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KYBERNETIKA — VOLUME 41 (2005) , NUMBER 6, PAGES 7 7 3 - 7 8 6 

HAZARD RATE MODEL AND STATISTICAL ANALYSIS 
OF A COMPOUND POINT PROCESS 

P E T R VOLF 

A stochastic process cumulating random increments at random moments is studied. 
We model it as a two-dimensional random point process and study advantages of such an 
approach. First, a rather general model allowing for the dependence of both components 
mutually as well as on covariates is formulated, then the case where the increments depend 
on time is analyzed with the aid of the multiplicative hazard regression model. Special 
attention is devoted to the problem of prediction of process behaviour. To this end, certain 
results on risk processes and crossing probabilities are recalled and utilized. The application 
deals with the process of financial transactions and the problem of detection of outlied 
trajectories. 

Keywords: counting process, compound process, Cox regression model, financial series, 
intensity, prediction 

AMS Subject Classification: 62G05, 62M09 

1. INTRODUCTION, COMPOUND POINT PROCESS 

We study the compound point process composed from random increments Yj occur
ring at random time points 0 < T\ < Ti < . . . . It can be written as a random sum 
C(t) = Y,Yr i P j < *]. (C(0) = 0), or formally also as 

C(t)= /V(s)d/V(s), (1) 
Jo 

where N(t) is the counting process corresponding to the random point process of time 
moments. The model is suitable for the description of many real-world engineering, 
environmental, economic, biological, and also financial processes (particularly from 
the field of insurance, cf. Asmussen, [3], Rolski et al. [12]. 

The model of a compound point process is standardly given by the intensity of 
a random point process and by the distribution of increments. A general model 
should consider also the mutual dependence of both process components as well as 
their dependence on covariates. Such a dependence uses the notion of the filtration 
(^(t), .say), a non-decreasing sequence of cr-algebras defined on the sample space of 
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{N(s),I(s),Z(s),Y(s), 0 < s < t}. Here I(t) and Z(t) are T(t~) measurable pre
dictable processes, the indicator of observability of C(t) and a covariate process, by 
F(t~) we denote the left-continuous version of filtration, a 'history'. The behaviour 
of the counting process N(t) is governed by its hazard rate h(t, z). As regards the dis
tribution of random variables Y(t), it is as a rule assumed that the conditional distri
bution of Y(t), given F(t~), can be described via a density function f(y, t, Z(t)), i. e. 
it can depend on a set of covariates, too, and it possesses the first and second condi
tional moments E(Y(t)\F(t~)) = m(t,Z(t)), var(Y(t)\F(t~)) = a2(t,Z(t)). In Volf 
[15] it has been proven (for a slightly less general setting) that the rate of cumulation 
of C(t), given by k(t, z) = h(t, z) • m(t, z), is estimable consistently, further, that the 
process f0 k(s, Z(s))I(s) ds is the compensator of C(t) and the residual martingale 
has the variance process (M)(t) = f0 (a2(s, Z(s)) + m2(s, Z(s))) h(s, Z(s))I(s) ds. 

The process of such a type can also be treated as a marked point process (e. g. 
Bremaud [4]), however, in our case such a characterization of increments as marks 
does not help us much to solve main problems, namely estimation, testing and 
outlied trajectories detection (though it can be useful for classification and selection 
of sub-processes). 

Though the model outlined above is rather general, we still feel certain inconsis
tency of such a description combining two styles of characterization of probability 
distribution. That is why, the objective of the present paper is to propose a model 
characterizing both process parts, i. e. also the distribution of increments, with the 
help of hazard rates. We shall also consider the mutual dependence of both com
ponents via a regression model. Hence, the process can be regarded also as a 2D 
random point process, though its two components are not 'balanced', in the sense 
that the event 'increment' is not possible without the occurrence of the 'time point'. 
Processes of such a kind are studied for instance in the monograph of Jacod and 
Shiryaev [7]. 

The paper has the following parts: Part 2 collects certain well known results con
cerning the simple case of compound Poisson process, which will be used in further 
sections, namely the results on the ruin probability problem and the construction of 
prediction lines. Then, in Part 3, a quite general model with covariates will be for
mulated. Further, Part 4 presents a main results of the paper, it studies a particular 
case with time-dependent increments described with the aid of a nonparametric ver
sion of the multiplicative hazard regression (Cox) model, namely with the response 
function estimated as a histogram function and then secondary smoothed. We shall 
recall the methods of estimation of Cox model components and we shall show the 
consistency of estimates for our case. The practical application then will deal with 
the process of financial transactions and with the problem of detection of outlied 
(atypical) trajectories. The method uses the fact that the cumulated intensity ac
tually represents the transformation of the process to the scale of Poisson process 
with intensity one, which, in our case, holds for both components of the considered 
two-dimensional process. 

In certain cases it will be necessary to distinguish between the hazard rate (or 
hazard function) and the intensity. By the hazard rate of a continuous random 
variable we mean h(x) = f(x)/(l - F(x)), where f(x), F(x) are the corresponding 
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density and distribution function. More generally, the hazard rate is a nonnegative 
function used in the model of random point process. The intensity then denotes 
the actual rate (local probability) of random event occurrence, it can depend on the 
(past) development of the process and on the covariates. Then, each trajectory of 
the process can have its own intensity (though they have the same model, the same 
hazard rate). 

The methodology for Cox model analysis is collected for instance in Andersen 
et al. [1]), the treatment of the nonparametric version can be based for instance 
on the results on consistent spline models derived by C.J. Stone (e.g. Stone [13], 
Kooperberg et al. [8]). We shall use the histogram approximation which is actually 
a special case of spline model. There also exists a number of papers and monographs 
dealing with crossing probabilities of special types of compound processes and with 
connected problems, for instance Embrechts et al. [5], Asmussen [3], Rolski et al. 
[12]. In the next part we shall recall certain useful results from this field. 

2. CROSSING PROBABILITIES FOR COMPOUND POISSON PROCESS 

Let C(t) represent a process of insurance claims, they should be covered from a 
fund u + vt at time t. Then R(t) = u + vt — C(t) is the risk process and the 
event R(t) < 0 means the ruin. Hence, the problem is how parameters u, v (initial 
capital and income rate) should be selected in order to keep the ruin probability 
P(initR(t) < 0) less than a given a (either on [0,T] or [0, co)). Notice that the 
problem of selection of u, v is actually equivalent to the construction of a linear 
prediction band, i. e. such a line that the process C(t) lies below it with probability at 
least I—a. Though the basic results concerning the Pollaczek-Khinchin convolution 
formula for ruin probability, its Cramer-Lundberg approximation, e tc , date back to 
20-ties and 30-ties of the last century, the problem is solved explicitly only for the 
simplest cases. Namely, let us consider the compound Poisson process consisting of 
a homogeneous Poisson process of random time points with constant hazard rate 
h and of increments distributed identically and exponentially (with hazard rate y, 
i.e. EY = l /#) . Moreover, let all components be mutually independent. Notice 
also that the projection of C(t) to the vertical axis is again a homogeneous Poisson 
process. For such a compound Poisson process and infinite time interval the exact 
formula for the crossing probability has been derived (see for instance Rolski et al. 
[12]): 

'(¥«»<')-ï-'(--f-)-<l-'>"'' (2) 

where p = (v — h/g)/v compares the growth rate of the reserve v with the mean of 
claims (per time unit) h-EY, p > 0 is the basic condition for the existence of solution. 
Hence, for given a and selected v > h/g the corresponding u = — ln(a / ( l —p))/(pg)-

As regards another simple case, namely the upper prediction limit for the trajec
tories of the standard Poisson process (i. e. with hazard rate h = 1 and non-random 
increments equal to one), it can be obtained (computed or randomly generated) from 
the corresponding Pollaczek-Khinchin formula. Namely, the probability of crossing 
the line u + v -1, when u > 0,v > 1, is given by a finite sum (e.g. Asmussen [3], 



776 p. VOLF 

Part III. 3d): 

P(u) = 1 - (1 - p) £ e~»^ Іp{k-U)) 

kl 

where p = 1 — p from above. Other possibility is to use the Cramer-Lundberg 
approximation P(u) ~ (v — \)/(rv + 1 — v) • exp(-ru), where r is the positive 
solution of exp(r) — 1 = r • v. 

At present the research in the area of compound processes is focused mainly to the 
cases with sub-exponentially distributed increments (i. e. distributions with heavy 
tails) corresponding to many real situations. On the other hand, the models allowing 
for dependence (mutual or on common covariates and history) of increments and 
times are not so frequent, due many both theoretical and methodological difficulties. 
In Parts 4 and 5 we shall study one such a case and propose at least an approximate 
method of solution. Nevertheless, let us first consider just a slight generalization of 
the preceding case, the nonhomogeneous Poisson process of times with general, but 
still i.i.d. increments, in order to recall the way of estimation of hazard rates. 

2.1. N o n h o m o g e n e o u s c o m p o u n d Poisson process 

Let the process of times N(t) be nonhomogeneous Poisson process with hazard rate 
h(t) and the distribution of increments Y(t) be given by hazard rate g(y)- We still 
assume that both components are independent ijiutually; this is the most serious re
striction of such a model. Increments are therefore i.i.d. random variables, however, 
we describe them as a set of point processes Sj(y), say, with only (maximally, in the 
case of censoring) one point - the value of increment. Denote H(t) = J0 h(s) ds and 
G(y) = J0 g(x) dx cumulated hazard rates. 

Let n realizations be observed in [0,T], without censoring, so that the data are 
Ni(t), Ci(t), i = 1,. . . ,n, each with time points 0 < Tu < • • • < Tim < T, (m = 
rm = Ni(T)), and increments Yij, j = 1,. . . ,mi. Let us first recall the likelihood 
process of h(t) based on observed counting processes Ni(t): 

vt=n {nhit)dNdt) • exp (- [ h i t ) A}» 

(3) 

and the corresponding Nelson-Aalen estimate of cumulated rate H(t): 

i = l oyi i = l i = l j 

Similarly, the likelihood of rate g(y) of the increments distribution can be written 
a s n rm ( , -oo \ "j 

vv=n n \ n so/)d5ij(y) •<*?(-/. g^aw ^) \, 
i=lj=l U>o \ Jo J ) 

where Jij(y) are random indicators, Jij(y) = 1 for 0 < y < Yij, Jij(y) = 0 otherwise. 
Hence, at fixed y, J(y) = YJi=i Z)j Jij(y) i s t h e number of increments larger than y 
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(J(y) is called the risk set in the field of survival analysis). Again, the estimator of 
Nelson-Aalen type for G(y) yields 

w krJ°' E Z - I ^ J k i ^ ~kr^EiJura)' 
These estimators are consistent (uniformly on each bounded interval [0,T] x [0,Y]) 
and asymptotically normal (in the sense of convergence of properly normalized resid
ual process to the Wiener process). Estimates of hazard rates h(t) or g(y) are as a 
rule computed with the aid of kernel smoothing of increments AH(Tij), AG(Yij). 

3. A GENERAL MODEL OF CUMULATIVE PROCESS 

Let us now formulate a rather general description of process C(t). We shall model 
its time component, N(t), as a counting process, with (possibly random) intensity 
process X(t) = h(t,Z(t)) • I(t), where h(t,z) is a hazard rate, Z(t) is a covariate, 
which may depend on time and be random, too, I(t) is the indicator of observ
ability (I(t) = 0 if N(t) is censored or terminated). The corresponding filtration 
F(t) is a nondecreasing sequence of a-algebras generated by {N(s),I(s),Z(s),s < 
t}. Then N(t) = M(t) + L(t), where M(t) is a martingale adapted to F(t) and 
L(t) = JQ A(s)ds is the cumulated intensity, X(t), Z(t), I(t) are adapted (measur
able with respect) to !F(t~). If i = 1 , . . . , n processes are considered, we shall take 
^(t) as constructed jointly over all of them. Naturally, covariate processes Zi(t), 
indicators U(t), and therefore also intensities Xi(t), Li(t) of ith process differ from 
each other. The actual state of the process, Ci(t~), can play the role of one of 
covariates influencing the future intensity (at s > t). Martingale innovations dMi(t) 
are mutually conditionally independent, given ^(t"). This is a common schema of 
counting process models considered for instance in Andersen et al. [1]). 

Simultaneously, let us again describe the increment at time f as a result of 
counting process S(y,t), with an intensity fi(y,t). The 'history' for S(y,t) can 
be constructed as crt(y~) = T(t) ® B[0,y), i.e. as generated by relevant func
tions measurable with respect to it and left continuous at y, with B denoting the 
Borel cr-algebra. Finally, the filtration is crt(y) = a{crt(y~) U dMt(y)}, where 
dMt(y) = dS(y,t) — ii(y,t)dy is a martingale increment, the innovation of S(y,t) 
at y. 

If n processes are observed, each with 0,1 or more increments, we then describe 
the increment of ith process at time t, Yi(t), via the counting process Si(y,t), with 
an intensity Hi(y, t) (i = 1 , . . . , n). The model of intensity is based on a hazard rate 
9(y^,t), the same for all increments, the actual intensity at y for given covariate 
Zi(t), indicator Ji(y,t), at time t, is then /J>i(y,t) = g(y,Zi(t),t) • Ji(y,t). Notice 
that the time t is actually regarded as one of covariates influencing the magnitude 
of an increment. 

The formulation of such a general form of the model can be helpful for clearing 
up the structure of possible mutual dependencies of cumulative process components 
and the sequential dynamics of their development, through the notions like 'history' 
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and innovation depending on it. We can also imagine the compound process as one 
point process possessing a mechanism switching its direction, at points (Tj,C(T~) 
from horizontal to vertical, and at (7), C(Tj) = C(Tj~) + Y(Tj)) back to horizontal. 

In the sequel, we shall return to a simpler situation without regression on covari-
ates, however, with the dependence of increments on the time. 

4. MODEL WITH TIME-DEPENDENT INCREMENTS 

In the rest of the paper we shall consider the case without covariates but such 
that the increments depend on the time of their occurrence. Hence, the process 
is described by hazard rates h(t) and g(y;t). We again assume that n processes 
Ni(t),.Ci(t) are observed, in an interval [0,T] x [0,oo], fully, without any censoring, 
so that the corresponding indicators are Ii(t) = 1 on [0,T], Ji(y,t) = 1 for y G 
[0, ¥<(£)]. On the other hand, we shall study the properties of estimates on a chosen 
bounded interval [0,T] x [0,Y] only. We also assume that functions h and g are 
bounded on that interval. The consequence of the boundedness of g is that J(y) = 

rp 

Jo S i L i Ji(y>t)dNi(t) is Op(n) for each y G [0, Y]. In other words, J(y)/n has a 
P-limit, which is bounded and bounded away from zero when n increases to infinity 
(while I(t) = £ £ - 1 Ii(t) = n ~ 0P(n) directly). 

As regards the statistical analysis, the process of times is actually a nonhomoge-
neous Poisson one, the estimate of cumulated hazard rate H(t) = / 0 h(s) ds is then 
obtained from the Nelson-Aalen estimator (3). On the other end, the hazard rate of 
increments is a function of two variables, of y as a leading one and of t as a covari-
ate. There exist quite general methods of estimation in such a case, for instance the 
method of nonparametric estimation of doubly-cumulative hazard rate proposed in 
McKeague and Utikal [10], with consistent results. Their estimate is actually of the 
Nelson-Aalen type w. r. to y and of the kernel type w. r. to t. In the sequel, we shall 
consider the Cox model specification of g(y\ t). 

4.1. Proportional hazard model for increments 

Let us assume that the hazard rate of the distribution of an increment at time t can 
be written as 

9(y;t) = go(y)-eb«\ (4) 

where go(y) is a baseline hazard rate and b(t) is a (nonparametric, in general) re
sponse function. It is seen that functions in (4) are not given uniquely, some nor
malization is necessary. For instance, we can keep 6(£n) = 0 at a chosen point £n-
The standard case deals with a parametrized function b(t), the nonparametric max
imum likelihood problem can be solved via the local scoring method (e. g. Hastie 
and Tibshirani [6], also Volf [15]), or, alternatively, b(t) can be constructed from 
an appropriate functional basis (e.g. polynomials , splines etc.). The simplest ap
proach uses a histogram-like estimator of b(t), i.e. taking b(t) = br constant in 
selected equidistant intervals Tr, r = l , . . . , r a , dividing [0,T] (while it is assumed 
that the actual unknown b(t) is a continuous function). Let us denote for i = 1 , . . . , n 
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Si(y,r) = JTrSi(y,t)dNi(t) the (marked) counting process (in argument y) regis
tering all increments in Tri then denote S(y,r) = £"=1-Si(i/,r), and express also 
the corresponding risk sets as J(y,r) = £ ? = 1 J% Ji(y,t)dNi(t). The constants br 

are obtained from the maximization of the logarithm of Cox partial likelihood 

LP = E / - L i\( ,)d~S(y,r). (5) 
fr{Jo \ils=ie°J(y>s)s 

Finally, the cumulated baseline hazard rate Oo(y) = /0
V go(x)dx is estimated with 

the aid of the Breslow-Crowley estimator as 

SM-ft A^'r) • (6) 
J- hT,T,1e<"J(x,,) 

Let us note that the piecewise constant function b(t) has here also the character of 
a heterogeneity variable describing the departures of the distribution of increments 
in certain time intervals from the baseline distribution given by go(y)-

Naturally, the assumption of proportional hazard should be verified, there exists 
a number of tests of proportionality of two subsamples as well as the goodness-of-fit 
tests. Commonly used is the graphical test assessing the fit of Cox model (see Arjas 
[2]), a more complicated numerical specification of this graphical method for the 
parametrized Cox model has been proposed in Marzec and Marzec [9]. 

The graphical test uses the generalized residuals, the differences between actual 
intensities computed from the tested model (here /j,i(y,t) = go(y)exp(b(t)) Ji(y,t)) 
and observed number of counts (points of process). These residuals are summarized 
through a selected subsample of data and cumulated from 0 to fcth from ordered 
counts. Then they are plotted in such a way that numbers k = 1,2,.. . , are on the 
abscissa and cumulated intensities on the ordinate. If the model holds, the difference 
is a martingale, therefore the curve of cumulated intensities should be close to the 
diagonal line of the graph. On the contrary, large differences then indicate the lack 
of fit. The selection of different subsamples allows to reveal where the departure 
from the model is significant. 

4.2. Consistency of nonparamet r ic es t imate 

As regards the asymptotic properties, i. e. the situation when n —» oo, it is as a rule 
assumed that the number of histogram intervals m = mn —> oo and n/mn —• oo. 
Under certain more-less technical conditions the consistency of estimation can be 
proven. The theory for the parametrized case is already well developed, the asymp-
totics for the more complex nonparametric case can use several sources. One of 
them is based on already mentioned results of McKeague and Utikal [10] which has 
been developed further in McKeague and Utikal [11], Section 6 for the multiplicative 
specification of the general model, namely g(y,t) = go(y) • c(t). Naturally, the stan
dard case has been studied, so that the first variable was the time and the second a 
covariate, the notation therefore differed from that used here. McKeague and Utikal 
constructed their histogram-like estimate cr of function c(t) in the following manner: 
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They set YLr°r = 1, consequently G0(y) = G(y,T). Further, they selected suitably 
one value y\ in the domain of variable y and they proposed c r = G(yi,r)/G(yi,T), 
where G(y,r) is the Nelson-Aalen estimate of C.H.R. in Tr, G(y,t) is the estimate 
of doubly-cumulative hazard rate. It is seen that such a method utilizes just a part 
of the available information, nevertheless, the authors proved its consistency and 
asymptotic normality following from the asymptotics of the doubly-cumulative haz
ard rate estimator. The results were then used for the goodness-of-fit test of the 
multiplicative model. 

A variant of such an estimator has been studied and its limit properties shown 
in Volf [14]. The estimator of each cr was computed from the least squares method, 
minimizing the following expressions 

TП p 

U ( G ( y . r ) - G o ( y ) - c ) 2 d . 9 ( y , r ) . 

In the present case we, are interested in the estimator of values br based on (5). 
The analysis of its properties can utilize the results derived in Kooperberg et al. [8], 
which are actually the application of C. J. Stone's idea of "dimensionality reduction 
principle" (D.R.P., Stone [13]) to the log-additive spline model of hazard rate. The 
substance of the D.R.P. is rather general and claims that under suitable conditions 
there exists a unique additive function closest to the actual response function, and 
that this additive function is consistently estimable. Stone prefers the maximum 
likelihood estimator constructed from polynomial splines of order M and shows the 
optimal rate of convergence depending both on M and on the smoothness of a target 
function. 

The situation considered in the present paper is just a particular case. Thus, our 
solution maximizing (5) is equivalent to the estimate of function b obtained by the 
approach of Kooperberg et al. [8]. Notice also that for finite m the maximization of 
(5) has a unique solution - it is easy to show that the second derivatives of Lp yield 
a negative definite matrix. In accordance with Kooperberg et al., let us assume the 
following minimal requirements: 

Assumptions A l . 

1. Let the actual function b(t) be Lipschitz continuous on the interval [0,T] (it 
then follows that the first of "smoothness parameters" considered in Stone and 
in Kooperberg et al. can be taken as /3 = 1). 

2. The following conditions of stability hold: There exist limits in probability 

lim ±J2My,Ti), l™ -f>6Cri)Ji(y,T.), 
n—>oo n z — ' n—>oo n z — ' 

i = l i = l 

uniformly in [0, Y], such that they are bounded and bounded away from zero. 
Actually, this condition, together with boundedness of &(£), yields a variant 
formulation of Conditions 1 and 2 of Kooperberg et al.. 
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3. The function b(t) will be estimated from (5), i.e. with the aid of the ML 
principle and in a piece-wise constant form (the second smoothness parameter 
considered both in Stone and Kooperberg et al. is then M = 0). Then, the 
function Go(y) will be estimated along (6). 

4. The number of (equidistant) intervals dividing [0, T] will be chosen as ra„ = n7 , 
with 7 = 1/3 (it corresponds to the optimal 7 = l/(2p + 1), with p = (3 + M, 
required in Stone and then also in Kooperberg et al., so that we obtain p = 1). 

Proposition 1. Let assumptions Al hold. Then the estimator b(t)) computed 
from (5) is consistent, with the rate of convergence in probability with respect to 
the L2 norm ^ 

||b(«)-ft(0ll = Op(n-1/3). 

Proposition 2. The estimator b(t) is P-consistent also w. r.to the supremum 
norm, namely for t G [0,T] 

sup |6( t ) -6( t ) | = op(l). 
t 

Corollary 1. The estimator Go(y) computed from (6) is P-consistent as well, 
uniformly on [0, Y]. 

The statement of Proposition 1 follows from Theorem 3 of Kooperberg et al. [8], 
the Proposition 2 then from Lemmas 2 and 7 there. Corollary 1 is the consequence of 
the boundedness of go(y), of uniform consistency of b(t) and of uniform consistency 
of the Breslow-Crowley estimator (6) in the case of the known function b(t). Let us 
also mention here Conditions 3 (existence of maximizers of the log-likelihood) and 
4 (7 < 0.5) of Kooperberg et al., however, in the context studied here they hold 
automatically. 

5. EXAMPLE 

As an example, we analyzed the processes of credit cards payments at a gas station. 
One process corresponded to payments on one day, data are from n = 90 days, t G 
[0,24] hours (data can be downloaded from http://siprint.utia.cas.cz/public/income/ 
volf/trans5541.txt). Figure 1 shows a part of observed processes N{(t) and Ci(t), 
together with estimated cumulated rates H(t) and K(t), actually the means from 
observed trajectories. Certain interesting trajectories are denoted by their numbers. 
Figure 2 then contains kernel smoothed rates h(t) and k(t), the third subplot then 
shows, just for comparison, estimated mean increment /x(£) = k(t)/h(t) (it could be 
obtained also directly from the analysis of increments, by their kernel smoothing in 
the time domain). The estimates indicate that the frequency of increments as well 
as their magnitude depend on time. 

No other covariates were considered, we assumed that the model (4) described 
the case sufficiently, which was also tested in the final phase of analysis. Now, the 
next step consists in the estimation of model components. 
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Fig. 1. Observed processes. 

The time domain [0,24] hours was divided to m = 24 one-hour intervals. The 
piecewise constant estimator br has been obtained from (5), then it was smoothed 
by a moving window. The result is on the lower subplot of Figure 3. We kept 
bi = 0 in order to guarantee uniqueness of solution. Further, the cumulated baseline 
rate estimate Go(y) has been computed along (6), its plot is in the upper subplot, 
the estimate of baseline distribution function Fo(y) = 1 — exp(-C?o(y)) is displayed 
below it. Notice that greater b(t) corresponds to smaller mean increments and vice 
versa. 

For all trajectories their actual times and increments have been observed, and 
actual intensities have been just estimated. Hence, the behaviour of observed tra
jectories can be at once compared with their expected behaviour derived from the 
model. More precisely, if a process has times Tj and increments Yj = Y(Tj), and 
model with H(t) and G(y,t) is the right one, then times Tj = H(Tj) should be the 
times of Poisson(l) process and values Zj = G(Yj,Tj) should be the values cor
responding to Exp(l) distribution. Therefore, the scale of each trajectory can be 
transformed to the scale of compound Poisson (1,1) process. We used the estimate 
H(t) and, simultaneously, took G(y,t) = G0(y)-exp(6(t)). The results of such trans
formations, for four interesting trajectories, are displayed in Figure 4, first subplot. 
The dashed line is the 95% prediction line U + VT, u = 9.308, v = 1.4 (for selected 
v and a = 0.05, u has been computed with the aid of (2) of Section 2). 
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Simultaneously, we transformed also the times of corresponding counting pro
cesses and compared them with one of 95% prediction lines. In subplot 2 of Figure 
4, such a line is given by u + vr, u = 8.17, v = 1.2 (again, for selected v and 
P(u) = 0.05, u has been derived from the Cramer-Lundberg approximation given 
in Section 2). Finally, the third subplot shows the increments of selected four tra
jectories, transformed again to Z(T) = Go(y) • exp(b(t)) at points r = H(t), and 
compares them with the mean (dashed line) and 99% quantile (full line) of the 
standard exponential distribution. 

Kernel smoothed rate of cumulation k(t). 55-41, per 1 day 

5 10 15 20 
Kernel smoothed hazard function h(t) of occurrence of transactions, per 1 day 

Fig. 2. Kernel estimates of rates and of mean increment as a function of time. 
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Fig. 3. Estimates of cumulated baseline rate Go(y), of baseline distribution function 
FO(T/), and of response function b(t). 

Such a diagnostics revealed that, as expected, process No 21 had atypical number 
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of events - transactions, while their sum was close to average. Process No 16, on 
the contrary, had maximal C(t), which was caused by rather high (but not atypical) 
both number and amounts of transactions (compare it also with Figure 1). The 
third interesting case was the process No 29, with large increments and a mild N(t) 
resulting in relatively large (but not extremal) C(t). Finally, process No 17 behaved 
quite standardly except one extremal increment. Naturally, the more convenient 
variant of such a diagnostics should use the cross-validation, i. e. the model would 
be evaluated only from trajectories not selected for the test. 

Transformed compound and counting processes, 95% prediction lines: 
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Fig. 4. Selected trajectories, comparison with prediction lines. 

Finally, the graphical goodness-of-fit test described in Section 4.1 was utilized. 
Several subsamples of transactions in different time periods were analyzed, the test 
confirmed a good fit of the model to our data. Figure 5 shows a test graph corre
sponding to two subsamples - payments before and after 3 p.m. The graph indicates 
that the actual intensity of the distribution of increments after 3 p.m. was slightly 
larger than the intensity given by our model (which means that increments were 
actually smaller than the model assumed), and similarly the payments before 3 p.m. 
were (again slightly) larger than suggested by the model. 
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6. CONCLUSION 

The main purpose of the paper was to offer a simple model for the cumulative pro
cesses consisting in the combination of the counting process with random increments 
dependent on it and to show an application to the analysis of the sequence of finan
cial transactions. A successful use of such models requires the development of the 
methods for estimation of the model characteristics and also the methods for the 
prediction of the process behaviour under different conditions. Then we are also 
able to classify the processes and, eventually, to detect atypical ones. The practical 
application for instance to the fraud detection problem is quite straightforward. 

Graphical test of Cox model fit 

Fig. 5. Graphical assessing the goodness-of-fit of Cox model. 
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