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KYBERNET IK A — VOLUME 4 2 ( 2 0 0 6 ) , NU MB ER 3 , P AG E S 3 0 3 – 3 1 8

A CONTOUR VIEW ON UNINORM PROPERTIES

Koen C. Maes and Bernard De Baets

Any given increasing [0, 1]2 → [0, 1] function is completely determined by its contour
lines. In this paper we show how each individual uninorm property can be translated
into a property of contour lines. In particular, we describe commutativity in terms of
orthosymmetry and we link associativity to the portation law and the exchange principle.
Contrapositivity and rotation invariance are used to characterize uninorms that have a
continuous contour line.

Keywords: uninorm, contour line, orthosymmetry, portation law, exchange principle, con-
trapositive symmetry, rotation invariance, self quasi-inverse property
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1. INTRODUCTION

A uninorm U is an increasing, commutative and associative [0, 1]2 → [0, 1] function
with neutral element e ∈ [0, 1], i. e. U(x, e) = x, for every x ∈ [0, 1]. Uninorms
were introduced by Yager and Rybalov [23] as a generalization of t-norms (e = 1)
and t-conorms (e = 0) [18]. They are important from a practical as well as a
theoretical point of view. In multicriteria decision making, for example, they are
used to aggregate the evaluation of alternatives, taking into account some level of
satisfaction e [23]. Uninorms with e ∈ ]0, 1[ convert the structures ([0, 1], sup, U)
and ([0, 1], inf, U) into distributive semirings in the sense of Golan [10]. For any
given [0, e] → [0, 1] bijection φ and [e, 1] → [0, 1] bijection ψ, we can extract from a
uninorm U a t-norm T and a t-conorm S such that

(∀(x, y) ∈ [0, e]2)(U(x, y) = φ−1(T (φ(x), φ(y)))) ,

(∀(x, y) ∈ [e, 1]2)(U(x, y) = ψ−1(S(ψ(x), ψ(y)))) .

On the other parts of the unit square it always holds that TM ≤ U ≤ SM, where
TM = min and SM = max [9]. Furthermore, it always holds that either U(0, 1) =
U(1, 0) = 0 or U(0, 1) = U(1, 0) = 1. In the first case U is called conjunctive, in the
second case we talk about a disjunctive uninorm [9]. Important classes of uninorms
comprise Umin and Umax [5], the representable uninorms [7, 9] and the idempotent
uninorms [3].
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Studying the horizontal cuts of a uninorm U , i. e. the intersections of its graph by
planes parallel to the domain [0, 1]2, instead of the uninorm itself, we will give the
description of uninorms a new impetus. The contour lines of U are defined as the
upper and lower limits of these horizontal cuts. So far, it is still unknown how the
characteristic properties of a uninorm are reflected in the behaviour of its contour
lines. The knowledge of this relationship, however, is the key to fathom the structure
of other increasing [0, 1]2 → [0, 1] functions fulfilling one or more of these properties.
With each increasing [0, 1]2 → [0, 1] function A we associate four types of contour
lines:

Ca : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | A(x, t) ≤ a} ,

Da : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | A(x, t) ≥ a} ,

C̃a : [0, 1] → [0, 1] : x 7→ sup{t ∈ [0, 1] | A(t, x) ≤ a} ,

D̃a : [0, 1] → [0, 1] : x 7→ inf{t ∈ [0, 1] | A(t, x) ≥ a} ,

with a ∈ [0, 1]. It will be clear from the context which function A we are considering.
Note that it is absolutely necessary to use an increasing A. Otherwise Ca, Da, C̃a

and D̃a would lose their geometrical meaning. Considering the ensemble of contour
lines, we can associate two additional functions to each type of contour line. For
example, the contour lines of the type Ca, a ∈ [0, 1], are totally determined by
the [0, 1]2 → [0, 1] function C that maps a couple (x, a) to Ca(x). Hence, contour
lines of the type Ca are partial functions of C. The partial functions obtained by
fixing the first argument of C will be denoted C•(x), with x ∈ [0, 1]. A similar
argument applies to the other types of contour lines. Dealing with a conjunctive
uninorm U , the binary function C can be understood as a generalization of the
Boolean implication. In this case C is usually referred to as the residual implicator
of U and is denoted as IU [4, 8, 21]. If U is disjunctive, then JU := D is known as
its residual coimplicator [2, 4, 8, 21]. The contour lines Ca of a continuous t-norm T
are also called level functions [19]. Based on the contour lines of a left-continuous
t-norm T , Jenei [16] provides sufficient conditions for T to be the ÃLukasiewicz t-
norm TL (TL(x, y) = max(x + y− 1, 0)), resp. the algebraic product TP (TP(x, y) =
x y).

In this paper, we provide new insights into the geometrical structure of a uninorm
by examining its contour lines Ca, Da, C̃a and D̃a in an analytical way. In Section 2,
considering increasing [0, 1]2 → [0, 1] functions A, we figure out how continuity,
commutativity, associativity and the existence of a neutral element can be expressed
in terms of properties of contour lines. Section 3 tackles the continuous contour lines
of uninorms. We try to grasp the influence of the continuity of a contour line on the
structure of a uninorm.

2. UNINORM PROPERTIES

Let A be an increasing [0, 1]2 → [0, 1] function. Then its contour lines Ca, Da,
C̃a and D̃a are clearly decreasing. For any a1 ≤ a2 it holds that Ca1 ≤ Ca2 ,
Da1 ≤ Da2 , C̃a1 ≤ C̃a2 and D̃a1 ≤ D̃a2 . Before studying the characteristic properties
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of uninorms, we first discuss some continuity conditions that are crucial for our
further results. The partial functions A(x, •) and A(•, x), x ∈ [0, 1], are obtained
by fixing the first, resp. the second argument of A. Note that A will be called
left-continuous if all of its partial functions are left-continuous.

2.1. Continuity

Let I1 and I2 be two closed subintervals of [−∞, +∞] and consider two real functions
F : I1 → I2 and G : I2 → I1. Then (F,G) is called a Galois connection [1] if
F (x) ≤ y ⇔ x ≤ G(y) holds for every (x, y) ∈ I1×I2. A t-norm T is left-continuous
if and only if (T (x, •), C•(x)) is a Galois connection for every x ∈ [0, 1], i. e. T (x, y) ≤
a ⇔ y ≤ Ca(x) is satisfied for every (x, y, a) ∈ [0, 1]3 (see e. g. [8]). Dealing with an
arbitrary increasing [0, 1]2 → [0, 1] function A, the following characterization holds:

Theorem 1. For every x ∈ [0, 1] the following assertions hold:

(i) A(x, •) is left-continuous if and only if

A(x, y) ≤ a ⇔ y ≤ Ca(x) (1)

holds for every (y, a) ∈ [0, 1]2, with 0 < y.

(ii) A(x, •) is right-continuous if and only if

Da(x) ≤ y ⇔ a ≤ A(x, y) (2)

holds for every (y, a) ∈ [0, 1]2, with y < 1.

(iii) A(•, x) is left-continuous if and only if

A(y, x) ≤ a ⇔ y ≤ C̃a(x) (3)

holds for every (y, a) ∈ [0, 1]2, with 0 < y.

(iv) A(•, x) is right-continuous if and only if

D̃a(x) ≤ y ⇔ a ≤ A(y, x) (4)

holds for every (y, a) ∈ [0, 1]2, with y < 1.

P r o o f . We will prove the first case of the theorem only, the other cases being
similar. Note that by definition A(x, y) ≤ a always implies y ≤ Ca(x). Suppose that
A(x, •) is left-continuous and consider arbitrary (y, a) ∈ [0, 1]2, 0 < y. If y ≤ Ca(x),
then for every ε ∈ ]0, y] we know that A(x, y − ε) ≤ a. The left-continuity of A(x, •)
then ensures that A(x, y) ≤ a. Conversely, suppose that equation (1) holds and that
A(x, •) is not left-continuous. Then there exists (y, a) ∈ [0, 1]2, 0 < y, such that
A(x, y − ε) ≤ a and a < A(x, y), for every ε ∈ ]0, y[. However, from equation (1) we
obtain that y − ε ≤ Ca(x), for every ε ∈ ]0, y[, and therefore y ≤ Ca(x). Appyling
equation (1) once again, leads to the contradiction A(x, y) ≤ a. ¤

The continuity of A also affects the continuity of its contour lines.
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Corollary 1. Take arbitrary (x, a) ∈ [0, 1]2. If A is left-continuous, then Ca(x)
and C̃a(x) are left-continuous in x and right-continuous in a. If A is right-continuous,
then Da(x) and D̃a(x) are right-continuous in x and left-continuous in a.

P r o o f . Let A be left-continuous. We only prove the continuity properties of
Ca(x). Suppose that there exists a triplet (x, y, a) ∈ [0, 1]3 such that 0 < x, 0 < y
and Ca(x) < y ≤ Ca(x − ε), for every ε ∈ ]0, x]. Applying equation (1), we then
know that A(x − ε, y) ≤ a < A(x, y), for every ε ∈ ]0, x]. This contradicts the
left-continuity of A and, hence, Ca must be left-continuous. Suppose now that there
exists a triplet (x, y, a) ∈ [0, 1]3 such that 0 < y, a < 1 and Ca(x) < y ≤ Ca+ε(x),
for every ε ∈ ]0, 1− a]. From equation (1) it then follows that a < A(x, y) ≤ a + ε,
for every ε ∈ ]0, 1− a]. Taking the limit ε

>→ 0 leads to the contradiction a < a. We
conclude that Ca(x) is right-continuous in a. ¤

Remark 1. In order to prove the right-continuity of C•(x), it is sufficient to invoke
the left-continuity of the partial functions A(x, •) only. However, when proving the
left-continuity of Ca, also the left-continuity of the partial functions A(•, x) is needed.
For example, if A(1, y) = 1, for every y ∈ [0, 1], and A(x, y) = 0, elsewhere, then
C0(x) = 1 for every x ∈ [0, 1[ and C0(1) = 0. The contour line C0 is, in contrast to
the partial functions A(x, •), not left-continuous. Note that the converse implications
of Corollary 1 do not hold. If A(1, 1) = 1 and A(x, y) = 0 elsewhere, then Ca(x) = 1,
for every (x, a) ∈ [0, 1]2. A is not left-continuous, although Ca(x) is continuous in
both x and a.

Taking a closer look at equations (1) – (4), it strikes that only the restrictions on
y prevent them from being fully interpreted as Galois connections. In the follow-
ing theorem we figure out under which conditions these restrictions on y become
superfluous.

Theorem 2. Consider x ∈ [0, 1]. Each of the following four sets consists of four
equivalent assertions.

1. (i) A(x, •) is left-continuous and fulfills A(x, 0) = 0.
(ii) (A(x, •), C•(x)) is a Galois connection.
(iii) For every a ∈ [0, 1] it holds that A(x,Ca(x)) ≤ a.
(iv) For every a ∈ [0, 1] it holds that Ca(x) = max{t ∈ [0, 1] | A(x, t) ≤ a}.

2. (i) A(x, •) is right-continuous and fulfills A(x, 1) = 1.
(ii) (D•(x), A(x, •)) is a Galois connection.
(iii) For every a ∈ [0, 1] it holds that a ≤ A(x,Da(x)).
(iv) For every a ∈ [0, 1] it holds that Da(x) = min{t ∈ [0, 1] | A(x, t) ≥ a}.

3. (i) A(•, x) is left-continuous and fulfills A(0, x) = 0.
(ii) (A(•, x), C̃•(x)) is a Galois connection.
(iii) For every a ∈ [0, 1] it holds that A(C̃a(x), x) ≤ a.
(iv) For every a ∈ [0, 1] it holds that C̃a(x) = max{t ∈ [0, 1] | A(t, x) ≤ a}.
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4. (i) A(•, x) is right-continuous and fulfills A(1, x) = 1.

(ii) (D̃•(x), A(•, x)) is a Galois connection.

(iii) For every a ∈ [0, 1] it holds that a ≤ A(D̃a(x), x).

(iv) For every a ∈ [0, 1] it holds that D̃a(x) = min{t ∈ [0, 1] | A(t, x) ≥ a}.

P r o o f . We will only prove the equivalence in the first set, the other cases being
similar. Taking into account Theorem 1, assertion (1)(i) will be equivalent with
assertion (1)(ii) if we can show that the boundary condition A(x, 0) = 0 is equivalent
with A(x, 0) ≤ a ⇔ 0 ≤ Ca(x), for every a ∈ [0, 1]. As 0 ≤ Ca(x) is always true,
this amounts to the trivial equivalence A(x, 0) = 0 ⇔ A(x, 0) ≤ a, for every
a ∈ [0, 1]. By definition A(x, y) ≤ a always implies y ≤ Ca(x) and y < Ca(x)
always implies A(x, y) ≤ a. Therefore, assertion (1)(ii) is satisfied if and only if
y = Ca(x) implies A(x, y) ≤ a. The latter is expressed by assertion (1)(iii). It is
clear that assertion (1)(iv) implies assertion (1)(ii). Also the converse is true because
otherwise there would exist (y, a) ∈ [0, 1]2 such that Ca(x) = y and A(x, y) > a,
which contradicts assertion (1)(ii). ¤

For a conjunctive uninorm U , the inequality

U(x, IU (x, a)) = U(x,Ca(x)) = U(C̃a(x), x) ≤ a

is also known as the generalized modus ponens [4]. Dually, if U is disjunctive, we
obtain the inequality a ≤ U(x,Da(x)) = U(D̃a(x), x) = U(x, JU (x, a)).

2.2. Commutativity

As can be seen from their definition and from Theorem 2, the contour lines, resp.
Ca, Da, C̃a, and D̃a are particularly suited to describe increasing [0, 1]2 → [0, 1]
functions A that have, respectively, left-continuous partial functions A(x, •), right-
continuous partial functions A(•, x), left-continuous partial functions A(x, •) and
right-continuous partial functions A(•, x). If A is commutative, i. e. A(x, y) = A(y, x)
for every (x, y) ∈ [0, 1]2, both partial functions A(x, •) and A(•, x) must always have
the same type of continuity. For left- or right-continuous increasing binary operators
A, commutativity can be easily expressed in terms of contour lines.

Theorem 3. The following assertions hold:

(i) If A is left-continuous, then A is commutative if and only if Ca = C̃a, for every
a ∈ [0, 1].

(ii) If A is right-continuous, then A is commutative if and only if Da = D̃a, for
every a ∈ [0, 1].

P r o o f . For a left-continuous A it suffices to prove the sufficient conditions, the
necessary conditions being trivially fulfilled. Suppose that A(x, y) < A(y, x), for
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some (x, y) ∈ [0, 1]2 with 0 < x or 0 < y. Then it follows from equation (1)
that CA(x,y)(y) < x, whenever 0 < x, and from equation (3) that C̃A(x,y)(x) < y,
whenever 0 < y. Since CA(x,y) = C̃A(x,y), this leads to C̃A(x,y)(y) < x, whenever
0 < x, and CA(x,y)(x) < y, whenever 0 < y. Applying equation (1) or (3) once
again, we obtain in both cases the contradiction A(x, y) < A(x, y). ¤

The commutativity of an increasing [0, 1]2 → [0, 1] function A does not always
ensure the symmetry of its contour lines. If a contour line is not bijective, its inverse
is not a [0, 1] → [0, 1] function, hence, the contour line can never coincide with
its inverse. Introducing some new kind of symmetry, we can illustrate that the
commutativity of A shows up through the symmetry of its contour lines.

Let f : [0, 1] → [0, 1] be a monotone function. Adding vertical segments, we
complete the graph of f to a continuous curve from the point (0, 0) to the point (1, 1)
whenever f is increasing and from the point (0, 1) to the point (1, 0) whenever f is
decreasing. We construct the classical inverse of this ‘completed’ curve in which we
delete all but one point from any vertical segment. The set of [0, 1] → [0, 1] functions
obtained in this way is denoted by Q(f). Whenever f is bijective, it holds that
Q(f) = {f−1}. For a constant function ααα : [0, 1] → [0, 1] : x 7→ α, with α ∈ [0, 1],
the set Q(ααα) contains functions constructed from the increasing completion of ααα as
well as functions constructed from the decreasing completion of ααα. For increasing
functions f the construction of the set Q(f) is ascribed to Schweizer and Sklar [22].
Some additional results for monotone functions are due to Klement et al. [17, 18].

We call the monotone function f orthosymmetrical if f ∈ Q(f). A motivation
for this terminology is given in [20]. For a decreasing function f , the [0, 1] → [0, 1]
functions f and f , defined by

f(x) = sup{t ∈ [0, 1] | f(t) > x} ,

f(x) = inf{t ∈ [0, 1] | f(t) < x} ,

totally determine its orthosymmetry. Note that, for a non-constant f , the function f ,
is also known as the pseudo-inverse f (−1) of f [18].

Theorem 4. ([20]) A decreasing [0, 1] → [0, 1] function f is orthosymmetrical if
and only if f ≤ f ≤ f .

A constant [0, 1] → [0, 1] function ααα with α ∈ [0, 1] is orthosymmetrical if and
only if α ∈ {0, 1} [20]. In the following theorem we try to lay bare the connection
between the commutativity of A and the orthosymmetry of its contour lines.

Theorem 5. If A is commutative, then all contour lines Ca, Da, C̃a and D̃a,
a ∈ [0, 1], are orthosymmetrical.

P r o o f . For a commutative A it always holds that Ca = C̃a and Da = D̃a. We
will prove that each contour line Ca, a ∈ [0, 1], is orthosymmetrical. By definition



A Contour View on Uninorm Properties 309

it holds that

Ca(x) = sup{t ∈ [0, 1] | Ca(t) > x} ,

Ca(x) = sup{t ∈ [0, 1] | A(x, t) ≤ a} ,

Ca(x) = sup{t ∈ [0, 1] | Ca(t) ≥ x} .

The commutativity of A guarantees that

Ca(t) > x ⇒ A(t, x) = A(x, t) ≤ a ⇒ Ca(t) ≥ x ,

which leads to Ca ≤ Ca ≤ Ca. As Ca is decreasing, it follows from Theorem 4 that
it is orthosymmetrical. ¤

Remark 2. The function A defined by A(x, 0) = 0, for all x ∈ [0, 1], and A(x, y) =
1, elsewhere, is left-continuous and not commutative. It is easily verified that in
this example all contour lines Ca, Da, C̃a and D̃a are orthosymmetrical. Hence,
orthosymmetry (of all contour lines) is not sufficient to obtain commutativity.

To better understand the relationship between orthosymmetry and commutativ-
ity, we need to recall the following result.

Theorem 6. ([20]) For each decreasing [0, 1] → [0, 1] function f the following
assertions hold:

(i) If f is left-continuous and fulfills f(0) = 1, then f is orthosymmetrical if and
only if f = f .

(ii) If f is right-continuous and fulfills f(1) = 0, then f is orthosymmetrical if and
only if f = f .

Based on this characterization of orthosymmetry, we are able to present an alter-
native description of commutativity for left- or right-continuous increasing functions
A that satisfy some additional boundary condition.

Theorem 7.

1. If A is left-continuous and A(0, 1) = A(1, 0) = 0, then the following assertions
are equivalent:

(i) A is commutative.

(ii) Ca is orthosymmetrical for every a ∈ [0, 1].

(iii) C̃a is orthosymmetrical for every a ∈ [0, 1].

2. If A is right-continuous and A(0, 1) = A(1, 0) = 1, then the following assertions
are equivalent:

(i) A is commutative.
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(ii) Da is orthosymmetrical for every a ∈ [0, 1].

(iii) D̃a is orthosymmetrical for every a ∈ [0, 1].

P r o o f . We only prove the first part of the theorem. Note that the increasingness
of A implies that A(x, 0) = A(0, x) = 0, for every x ∈ [0, 1]. Because assertion (1)(i)
implies assertions (1)(ii) and (1)(iii) (Theorem 5), we only have to prove the con-
verse. Assume that Ca is orthosymmetrical for every a ∈ [0, 1]. The left-continuity
of A ensures that every Ca is left-continuous (Corollary 1). Ca(0) = 1 due to the
boundary condition A(0, 1) = 0. Hence, applying Theorem 6, the orthosymmetry
of Ca is equivalent with Ca = Ca. Suppose now that A is not commutative. Then
A(y, x) < A(x, y), for some (x, y) ∈ [0, 1]2. As (A(x, •), C•(x)) forms a Galois con-
nection (Theorem 2), this inequality is equivalent with CA(y,x)(x) < y and therefore

CA(y,x)(x) = inf{t ∈ [0, 1] | CA(y,x)(t) < x} < y .

Since contour lines are decreasing, the latter implies that CA(y,x)(y) < x which leads
to the contradiction A(y, x) < A(y, x). We conclude that A must be commutative.
In a similar way it can be shown that assertion (1)(iii) ensures the commutativity
of A. ¤

2.3. Associativity

We call A associative if A(A(x, y), z) = A(x,A(y, z)) holds for every (x, y, z) ∈ [0, 1]3.
Assuming some continuity and boundary conditions, we can use contour lines to
express the associativity of A.

Theorem 8. The following assertions hold:

(i) If A(x, •) is left-continuous for every x ∈ [0, 1] and A(1, 0) = 0, then A is
associative if and only if

Ca(A(x, y)) = CCa(x)(y) (5)

holds for every (x, y, a) ∈ [0, 1]3.

(ii) If A(x, •) is right-continuous for every x ∈ [0, 1] and A(0, 1) = 1, then A is
associative if and only if

Da(A(x, y)) = DDa(x)(y) (6)

holds for every (x, y, a) ∈ [0, 1]3.

(iii) If A(•, x) is left-continuous for every x ∈ [0, 1] and A(0, 1) = 0, then A is
associative if and only if

C̃a(A(x, y)) = C̃C̃a(y)(x) (7)

holds for every (x, y, a) ∈ [0, 1]3.
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(iv) If A(•, x) is right-continuous for every x ∈ [0, 1] and A(1, 0) = 1, then A is
associative if and only if

D̃a(A(x, y)) = D̃D̃a(y)(x) (8)

holds for every (x, y, a) ∈ [0, 1]3.

P r o o f . It suffices to prove the first assertion. Note that the boundary condition
A(0, 1) = 0 is equivalent with A(0, x) = 0, for every x ∈ [0, 1]. This proof makes
extensive use of the first set of equivalent assertions in Theorem 2. If A is associative,
then we know that Ca(A(x, y)) =

max{t ∈ [0, 1] | A(A(x, y), t) ≤ a} = max{t ∈ [0, 1] | A(x, A(y, t))) ≤ a} ,

for every (x, y, a) ∈ [0, 1]3. Because A(x,A(y, t))) ≤ a is equivalent with A(y, t) ≤
Ca(x), we can rewrite this equality as follows:

Ca(A(x, y)) = max{t ∈ [0, 1] | A(y, t) ≤ Ca(x)} = CCa(x)(y) .

Conversely, if equation (5) holds, we need to prove that A(A(x, y), z) = A(x, A(y, z)),
for every (x, y, z) ∈ [0, 1]3. Since

CCA(A(x,y),z)(x)(y) = CA(A(x,y),z)(A(x, y)) ≥ z ,

we obtain that A(y, z) ≤ CA(A(x,y),z)(x) and, hence, A(x, A(y, z)) ≤ A(A(x, y), z).
If A(x, A(y, z)) < A(A(x, y), z), then it follows that CA(x,A(y,z))(A(x, y)) < z. Ap-
plying equation (5) yields CCA(x,A(y,z))(x)(y) < z and thus CA(x,A(y,z))(x) < A(y, z).
Finally, we obtain the contradiction A(x, A(y, z)) < A(x,A(y, z)). ¤

Remark 3. The continuity and boundary conditions are indispensable in the proof
of the above theorem. For example, consider the increasing function A defined
by A(x, 1) = 1/2, for every x ∈ [0, 1], and A(x, y) = 0, elsewhere. The partial
functions A(x, •) are not left-continuous, and for every (x, a) ∈ [0, 1]2 it holds that
Ca(x) = 1. Equation (5) is then trivially fulfilled although A is not associative (e. g.
A(A(1, 1), 1) = A(1/2, 1) = 1/2 > 0 = A(1, 1/2) = A(1, A(1, 1))). To illustrate the
importance of the boundary conditions, consider the increasing function A defined
by A(1, y) = 1, for every y ∈ [0, 1], and A(x, y) = 0, elsewhere. All partial functions
A(x, •) are continuous but A(1, 0) = 1. It is easily verified that A is associative.
However, C1/2(A(1, 0)) = C1/2(1) = 0 < 1 = C0(0) = CC1/2(1)(0), which contradicts
equation (5).

For a left-continuous t-norm T , taking into account the correspondence between
its residual implicator IT and its contour lines Ca, equation (5) coincides with the
portation law [11]: IT (T (x, y), z) = IT (y, IT (x, z)), for every (x, y, z) ∈ [0, 1]3.
Theorem 8 implies that for a left-continuous t-norm T , this portation law is al-
ways fulfilled and is equivalent with its associativity. Due to the commutativ-
ity of a t-norm, the portation law also implies the exchange principle [2, 5, 6]:
IT (x, IT (y, z)) = IT (y, IT (x, z)), for every (x, y, z) ∈ [0, 1]3. Dealing with a commu-
tative A, this property can also be used to express associativity.
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Theorem 9. If A is commutative, then the following assertions hold:

(i) If A left-continuous and A(0, 1) = 0, then A is associative if and only if

CCa(x)(y) = CCa(y)(x) (9)

holds for every (x, y, a) ∈ [0, 1]3.

(ii) If A is right-continuous and A(1, 0) = 1, then A is associative if and only if

DDa(x)(y) = DDa(y)(x) (10)

holds for every (x, y, a) ∈ [0, 1]3.

P r o o f . The commutativity of A allows us to consider contour lines of the types
Ca and Da only. Assume that A is left-continuous and A(0, 1) = 0. If A is associative,
then equation (9) follows immediately from Theorem 8. Conversely, suppose that
equation (9) is satisfied. If A is not associative, there exists a triplet (x, y, z) ∈ [0, 1]3

such that

A(y,A(x, z)) = A(A(x, z), y) < A(x,A(z, y)) = A(x, A(y, z)) .

Consider a ∈ ]A(y,A(x, z)), A(x,A(y, z))[. From Theorem 2 it then follows that
A(x, z) ≤ Ca(y) and Ca(x) < A(y, z). Applying Theorem 2 a second time leads
to z ≤ CCa(y)(x) and CCa(x)(y) < z. We obtain the contradiction CCa(x)(y) <
CCa(y)(x). ¤

Remark 4. Note that the commutativity of A plays a key role in the above theo-
rem. For example, define a non-commutative A by A(x, 0) = 0, for every x ∈ [0, 1],
and A(x, y) = x, elsewhere. Although A is associative, left-continuous and satisfies
A(0, 1) = 0 it holds that CC1/2(1)(1/2) = 0 < 1 = CC1/2(1/2)(1).

2.4. Neutral element

Recall that e ∈ [0, 1] is called a neutral element of A if A(x, e) = A(e, x) = x, for
every x ∈ [0, 1]. In the following theorem we investigate, for a fixed x ∈ [0, 1], the
conditions A(x, e) = x and A(e, x) = x.

Theorem 10. For every x ∈ [0, 1] the following assertions hold:

(i) If A(x, •) is left-continuous, then A(x, e) = x holds for some e ∈ ]0, 1] if and
only if

e ≤ Ca(x) ⇔ x ≤ a (11)

holds for every a ∈ [0, 1].

(ii) If A(x, •) is right-continuous, then A(x, e) = x holds for some e ∈ [0, 1[ if and
only if

Da(x) ≤ e ⇔ a ≤ x (12)

holds for every a ∈ [0, 1].
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(iii) If A(•, x) is left-continuous, then A(e, x) = x holds for some e ∈ ]0, 1] if and
only if

e ≤ C̃a(x) ⇔ x ≤ a (13)

holds for every a ∈ [0, 1].

(iv) If A(•, x) is right-continuous, then A(e, x) = x holds for some e ∈ [0, 1[ if and
only if

D̃a(x) ≤ e ⇔ a ≤ x (14)

holds for every a ∈ [0, 1].

P r o o f . We prove (i). The necessary conditions immediately follow from equa-
tion (1) (take y = e). Conversely, if equation (11) holds, then we obtain that
e ≤ Cx(x). Applying equation (1) leads to A(x, e) ≤ x. In case A(x, e) < x, there
exists ε ∈ ]0, x[ such that A(x, e) ≤ x − ε. Hence, e ≤ Cx−ε(x), which is equivalent
with the contradiction x ≤ x− ε. ¤

Remark 5. In the above theorem there are some restrictions on e. The first
assertion, for example, deals with e ∈ ]0, 1] only. For e = 0 the equivalence between
A(x, 0) = x and equation (11) reduces to A(x, 0) = x ⇔ x = 0. The latter is
incorrect as it does not hold for A = SM. A left-continuous (resp. right- continuous)
increasing function A will have a neutral element e ∈ ]0, 1] (resp. e ∈ [0, 1[) if and
only if equations (11) and (13) (resp. equations (12) and (14)) are fulfilled for every
x ∈ [0, 1].

3. CONTINUOUS CONTOUR LINES

Depending on the continuity of the partial functions U(x, •) and U(•, x) of a uninorm
U , its contour lines fulfill several of the properties stated in the previous section.
Uninorms can have discontinuous as well as continuous contour lines. For example,
all but one contour line of TM contain a unique discontinuity point. On the other
hand, the algebraic product TP has only one discontinuous contour line. So far it
has not been uncovered how the continuity of the contour lines affects the structure
of the uninorm. To tackle this problem, we first need to link the continuity of the
contour lines to their involutivity. A decreasing [0, 1] → [0, 1] function f is called
involutive on an interval [a, b] ⊆ [0, 1] if f(f(x)) = x is satisfied for every x ∈ [a, b].

Theorem 11. A decreasing [0, 1] → [0, 1] function f is orthosymmetrical and
continuous if and only if it is involutive on [f(1), f(0)], with f(0) = 1 or f(1) = 0.

P r o o f . The functions 0 and 1 are the only orthosymmetrical, constant decreas-
ing functions [20]. They are trivially continuous. Consider an orthosymmetrical,
continuous, non-constant, decreasing [0, 1] → [0, 1] function f . Take x ∈ [f(1), f(0)]
and denote l := min{t ∈ [0, 1] | f(t) = x} and u := max{t ∈ [0, 1] | f(t) = x}. Then,
due to Theorem 4 and the continuity of f , we obtain that l = f(x) ≤ f(x) ≤ f(x) = u
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and, hence, f(f(x)) = x, for every x ∈ [f(1), f(0)]. Suppose now that f(0) < 1,
then 0 = f(1) ≤ f(1) ≤ f(1) = 0 leads to f(1) = 0. In a similar way 0 < f(1)
implies that f(0) = 1.

Let f be a decreasing [0, 1] → [0, 1] function that is involutive on [f(1), f(0)],
with f(0) = 1 or f(1) = 0. Clearly, f([f(1), f(0)]) = [f(1), f(0)] and f(x) = f(y),
with (x, y) ∈ [f(1), f(0)]2, can only occur if x = y. We conclude that the restriction
of f to [f(1), f(0)] is a decreasing bijection and thus f must be continuous on [0, 1].
From Theorem 6 it follows that f will be orthosymmetrical if f = f when f(0) = 1,
resp. f = f when f(1) = 0. If f(0) = 1, the bijectivity of f on [f(1), f(0)] ensures
that f(x) = f(x), whenever x ∈ [f(1), 1]. For every x ∈ [0, f(1)[ it holds that
f(x) = f(x) = 1. In a similar way it can be shown that f(1) = 0 implies f = f .
This concludes the proof. ¤

The continuous contour lines of a left- or right-continuous uninorm are now char-
acterized in the following way:

Theorem 12. Consider a uninorm U with neutral element e ∈ [0, 1]. The following
statements hold:

1. If U is left-continuous and conjunctive, then, for every a ∈ [0, 1], the following
assertions are equivalent:

(i) Ca is continuous.

(ii) U(x, y) = Ca(CCa(x)(y)), for every (x, y) ∈ [0, 1]2 s.t. y > Ca(U(x, 1)).

(iii) Cb(x) = CCa(x)(Ca(b)), for every (x, b) ∈ [0, 1]× [Ca(1), 1].

(iv) U(x, y) ≤ z ⇔ U(y, Ca(z)) ≤ Ca(x), for every (x, y, z) ∈ [Ca(1), 1]3.

2. If U is right-continuous and disjunctive, then, for every a ∈ [0, 1], the following
assertions are equivalent:

(i) Da is continuous.

(ii) U(x, y) = Da(DDa(x)(y)), for every (x, y) ∈ [0, 1]2 s.t. y < Da(U(0, x)).

(iii) Db(x) = DDa(x)(Da(b)), for every (x, b) ∈ [0, 1]× [0, Da(0)].

(iv) z ≤ U(x, y) ⇔ Da(x) ≤ U(y,Da(z)), for every (x, y, z) ∈ [0, Da(0)]3.

P r o o f . Consider a conjunctive left-continuous uninorm U . The neutral element
e of U must belong to ]0, 1]. Since C1(x) = 1, for every x ∈ [0, 1], assertions (1)(i),
(1)(ii),(1)(iii) and (1)(iv) are trivially fulfilled if a = 1. Assume now that a < 1.
The commutativity of U implies the orthosymmetry of Ca (Theorem 5) and the
boundary condition U(0, 1) = 0 is equivalent with Ca(0) = 1, for every a ∈ [0, 1].
Taking into account Theorem 11, we know that a contour line Ca is continuous if
and only if it is involutive on [Ca(1), Ca(0)] = [Ca(1), 1]. Since Ca(Ca(1)) = 1 also
ensures that Ca(Ca(Ca(1))) = Ca(1), it suffices that Ca is involutive on ]Ca(1), 1].
Note also that Ca(e) = a.
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(i) ⇔ (ii) If y > Ca(U(x, 1)) = CCa(1)(x), then it holds that U(x, y) > Ca(1).
Under the assumption that Ca is involutive on ]Ca(1), 1] it follows from equa-
tion (5) that U(x, y) = Ca(Ca(U(x, y))) = Ca(CCa(x)(y)). Conversely, suppose
that assertion (1)(ii) holds. Let x = e, then y = U(e, y) = Ca(CCa(e)(y)) =
Ca(Ca(y)). We conclude that Ca is involutive on ]Ca(1), 1].

(i) ⇔ (iii) Consider (x, b) ∈ [0, 1]× [Ca(1), 1]. If Ca is involutive on ]Ca(1), 1], then,
taking into account the commutativity of U and equation (5), we obtain that

Cb(x) = CCa(Ca(b))(x) = Ca(U(Ca(b), x)) = Ca(U(x,Ca(b))) = CCa(x)(Ca(b)) .

Conversely, if assertion (1)(iii) holds, then b = Cb(e) = CCa(e)(Ca(b)) =
Ca(Ca(b)), for every b ∈ [Ca(1), 1].

(i) ⇔ (iv) Take arbitrary (x, y, z) ∈ [Ca(1), 1]3 and assume that Ca is involutive on
]Ca(1), 1]. From Theorem 2 it follows that U(y, Ca(z)) ≤ Ca(x) is equivalent
with Ca(z) ≤ CCa(x)(y). Using equation (5), the latter can be rewritten as
Ca(z) ≤ Ca(U(x, y)). Whenever Ca(1) ≤ U(x, y), this inequality is equivalent
with U(x, y) ≤ z. However, if U(x, y) < Ca(1), then Ca(U(x, y)) = 1. The
inequalities Ca(z) ≤ Ca(U(x, y)) and U(x, y) ≤ z are in that case trivially ful-
filled. Assertion (1)(iv) is indeed true. Conversely, suppose that (1)(iv) holds.
As U(Ca(1), 1) = U(1, Ca(1)) ≤ a, it holds that Ca(Ca(1)) = 1 and there-
fore Ca([Ca(1), 1]) = [Ca(1), 1]. The decreasingness of U implies that Ca(1) ≤
Ca(e) = a. If e ≤ Ca(1), we obtain the contradiction a = Ca(e) ≥ 1. Thus,
for every x ∈ [Ca(1), 1] it holds that both (Ca(x), x, a) and (e, Ca(Ca(x)), x)
belong to [Ca(1), 1]3. Applying (1)(iv) on

U(Ca(x), x) = U(x,Ca(x)) ≤ a

and
U(Ca(Ca(x)), Ca(x)) = U(Ca(x), Ca(Ca(x))) ≤ a = Ca(e)

results in two inequalities:

U(x,Ca(a)) ≤ Ca(Ca(x)) and Ca(Ca(x)) = U(e, Ca(Ca(x))) ≤ x .

From equation (11) we know that e ≤ Ca(a). Weakening the first inequality
to x ≤ Ca(Ca(x)), we conclude that x = Ca(Ca(x)), for every x ∈ [Ca(1), 1].¤

Example 1. A typical example of a uninorm that has continuous contour lines is
the left-continuous, conjunctive 3Π–operator E [9]. It is defined by

E(x, y) =
x y

(1− x) (1− y) + x y
,

for every (x, y) 6∈ {(1, 0), (0, 1)}, and E(0, 1) = E(1, 0) = 0. For every (x, a) ∈
[0, 1] × ]0, 1[ it holds that

Ca(x) =
a (1− x)

x (1− a) + a (1− x)
.
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Furthermore, C0(0) = 1 and C0(x) = 0, whenever x ∈ ]0, 1]. As C1 = 1, we conclude
that every contour line Ca, with a ∈ ]0, 1], is continuous.

For left-continuous t-norms two assertions of Theorem 12 are generalizations of
well-known properties. Let a = 0. Assertion (1)(iii) is referred to as the contra-
positive symmetry of IT : IT (x, y) = IT (IT (y, 0), IT (x, 0)), for every (x, y) ∈ [0, 1]2

[5, 11]. Assertion (1)(iv) expresses the rotation invariance of the t-norm: T (x, y) ≤
z ⇔ T (y, IT (z, 0)) ≤ IT (x, 0), for every (x, y, z) ∈ [0, 1]3 [11]. Left-continuous
rotation-invariant t-norms have been studied extensively by Jenei [12, 13, 14, 15]. If
IT (x, 0) = 1−x, for every x ∈ [0, 1], the graph of these t-norms remains invariant un-
der an order 3 transformation: the rotation of [0, 1]3 with angle 2 π

3 around the axis
through the points (0, 0, 1) and (1, 1, 0). Furthermore, assertion (1)(ii) is equivalent
with the self quasi-inverse property of T : IT (x, y) = z ⇔ T (x, IT (y, 0)) = IT (z, 0),
for every (x, y, z) ∈ [0, 1]3 [11].

Corollary 2. Consider a uninorm U with neutral element e ∈ [0, 1]. The following
statements hold:

1. If U is left-continuous and conjunctive, then, for every a ∈ [0, 1] fulfilling
Ca(a) = e, Ca is continuous if and only if

Cy(x) = z ⇔ U(x,Ca(y)) = Ca(z) (15)

holds for every (x, y, z) ∈ [Ca(1), 1]3 s.t. x > Ca(U(Ca(y), 1)).

2. If U is right-continuous and disjunctive, then, for every a ∈ [0, 1] fulfilling
Da(a) = e, Da is continuous if and only if

Dy(x) = z ⇔ U(x,Da(y)) = Da(z) (16)

holds for every (x, y, z) ∈ [0, Da(0)]3 s.t. x < Da(U(0, Da(y))).

P r o o f . Let U be a left-continuous, conjunctive uninorm such that Ca(a) =
e, for some a ∈ [0, 1]. If Ca is continuous, then assertion (1)(ii) of Theorem 12
implies that U(x,Ca(y)) = U(Ca(y), x) = Ca(CCa(Ca(y))(x)), for every (x, y) ∈
[0, 1]2 such that x > Ca(U(Ca(y), 1)). Taking into account the involutivity of Ca on
[Ca(1), 1] (Theorem 11), we immediately obtain equation (15). Conversely, suppose
that equation (15) is satisfied. Then also U(x,Ca(y)) = Ca(Cy(x)), for every (x, y) ∈
[Ca(1), 1]2 such that x > Ca(U(Ca(y), 1)). In the proof of Theorem 12 we showed
that Ca(1) ≤ a. Putting y = a leads to U(x,Ca(a)) = Ca(Ca(x)), for every x >
Ca(U(Ca(a), 1)) = CCa(Ca(a))(1). We obtain that Ca is involutive on [Ca(1), 1] by
expressing that Ca(a) = e. Due to Theorem 11, this concludes the proof. ¤

Remark 6. The condition Ca(a) = e is also necessary to obtain the equivalence
between the continuity of a contour line Ca and equation (15). Indeed, U(Ca(a), y) =
Ca(Ca(y)), for every y > CCa(Ca(a))(1), will be equivalent with the continuity of
Ca if and only if U(Ca(a), y) = y holds for every y ∈ ]Ca(1), 1]. Because e >
Ca(1) ≥ Ca(U(Ca(a), 1)) (see the proof of Theorem 12), we conclude that Ca(a) =
U(Ca(a), e) = e.
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4. CONCLUSION

With each increasing [0, 1]2 → [0, 1] function A we have associated four types of
contour lines. Depending on the continuity of A and some additional boundary
conditions, different types of contour lines are of interest. We have been able to
translate uninorm properties of A into properties on its contour lines. In particular,
the commutativity of A is equivalent with the orthosymmetry of its contour lines.
Furthermore, we have identified two conditions on contour lines that each character-
ize the associativity of A. These conditions are generalizations of the portation law
and the exchange principle. We have laid bare how the existence of a continuous
contour line affects the structure of a uninorm U . Dealing with a left-continuous
and conjunctive (resp. right-continuous and disjunctive) uninorm U , a continuous
contour line amounts to a kind of contrapositive symmetry of the residual impli-
cator IU (resp. residual coimplicator JU ). Also two alternative characterizations of
continuous contour lines have been presented. One of them is closely related to the
rotation invariance property of t-norms. The other one is related to the portation
law. Under some additional conditions, this latter property has been linked to the
self quasi-inverse property.

(Received January 26, 2006.)
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