish 2 cases. If x G [e,J3] then we have a o x > a\ o e = a/. If 
x G (A, e] A (6/ < JB) then again we get (using (IV)) a o x > a / O x = a/. 

(VI) Ax€(A,B] A.6/c Aa6[a„bi][* € (.4.e] V (a, > .4) V ((Z) A (CLZ)) => a o x < 6,]. 

To prove (VI) consider first the case that x G (J4, e] : Then a o x < 6/ o x = b\. 
If now [x G [e, 5] A [(a/ > A) V ((Z) A (CLZ))] then again (by (III)): a o x < 
bi ox = 6/. 

( V I 1 ) Axe(A,B] A / G K A a e f o . ^ , ] a o x -- 6«-i -

If x G [e, JB] then a o x > b/_i oe = b/_i, and if x G (-4,e] then (II) implies 
aox > bi-i ox > b/_i (also if 6/_i = A). 

(VIII) A*€(A,B] A/GK Aa€[a,,al+1]
 a ° X ^ a ' + l ' 

We prove (VIII). Let x G (-4,e]. Then a o x < a/+i o e = a/+ i . If x G (e, JB] 
then (I) yields a o x < a/_Li o x < a/+i (also if a/+i = B). 

Now we use (V) and (VIII) to get (e), and (VI) and (VII) give (f). Further, (VII) 
and (VIII) lead to (g) and (h) (in the last case the assumption 6/ < B is needed (see 
(VII)). 

Thus Lemma 3 is proven and we see, that the proof for Lemma 3 is still more 
technically in comparison with Lemma 1. The reason is, that now Lemma 2 replaces 
in some respect the assumption (DL) of Lemma 1. • 

Now we prove Theorem 4. We make use of Lemma 3 (b) and get A = II. Note 
that by hypothesis e = e. Now we distinguish two cases: 
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Case 1: (e idempotent) A (e £ D A ) and Case 2: (e is not idempotent) V (e G - D A ) -

In Case 1 we show tha t a is Ll- idempotent for all a G [A,B]. Indeed, first 
AUA = A, but we have also for all a G (A, B] (using (DL*)) : a l i a = ( eoa )U(eoa ) = 
(eAe) o a = e o a = a. Thus II = V, and (a) is proven. 

Now we t reat Case 2. Then there exists L G K such tha t e G (a/,6;], and 
Lemma 3(g) implies a; = e o x G [ 6 _ - I > _ L + I ] for all x G (-4, £?]. Thus we obtain 
(6L_i = A) A (a/,+1 = .B) which leads to K = {L}. Therefore we have shown tha t 
\K\ = 1 and e G (a i ,b i ] . 

To prove tha t a o x G [ai ,b i] for all a , x G [ai,bi] we show: a i o a i > a i and 
b\ob\ < b\. Assume tha t a i o a i < a\. Then there exists a G (a i ,b i ) with a o a i < a i . 
But then a o a i is idempotent, and Lemma 2 (d) yields the contradiction a i = e o a i < 
bioai < I I ^ T ( a o a i ) = a o a i < a i . Thus a i o a i > a i , but Lemma 2 (d) also implies 
bi o b i < I l g ^ e o b x ) = l im n _ 0 0 ( I I J_ 1 b i ) = bi. Finally we get for all a,x G [ai ,b i] : 
a\ <a\Oa\ < aox < b\ob\ < b\. 

Now let bi < B, but we assume tha t A ^ ^ p is not strict. Then Lemma 2 (e) 

implies V 5 € N Axe(A,B] b\ ox < I I J = 1 ( e o x ) = Us
i=lx. 

Using this, b\ < B and Lemma 2(b) we obtain Axe(a1,e]'?1 ° x = ^1 a n d S e t the 
contradiction bi = limx_4a i + (bi o x) < \[mx->ai + (Us

=1x) = Us
=1a\ = a\ (here we 

have used tha t IIf=1 is continuous on [A, B]3). 
To prove the remaining s tatements in (b) and (c) of Theorem 4 we first show: 

a i > A V ((Z) A (CLZ)) => b\ = B. Indeed, Lemma 3 (f) yields AXG(A,B] x = e o x G 

[A,b\] so tha t bi = B. 

Finally, let a\ > A A (CRB), but assume tha t A ^ ^ p is strict. Then (54) and 
(77) imply for all a G (a i ,b i ] : bi o a = l im r i ^ 0 0 [ (A7 = 1 b i ) o a] = l i n i n - ^ U ^ ^ b i o 
a)] > l i m n - ^ o o t l l ^ ^ e o a ) ] = I l ^ a = b\. On the one hand this gives bi o a i > bi 
(because ofq (CRB)). On the other hand Lemma 2 (d) leads to bioai < U g 1 ( e o a i ) = 
l im n _ f 0 0 ( I I^ = 1ai) = a i < bi. This contradiction proves Theorem 4. • 

6. SUMMARY 

Assuming the distributivity law, introduced in Definition 3, we get an unexpected 
structure result for pseudo-additions: The ordinal sum consists of at most two sum-
mands, and no nonstrict Archimedean t-conorm can occur. A similar result is t rue 
in the case of a weak distributivity law, but here nonstrict Archimedean summands 
can occur. 

Although the proofs are ra ther technically, the methods used in our investigations 
are of elementary character. 

(Received October 27, 2004.) 
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