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POWER ANALYSIS OF VOTING BY COUNT
AND ACCOUNT

Midori Hirokawa and Milan Vlach

Using players’ Shapley–Shubik power indices, Peleg [4] proved that voting by count and
account is more egalitarian than voting by account. In this paper, we show that a stronger
shift in power takes place when the voting power of players is measured by their Shapley–
Shubik indices. Moreover, we prove that analogous power shifts also occur with respect to
the absolute Banzhaf and the absolute Johnston power indices.
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1. INTRODUCTION

We are concerned with a double majority voting rule composed of the common
simple majority rule (voting by count) and the weighted majority rule (voting by
account). This compound rule has a long history going back at least to elections
in some Jewish communities in Europe in the seventeenth century, see Peleg [4]. It
turns out that similar voting rules are today in use also.

For example, Taylor and Zwicker [5, page 19] notice that the creation of a new
sewer district in certain municipalities requires the approval of half the people in
the district, subject to the condition that those approving must own property that
is worth more than fifty percent of the total assessed value of all property in the
district.

Other examples are provided by decision making procedures used in stockholders’
meetings or in conducting rehabilitation of financially troubled companies. For in-
stance, as a response to the high increase of bankruptcies in Japan in the late 1990s,
the Civil Rehabilitation Law was passed and took effect, April 1, 2000. According
to this law, the passage of the rehabilitation plan requires affirmative votes only by
unsecured creditors who are entitled to vote, have attended the creditors meeting,
constitute the majority of attending persons entitled to vote, and also hold one half
or more of the total amount of unsecured claims in face value; see Hirokawa and Xu
[2] for details.

It is therefore of interest to study the relationship between game-theoretic solu-
tions of a weighted majority rule (voting by account) and a compound rule (voting
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by count and account). One of the possible approaches is to examine power indices,
which reflect voting power of players. From a rather general result, Peleg [4] derives
that, in a certain well defined sense, the vector of players’ Shapley–Shubik power
indices for voting by count and account dominates the corresponding vector for vot-
ing by account. As a consequence, voting by count and account is more egalitarian
than voting by account when the distribution of power among players is measured
by their Shapley–Shubik indices.

In addition to the Shapley–Shubik power index, several other power indices for
evaluating the power of a player have been proposed, see Brams, Lucas and Straffin
[1]. Since it is far from clear which of the various proposed measures reflect better
the realities of power relationships, it is of interest to know whether Peleg’s result is
valid also for other indices. Here we address this question for the case of the absolute
Banzhaf, Johnston, and Deegan–Packel power indices.

Since some simple games are well suited to capture the essence of voting rules,
we follow Peleg in using game theoretic tools for analysing the power of individual
players in the mentioned voting systems. We provide an alternative proof of Peleg’s
result on egalitarianism, show that a stronger result hold, and prove that an anal-
ogous shift in power also occurs when the power distribution is measured by the
absolute Banzhaf or absolute Johnston indices. On the other hand, we show this is
not true for the case of the absolute Deegan–Packel index.

Throughout the paper the symbol ] stands for “the number of elements in”, and
a ¤ indicates the end of proof.

2. SIMPLE GAMES

Let n be a positive integer. By a simple game of n players we mean an ordered pair
(N,W) in which N = {1, 2, . . . , n}, and W is a nonempty collection of subsets of N
such that S ∈ W together with S ⊂ S′ ⊂ N implies S′ ∈ W.

Members of N are called players, nonempty subsets of N are called coalitions,
members of W are called winning coalitions, and coalitions that are not in W are
called losing coalitions. A winning coalition all of whose proper subsets are losing is
called a minimal winning coalition.

A simple game is said to be weighted if there exists a real valued function w on N
and a real number q such that a coalition is winning precisely when the sum of the
weights (values of w) of the players in the coalition meets or exceeds q. To simplify
the notation, we use wk instead of w(k) to denote the weight of player k and w(S)
to denote the sum of the weights of all players in coalition S. Under this setting, a
particular weighted simple game can be described by [q;w1, w2, . . . , wn].

Following Peleg [4], when referring to the “majority of the count rule”, we have
in mind the common simple majority voting rule, that is, a simple game in which a
coalition is winning if and only if it contains more than half of all players. Similarly,
when referring to the “majority of the account rule”, we mean a simple game in
which a coalition is winning if and only if the sum of the weights of its members
exceeds half the sum of all weights. Finally, given a simple game Ga = (N,Wa)
representing the majority of the account rule and a simple game Gc = (N,Wc)
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representing the majority of the count rule, the majority of the count and account
rule is represented by the simple game G∗ = (N,W∗) in which a coalition is winning
if and only if it is winning in both Ga and Gc, that is, if and only ifW∗ =Wa∩Wc.

While both the count rule and the account rule can be represented by weighted
simple games, the following example due to Peleg [4] shows that the compound
game G∗ representing the majority of the count and account rule is not necessarily
a weighted game.

Example. Let G∗ be the simple game with seven players 1, 2, . . . , 7 composed from
the simple majority game and the weighted game

[q;w1, w2, . . . , w7] = [25; 18, 8, 8, 7, 4, 2, 2].

To show that this compound game is not weighted, suppose to the contrary that
there exists a weighted simple game [q∗;w∗1 , w

∗
2 , . . . , w

∗
7 ] that is equal to G∗. Now

consider the following four coalitions

S1 = {2, 3, 4, 5}, S2 = {1, 5, 6, 7}, S3 = {1, 4, 5}, S4 = {2, 3, 5, 6, 7}.

Easy calculations show that coalitions S1 and S2 are winning whereas coalitions S3

and S4 are losing. Hence,

w∗1 + w∗4 + w∗5 < q∗ ≤ w∗2 + w∗3 + w∗4 + w∗5 ,

and
w∗2 + w∗3 + w∗5 + w∗6 + w∗7 < q∗ ≤ w∗1 + w∗5 + w∗6 + w∗7 .

It follows that
w∗1 < w∗2 + w∗3 , and w∗2 + w∗3 < w∗1 .

Since the last two inequalities contradict each other, we conclude that G∗ is not
weighted.

3. POWER INDICES

It is well known that the power of players in a weighted simple game need not be
proportional to players’ weights. For example, consider the simple game of three
players in which a coalition is winning if and only if it has more than one member.
Since this game can be given in the form of weighted game [2; 1, 1, 1], it is reasonable
to claim that all players have the same power. However, this game can also be given
as a weighted game [51; 49, 48, 3] with unequal weights. In this simple case, the
distribution of power among players is transparent, but generally it is not clear how
to measure the power of players, and in consequence, several quantitative measures
for evaluating power of a player have been proposed.

We are concerned with the Shapley–Shubik, Banzhaf, Johnston, and Deegan–
Packel power indices of players in simple games. To recall their definitions we need
the notions of vulnerable coalitions and essential players.

Let S be a winning coalition in a simple game G = (N,W). We say that coali-
tion S is vulnerable if, among its members, there is at least one player whose defection
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would result in a losing coalition. Such a player will be called essential for coali-
tion S. The collection of the vulnerable coalitions for which a player k is essential
will be denoted by W(k), that is,

W(k) = {S ∈ W : k ∈ S and S \ {k} /∈ W}.

Now we are ready to define the mentioned power indices for an arbitrary simple
game G = (N,W).

Shapley–Shubik power index: Let gϕ : P(N)→ (0,∞) be defined by

gϕ(S) = (]S − 1)!(n− ]S)!.

For each k ∈ N, the Shapley–Shubik power index ϕk of player k in game G is

ϕk =
1
n!

∑
S∈W(k)

gϕ(S).

Banzhaf power index: Let gβ : P(N)→ (0,∞) be defined by

gβ(S) = 1 for each S.

For each k ∈ N, the absolute Banzhaf power index βk of player k in game G is

βk =
1

2n−1

∑
S∈W(k)

gβ(S).

Johnston power index: Let d(S) be the number of essential players in S, and
let gγ : P(N)→ (0,∞) be defined by

gγ(S) =
1

d(S)
.

For each k ∈ N, the absolute Johnston power index γk of player k in game G is

γk =
∑

S∈W(k)
gγ(S).

Deegan–Packel power index: For each player k, the absolute Deegan–Packel
power index δk of player k in game G is defined in a similar way as the absolute
Johnston index of player k. The only difference is that the sum is taken over the set of
minimal winning coalitions containing player k instead of over the set of vulnerable
coalitions for which player k is essential.

In what follows, by a power index of a game we mean an ordered n-tuple of
players’ power indices of the same type. For example, the n-tuple (γ1, γ2, . . . , γn)
denotes the absolute Johnston index of a game of n players.
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4. MONOTONICITY

To introduce some auxiliary results useful in proving our main result on power shifts,
we prove in this section that, for Ga, all power indices under consideration, with the
exception of Deegan–Packel indices, are monotone with respect to weights. It is well
known that this is true for all weighted simple games. We have seen in the previous
section that game G∗, which is completely determined by its weights, need not be a
weighted game. We also show that the same monotonicity result holds for G∗.

For the simplicity of notation, we assume that

• all weights are positive integers,

• w1 ≤ w2 ≤ · · · ≤ wn,

• w̄ denotes the number 1
2 (w1 + w2 + · · ·+ wn).

Then a power index of a game is said to be monotone if and only if the power index
of player i is greater than or equal to the index of player j whenever i > j.

By the definition of games Ga and G∗, we have

Wa = {S ⊂ N : w(S) > w̄} and W∗ = {S ⊂ N : w(S) > w̄ & ]S >
n

2
}.

Hence, for each player k,

S ∈ Wa(k) iff w(S) > w̄ & k ∈ S & w(S\{k}) ≤ w̄,

S ∈ W∗(k) iff w(S) > w̄ & k ∈ S & ]S > n
2

& [w(S\{k}) ≤ w̄ or ](S\{k}) ≤ n
2 ].

To analyse relations between power indices, it is helpful to introduce the sets
W+(k) and W−(k) of coalitions defined as follows:

S ∈ W−(k) iff w(S) > w̄ & k ∈ S & ]S > n
2 & w(S\{k}) ≤ w̄ ,

S ∈ W+(k) iff k ∈ S & n
2 < ]S ≤ n

2 + 1 & w(S\{k}) > w̄.

It can easily be seen that:

W∗(k) =W+(k) ∪W−(k), W+(k) ∩W−(k) = ∅,
W−(k) ⊂ Wa(k), and W+(k) ∩Wa(k) = ∅.

It will also be helpful to introduce the mappings fij : P(N) → P(N) defined, for
each i and j from N, by:

fij(S) =

{
S if i ∈ S,
(S\{j}) ∪ {i} if i /∈ S.

Often we will use the following two properties of mappings fij :

(a) For each S ⊂ N, if j ∈ S, then ]fij(S) = ]S,

(b) For each S, S′ ⊂ N, if j ∈ S∩S′ and i 6= j, then S 6= S′ implies fij(S) 6= fij(S′).
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Lemma 1. If i > j, then there is a one-to-one mapping

f :Wa(j)→Wa(i)

such that, for each S ∈ Wa(j), ]f(S) = ]S and d(S) ≥ d(f(S)).

P r o o f . We verify that the restriction f of fij to the set Wa(j) satisfies all
requirements. In view of the mentioned properties (a) and (b), we know that ]f(S) =
]S, and that f is a one-to-one mapping ofWa(j) into P(N). Thus it remains to prove
that, for each S ∈ Wa(j), we have f(S) ∈ Wa(i) and d(S) ≥ d(f(S)).

Let S be a member of Wa(j). Then w(S) > w̄ and w(S\{j}) ≤ w̄.
(i) If i ∈ S, then w(S\{i}) ≤ w(S\{j}) because i > j implies wi ≥ wj . Since

f(S) = S in this case, we obtain i ∈ f(S), w(f(S)) = w(S) > w̄, and w(f(S)\{i}) =
w(S\{i}) ≤ w(S\{j}) ≤ w̄. Therefore f(S) ∈ Wa(i).

(ii) If i /∈ S, then f(S) = (S\{j}) ∪ {i}, and we obtain i ∈ f(S). Moreover, since
i > j implies wi ≥ wj , we have w((S\{j}) ∪ {i}) ≥ w(S). It follows w(f(S)) ≥
w(S) > w̄. Since f(S)\{i} = S\{j}, we obtain w(f(S)\{i}) = w(S\{j}) ≤ w̄.
Consequently, again f(S) ∈ Wa(i).

The validity of the inequality d(S) ≥ d(f(S)) is obvious when i is in S. Thus
suppose i /∈ S. For this case, we have already proved that w(S) ≤ w(f(S)). Let
player k be essential for f(S).

(i) If k 6= i, then k ∈ S. In this case, we can show that k is essential also for S.
Since we know that w(S) ≤ w(f(S)), we also know that w(S\{k}) ≤ w(f(S))\{k}),
because k belongs both to S and f(S). Since k is essential for f(S), we have
w(f(S)) \ {k}) ≤ w̄. It follows that w(S \ {k}) ≤ w̄, and therefore k is essential also
for S.

(ii) If k = i, then k /∈ S, k 6= j and k is inessential for S.

Since j is essential for S and inessential for f(S), it is clear from (i) and (ii)
that the number of players essential for S cannot be less than the number of players
essential for f(S). ¤

Lemma 2. If i > j, then there is a one-to-one mapping

f :W∗(j)→W∗(i)

such that, for each S ∈ W∗(j), ]f(S) = ]S and d(S) ≥ d(f(S)).

P r o o f . Using analogous arguments to those used in the proof of Lemma 1, we can
easily prove that the restriction f of fij to the setW∗(j) has all required properties.
As an illustration, let us verify that

w(f(S)\{i}) ≤ w̄ or ](f(S)\{i}) ≤ n

2
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whenever S ∈ W∗(j). Since S ∈ W∗(j), we know that

w(S\{j}) ≤ w̄ or ](S\{j}) ≤ n

2
.

Suppose that ](S\{j}) ≤ n
2 . If i ∈ S, then ](f(S)\{i}) = ](S\{i}) = ](S\{j}) ≤ n

2 .
If i /∈ S, then ](f(S) \ {i}) = ](((S \ {j}) ∪ {i}) \ {i}) = ](S \ {j}) ≤ n

2 . If our
assumption is not satisfied, that is, if ](S\{j}) > n

2 , then w(S\{j}) ≤ w̄. If i ∈ S,
then w(f(S)\{i}) = w(S \{i}) = w(S)−wi ≤ w(S)−wj = w(S \{j}) ≤ w̄. If i /∈ S,
then w(f(S)\{i}) = w(((S \ {j}) ∪ {i}) \ {i}) = w(S \ {j}) ≤ w̄. ¤

Lemma 3. If i > j, then
∑

S∈Wa(j)
g(S) ≤

∑
S∈Wa(i)

g(S) and
∑

S∈W∗(j)
g(S) ≤

∑
S∈W∗(i)

g(S)

for each nonnegative real-valued function g on P(N) such that g(S) = g(S′) when-
ever ]S = ]S′.

P r o o f . According to Lemma 1, there exists a one-to-one mapping f of Wa(j)
into Wa(i) such that ]f(S) = ]S for each S ∈ Wa(j). Since g(S) = g(S′) whenever
S = S′, we have

∑
S∈Wa(j) g(S) =

∑
S∈Wa(j) g(f(S)). However, {f(S) : S ∈ Wa(j)}

is a subset ofWa(i) and f is a one-to-one mapping. Therefore,
∑
S∈Wa(j) g(f(S)) ≤∑

S∈Wa(i) g(S). Consequently, we have
∑
S∈Wa(j) g(S) ≤∑

S∈Wa(i) g(S). Similarly,
using Lemma 2 instead of Lemma 1, we can obtain the inequality

∑
S∈W∗(j) g(S) ≤∑

S∈W∗(i) g(S). ¤

Theorem 1. All game power indices under consideration, with the exception of
Deegan–Packel index, are monotone both in Ga and G∗.

P r o o f . First we note that, for each k, each power index of player k can be
written in the form ∑

S∈Wa(k)
g(S) and

∑
S∈W∗(k)

g(S)

where g is a nonnegative real valued function on P(N). The monotonicity of the
Shapley–Shubik index and the monotonicity of the Banzhaf index then follow directly
from Lemma 3.

Regarding the Johnston index, by the same logic as in the proof of Lemma 3,
we first observe that by Lemma 1,

∑
S∈Wa(j) g(f(S)) ≤ ∑

S∈Wa(i) g(S). From
Lemma 1 we also know 1/d(S) ≤ 1/d(f(S)) and therefore, for the corresponding g,
we have g(S) ≤ g(f(S)) for each S from Wa(j). Consequently

∑
S∈Wa(j) g(S) ≤∑

S∈Wa(j) g(f(S)). Therefore
∑
S∈Wa(j) g(S) ≤ ∑

S∈Wa(i) g(S) as required. Thus
the Johnston index of game Gais monotone. Using Lemma 2 analogously, we obtain
the monotonicity of the Johnston index of G∗. ¤

The following example shows that the absolute Deegan–Packel index of game Ga

need not be monotonic.
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Example. Consider Ga with five players whose weights are w1 = w2 = w3 = 1 and
w4 = 2, w5 = 3. LetMa(k) be the set of minimal coalitions in Ga containing player
k. Then we have: Ma(1) = {125, 135, 1234},Ma(2) = {125, 235, 1234},Ma(3) =
{135, 235, 1234},Ma(4) = {45, 1234},Ma(5) = {45, 125, 135, 235}, where inner
brackets are omitted when specifying coalitions. The resulting absolute Deegan–
Packel power index is then as follows:

(δ1, δ2, δ3, δ4, δ5) =
(

11
12
,

11
12
,

11
12
,

9
12
,

18
12

)
.

5. POWER SHIFT THEOREM

In this section we prove that a certain shift of power occurs when the voting by
account is replaced by voting by count and account. We will need the following two
lemmata, the proofs of which we omit, because they are analogous to the proofs of
previous Lemma 1 and Lemma 2.

Lemma 4. If i > j, then there is a one-to-one mapping

f :Wa(j)\W−(j)→Wa(i)\W−(i)

such that, for each S ∈ Wa(j)\W−(j), ]f(S) = ]S and d(S) ≥ d(f(S)).

Lemma 5. If i > j, then there is a one-to-one mapping

f :W+(i)→W+(j)

such that, for each S ∈ W+(i), ]f(S) = ]S and d(S) ≥ d(f(S)).

For each k, let ϕak, β
a
k , γ

a
k and ϕ∗k, β

∗
k , γ
∗
k denote the corresponding power indices

of player k in games Ga and G∗.

Theorem 2. If i > j, then

ϕ∗i − ϕ∗j ≤ ϕai − ϕaj , β∗i − β∗j ≤ βai − βaj , γ∗i − γ∗j ≤ γai − γaj .

P r o o f . Since, for each player k,

W+(k) ∩W−(k) = ∅, W∗(k) =W+(k) ∪W−(k), W−(k) ⊂ Wa(k),

we obtain ∑
S∈W∗(k)

g(S)−
∑

S∈Wa(k)
g(S)

=
∑

S∈W+(k)
g(S) +

∑
S∈W−(k)

g(S)−
∑

S∈Wa(k)
g(S),
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and ∑
S∈W−(k)

g(S)−
∑

S∈Wa(k)
g(S) = −

∑
S∈Wa(k)\W−(k)

g(S)

for each k and each function g. Consequently
∑

S∈W∗(i)
g(S)−

∑
S∈Wa(i)

g(S) =
∑

S∈W+(i)
g(S)−

∑
S∈Wa(i)\W−(i)

g(S).

It follows from Lemma 4 and Lemma 5 that
∑

S∈W+(i)
g(S) ≤

∑
S∈W+(j)

g(S)

and ∑
S∈Wa(i)\W−(i)

g(S) ≥
∑

S∈Wa(j)\W−(j)
g(S).

Therefore we have
∑

S∈W∗(i)
g(S)−

∑
S∈Wa(i)

g(S) ≤
∑

S∈W+(j)
g(S)−

∑
S∈Wa(j)\W−(j)

g(S)

=
∑

S∈W∗(j)
g(S)−

∑
S∈Wa(j)

g(S),

which is equivalent to the required inequality for each of the corresponding func-
tions g. ¤

Theorem 2 establishes a power shift from “bigger” players to “smaller” players in
the sense that the bigger (smaller) players have less or equal (more or equal) power
in the compound game than in the corresponding weighted game. Hence, in voting
by count and account, the smaller player is never in a worse position than he or she
is in the voting by account. The following example shows that this is not necessarily
true in the case of players’ Deegan–Packel indices.

Example. Consider Ga with seven players whose weights are wk = 1 for k =
1, . . . , 5 and w6 = w7 = 3. Let Ma(k) ( resp., M∗(k)) be the set of all minimal
coalitions in Ga ( resp., G∗) containing player k. Then we obtain:

Ma(1) = {1236, 1246, 1256, 1346, 1356, 1456, 1237, 1247, 1257, 1347, 1357, 1457},
Ma(6) = {1236, 1246, 1256, 1346, 1356, 1456, 2346, 2356, 2456, 3456, 67},
M∗(1) = Ma(1) ∪ {1267, 1367, 1467, 1567},
M∗(6) = (Ma(6)\{67}) ∪ {1267, 1367, 1467, 1567, 2367, 2467, 2567, 3467, 3567, 4567}.

The resulting absolute Deegan–Packel indices of players’ power are then as follows:

δak =
1
4
· 12 = 3 for k = 1, . . . , 5, δa6 = δa7 =

1
4
· 10 +

1
2

= 3 and

δ∗k =
1
4
· 16 = 4 for k = 1, . . . , 5, δ∗6 = δ∗7 =

1
4
· 20 = 5.

Hence, in this case, the absolute Deegan–Packel index of G∗ is less egalitarian than
that of Ga.
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Peleg [4] shows a similar power shift theorem for the Shapley–Shubik power index.
In particular, he shows that

∑i
k=1 ϕ

∗
k ≥

∑i
k=1 ϕk for i = 1, 2, · · · , n. In view of the

Proposition, presented in the Appendix, this result can be obtained as a consequence
of Theorem 2, which provides an alternative proof of this particular result of Peleg.
Moreover, we have proved that analogous power shifts also occur when players’ power
is measured by the absolute Banzhaf or the absolute Johnston power indices.

APPENDIX

Let φ1, φ2, · · · , φn, φ∗1, φ∗2, · · · , φ∗n be non-negative real numbers such that
∑n

k=1
φk = 1 and

∑n

k=1
φ∗k = 1.

Proposition If φ∗i −φ∗j ≤ φi−φj for all i, j with i ≥ j, then
∑i
k=1 φ

∗
k ≥

∑i
k=1 φk

for i = 1, · · · , n. The converse is not true.

P r o o f . (i) If φ∗i −φ∗j ≤ φi−φj for i, j (i ≥ j), then we have
∑n−1
k=1(φ∗n−φ∗k) ≤∑n−1

k=1(φn − φk). Hence

(n− 1)φ∗n −
∑n−1

k=1
φ∗k ≤ (n− 1)φn −

∑i

k=1
φk.

Since φ∗n = 1−∑n−1
k=1 φ

∗
k and φn = 1−∑n−1

k=1 φk,

(n− 1)[1−
∑n−1

k=1
φ∗k]−

∑n−1

k=1
φ∗k ≤ (n− 1)[1−

∑n−1

k=1
φk]−

∑n−1

k=1
φk

(n− 1)− n
∑n−1

k=1
φ∗k ≤ (n− 1)− n

∑n−1

k=1
φk.

Therefore we have ∑n−1

k=1
φ∗k ≥

∑n−1

k=1
φk.

(ii) Again, if φ∗i−φ∗j ≤ φi−φj for i, j (i ≥ j), then
∑n−2
k=1(φ∗n−φ∗k) ≤∑n−2

k=1(φn−φk).
Hence

(n− 2)φ∗n−1 −
∑n−2

k=1
φ∗k ≤ (n− 2)φn−1 −

∑n−2

k=1
φk.

Since φ∗n−1 = (1− φ∗n)−∑n−1
k=1 φ

∗
k and φn−1 = (1− φn)−∑n−1

k=1 φk,

(n− 2)(1− φ∗n)− (n− 1)
∑n−2

k=1
φ∗k ≤ (n− 2)(1− φn)− (n− 1)

∑n−2

k=1
φk.

From the last inequality of (i), it follows 1− φ∗n ≥ 1− φn. Therefore, we have
∑n−2

k=1
φ∗k ≥

∑n−2

k=1
φk.

Similarly, we obtain the required inequalities
∑i

k=1
φ∗k ≥

∑i

k=1
φk
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for the remaining values of i. ¤

The following numbers show that the converse is not true when n ≥ 3 :

φ1 = 0.2, φ2 = 0.3, φ3 = 0.5, φ∗1 = 0.2, φ∗2 = 0.4, φ∗3 = 0.4.

(Received November 30, 2005.)
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