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KYBERNET IK A — VOLUME 4 3 ( 2 0 0 7 ) , NU MB ER 1 , P AG E S 1 – 2 0

BILINEAR SYSTEM AS A MODELLING FRAMEWORK
FOR ANALYSIS OF MICROALGAL GROWTH

Štěpán Papáček, Sergej Čelikovský, Dalibor Štys and Javier Ruiz-
León

A mathematical model of the microalgal growth under various light regimes is required
for the optimization of design parameters and operating conditions in a photobioreactor.
As its modelling framework, bilinear system with single input is chosen in this paper. The
earlier theoretical results on bilinear systems are adapted and applied to the special class
of the so-called intermittent controls which are characterized by rapid switching of light
and dark cycles. Based on such approach, the following important result is obtained in the
present paper: as the light/dark cycle frequency is going to infinity, the value of resulting
production rate in the microalgal culture goes to a certain limit value, which depends on
average irradiance in the culture only. As a case study, the so-called three-state model
of photosynthetic factory, being a simple four-parameter model, is analyzed. The present
paper shows various numerical simulations for the model parameters previously published
and analyzed experimentally in the biotechnological literature. These simulation results
are in a very good qualitative compliance with the well-known flashing light experiments,
thereby confirming viability of the approach presented here.

Keywords: bilinear system, model of photosynthetic factory, microalgae, light/dark cycles,
flashing light experiments

AMS Subject Classification: 93C10, 37N25

1. INTRODUCTION AND PROBLEM STATEMENT

Delivering the light in an optimal manner and achieving maximum productivity is
a key issue as far as the control of photobioreactors (further PBR) is concerned.
When microalgal cells are grown in PBR, photon flux density (PFD) decreases ex-
ponentially (according to the Lambert–Beer’s law) with the growing distance from
irradiated side of the PBR. The cells near the front are exposed to high PFD (some
authors prefer to use the equivalent term “irradiance”), which usually allows a high
growth rate. At the core, the cells receive less or no light and will thus have a
lower growth rate. Nevertheless, it was observed experimentally that higher PFD
does not automatically mean higher growth rate. The phenomenon, when for the
increasing PFD the growth rate decreases, is called in the biotechnological literature
as the photoinhibition [11, 15, 16]. Consequently, there is a certain value of constant
PFD, for which this growth is the highest possible. That is not surprising from the
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system theory point of view, as the response to irradiance is described, later on, by
dynamical system modelled by ordinary differential equations with controlled input.

For this reason, in the real PBR the cells are mixed between the front and core
of the PBR thereby achieving more uniform irradiance for all cells. As a conse-
quence, the cell moving between the front and core of the PBR receives the light
intermittently. Both intuitively expected and experimentally confirmed hypothesis
is that intermittent (flashing) regimes may do the same job as the average constant
irradiance equal to integral average of intermittent regime.

In the present paper, this expectation will be confirmed also theoretically, based
on the properties of the so-called bilinear systems with single input. It is interesting
to see, that the biotechnological “intermittent principle” is mathematically a con-
sequence of Lipschitz dependence of trajectories of bilinear system on input, with
respect to certain special functional norm of an input space. This is the main original
contribution of the present paper to the topic previously treated only experimentally,
or by computer simulations.

These experimental treatments have achieved a lot of attention, especially in
biotechnological literature. Terry in [18] presented an excellent experimental work
leading to the elucidation of dependence of photosynthetic growth enhancement on
flashing rate, but he did not explain the mechanism of growth enhancement by
means of mathematical modelling. Whereas photosynthesis by microalgal cells in
small laboratory systems under “deterministic” light/dark cycles has been studied
since 1953 (see e. g. [9, 10, 14, 18, 19]), no structured mathematical model describing
the flashing light enhancement has been proposed till now.

The theory of photosynthetic microorganisms growth modelling has long been
regarded as a well-defined discipline in algal biotechnology, consisting of the adequate
coupling between photosynthesis and irradiance, resulting in the light response curve
(so-called P–I curve), which represents the microbial kinetics. However, several
phenomena, e. g. just mentioned flashing light enhancement, cannot be explained
by a simple kinetic relation. The main difficulty in considering the role of light/dark
cycles induced by algal suspension flow in PBR consists in different time scales of
both processes. While the time constant of algal growth is in order of hours, the
transport of cells from light to dark zone and viceversa occurs generally in seconds.

Nevertheless, a simple dynamic model of photosynthetic factory (further PSF
model), proposed by Eilers and Peeters [5], has proved to be an effective means to
model both relevant phenomena, i. e. microalgal growth under both constant and
intermittent light regime. The PSF model is a lumped parameter model of microalgal
growth in the form of the bilinear system, see Eq. (1), which is linear in state x
(state vector x has three components representing three states of a photosynthetic
unit), linear in control variable u (single scalar input u represents the irradiance in
the culture), but not jointly linear in both.

Our paper is organised as follows: Section 2 begins with an announcement of
the Lipschitzean dependence of trajectories of bilinear systems on control, which
is based on the earlier studies on bilinear systems [1, 2, 3]. Then, considering the
following application to microalgal growth modelling, a new theorem is formulated
and proved. Further we investigate the dynamic behaviour of a special model of
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microalgal growth (so-called three-state model of photosynthetic factory) in form
of bilinear system. In Section 3, the relation for photosynthetic production rate is
derived and the condition for optimal control is announced as a special theorem.
Subsequently, the most relevant results of numerical simulations are presented in a
graphical form and some consequences are depicted. The final Section 4 presents
our conclusions and future prospects in microalgal growth modelling and control.

2. MODEL DEVELOPMENT

2.1. Bilinear systems with single input

Let us consider the following control system called in the sequel as the bilinear system
with single input (BLSSI):

ẋ = Ax + (Bx + c)u, x(t0) = x0, (1)

where A,B are (n × n)-dimensional constant matrices and c is vector in Rn space.
Scalar control u is assumed to be a measurable function on every finite time interval
[t0, tf ] such that almost everywhere on [t0, tf ] it holds

umin ≤ u(t) ≤ umax,

where umin, umax are given real numbers. Such a control is further denoted as the
admissible one. Finally, x ∈ Rn is the vector of state variables and x0 ∈ Rn is
the given initial state of the system. More general forms of bilinear systems are
described in [13].

2.2. Estimate for Lipschitzean dependence of trajectories of BLSSI
on control

Here, we aim to briefly recall the validity of the following estimate:

max t0≤t≤tf
‖xd(t)− xe(t)‖Rn ≤ K max t0≤t≤tf

∣∣∣∣
∫ t

t0

(ud(s)− ue(s)) ds

∣∣∣∣ , (2)

where xd(t) and xe(t) are solutions of (1) for ud(t) and ue(t) respectively, K is a
constant depending only on A,B, c, t0, tf , umin, and umax. Let us note that the above
estimate means, in fact, Lipschitzean dependence of the trajectories of the bilinear
systems on the inputs with respect to the special input space norm

∣∣∣∣
∫ t

t0

u(s) ds

∣∣∣∣

and the usual uniform convergence norm for state trajectories space

max t0≤t≤tf
‖x(t)‖Rn .
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Theorem 1. Let us consider system (1), defined on the time interval [t0, tf ], with
the initial state x(t0) = x0 and let xd(t) and xe(t) be trajectories of this system for
admissible control ud(t) and ue(t) respectively. Then the estimate (2) is valid, where

K = K1K2‖x0‖Rn + 2K1K
2
2K3K4‖A‖s‖c‖Rn(tf − t0)

+K2
2K4‖A‖s‖c‖Rn(tf − t0) + K4‖c‖Rn .

(3)

Here we use the notation

K1 = (2‖A‖s‖B‖s(tf − t0) + ‖B‖s) (4)
K2 = exp ((‖B‖sup + ‖A‖s)(tf − t0)) (5)

K3 = {exp (‖B‖sup(tf − t0))− 1}/‖B‖s (6)
K4 = exp (‖B‖sup(tf − t0)) (7)
up = max{|umin|, |umax|}. (8)

Finally, ‖ · ‖s stands for the matrix norm compatible with the Euclidean norm in Rn

and ‖ · ‖Rn for the Euclidean vector norm.

P r o o f . The proof is performed in detail in [3]. 2

Remark 1. Theorem 1 in fact establishes not only continuous dependence of tra-
jectory of system (1) on control with respect to norms max t0≤t≤tf

∣∣∣
∫ t

t0
u(s) ds

∣∣∣ and
max t0≤t≤tf

‖x(t)‖Rn , but even Lipschitzean dependence of a trajectory of a bilinear
system on control with respect to these norms. Notice that the norm in the input
space is a special one, as the absolute value is taken outside the integral. Conse-
quently, two inputs, closed each to other with respect to this norm, may have even
very different values.

2.3. Dependence of trajectories and states of BLSSI
on intermittent input signal

In this subsection we formulate and prove Theorem 2 mathematically supporting
the experimental observation that rapidly flashing light gives practically the same
microalgae growth as would some its average constant irradiance equivalent. This
theorem is closely related with the well-known Filipov theorem on differential in-
clusion and is proved by a very similar technique as used in [1, 2, 3]. Nevertheless,
neither of these results directly imply our Theorem 2.

Definition 1. (Intermittent controlled input) Let ua, ub, ua ≤ ub, be given real
numbers. The controlled input u∗∗(s) ∈ [ua, ub], s ∈ [t0, tf ], will be called as the
intermittent one if there exist real numbers h and ha, h > ha > 0, such that (see
Figure 1):

1) u∗∗(s) = ua on each subinterval of the form [t0 + (i− 1) h, t0 + (i− 1)h + ha],

2) u∗∗(s) = ub on each subinterval of the form [t0 + (i− 1) h + ha, t0 + ih].
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ha hb

ub

ua

t

Fig. 1. Schematic presentation of the periodic intermittent input signal u∗∗, where ua

is the irradiance level during time period ha and ub is the irradiance level during time

period hb. The total cycle period is h = ha + hb.

Definition 2. Let us consider the system (1) with the initial state x(t0) = x0 and
let us use the notation of Definition 1. By X∗∗(t0, t, x0, ua, ub) we denote the set of all
points reachable from x0 using the intermittent controlled inputs u∗∗(s) ∈ [ua, ub],
s ∈ [t0, t]. Analogously, Xc(t0, t, x0, ua, ub) stands for the set of all points reachable
from x0 using the constant controlled inputs uc(s) ∈ [ua, ub], s ∈ [t0, t]. For the sake
of brevity, when obvious from the context, ua, ub might be omitted.

Theorem 2. Let us consider the system (1) with initial state x(t0) = x0. Then
for any t ∈ [t0, tf ]

Xc(t0, t, x0, ua, ub) = X∗∗(t0, t, x0, ua, ub).

The proof of Theorem 2 is based on the following

Lemma 1. Let be uc = ha

h ua+ h−ha

h ub and let u∗∗(s) is the intermittent controlled
input defined in Definition 1. Then it holds for all t ∈ [t0, tf ]

∣∣∣∣
∫ t

t0

uc(s) ds−
∫ t

t0

u∗∗(s) ds

∣∣∣∣ ≤ (ub − ua)
ha

h

(
1− ha

h

)
h. (9)

P r o o f . The straightforward computations show that

|wc(t)− w∗∗(t)| ≤ ha(uc − ua), (10)

where

wc(t) :=
∫ t

t0

uc(s) ds, w∗∗(t) :=
∫ t

t0

u∗∗(s) ds.
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Taking into account the assumption uc = ha

h ua + h−ha

h ub one has

ha(uc − ua) = ha

(
ha

h
ua +

h− ha

h
ub − ua

)
= (ub − ua)

ha(h− ha)
h

, (11)

which completes the proof. 2

P r o o f o f Th e o r em 2. By Lemma 1 every constant controlled input uc(s) ∈
[ua, ub], s ∈ [t0, t], is the limit of the suitable sequence of the intermittent controlled
inputs u∗∗(s) ∈ [ua, ub], s ∈ [t0, t], where the corresponding convergence is in the
norm ∣∣∣∣

∫ t

t0

u(s) ds

∣∣∣∣ .

At the same time, Theorem 1 establishes the Lipschitzean dependence of trajectories
of bilinear systems on inputs with respect to the above norm of the input space and
the usual norm of the uniform convergence in the state trajectories space. As a
consequence, for every trajectory generated by some constant input there exists a
suitable sequence of the trajectories generated by the intermittent inputs converging
to it in the usual uniform convergence norm. In particular,

Xc(t0, t, x0, ua, ub) = X∗∗(t0, t, x0, ua, ub)

and Theorem 2 have been proved. 2

Remark 2. Theorem 2 establishes that the state trajectory of a bilinear system
for a constant control signal uc can be approximated by the state trajectory corre-
sponding to the intermittent control signal u∗∗ with an arbitrary precision. More-
over, thanks to Theorem 1, establishing the Lipschitz dependence of trajectories of
bilinear systems on inputs with respect to the appropriate norms, this approxima-
tion can be even made uniform with respect to parameters h > ha > 0 and the
constant inputs1 which is another useful aspect for practical computations later on.
In particular, Theorem 2 will be used to set out a simple strategy for the open loop
control of microalgal growth to achieve “intermittently” optimal light regime, see
Theorem 3 in Subsection 3.2.

2.4. Three-state model of the photosynthetic factory

A structured three-state model of so-called photosynthetic factory (PSF) has been
proposed by Eilers and Peeters in [5] and further developed in [6, 19, 20]. The
authors of the paper [5] originally worked with the probabilities that a hypothetical
photosynthetic factory is in one of the three states R, A or B: pR represented the
probability that PSF is in the resting state R, pA the probability that PSF is in the
activated state A, and pB the probability that PSF is in the inhibited state B. The
PSF can only be in one of these states, so:

pR + pA + pB = 1 . (12)
1More precisely, for every required approximation precision there exist parameters h > ha > 0,

independent of particular constant input, guaranteeing that precision.
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αu

βu

uu

B

A

δ

γ

R

Fig. 2. Scheme of states and transition rates of the photosynthetic factory – Eilers and

Peeters PSF model. The three states of the photosynthetic factory are:

R resting state, A activated state, B inhibited state. The transition rates are:

αu, βu, γ, δ (unit: s−1). The input variable u is the irradiance (unit: µE m−2 s−1).

The possible transitions among states are supposed to be of zero or first order re-
spective to the irradiance u. Hence from the PSF model, schematically depicted in
Figure 2 directly follows




˙pR

˙pA

˙pB


 =




0 γ δ
0 −γ 0
0 0 −δ







pR

pA

pB


 + u




−α 0 0
α −β 0
0 β 0







pR

pA

pB


 . (13)

For given values of the model parameters α, β, γ, δ and the input variable,
i. e. the irradiance u, the equation system (13) is a system of linear differential
equations with constant coefficients, that can be solved explicitly by classical means.
Many authors, e. g. Eilers and Peeters in [5], Zonneveld in [21], Han in [7], restrict
themselves to the steady-state solution, when a constant irradiance is maintained
long enough so that the PSF states do not change anymore. Taking into account the
Eq. (12), further only two state variables will be evaluated, thus for the steady-state
solution of PSF model the following equations hold:

pRss =
δ (γ + βu)

αβu2 + δ (α + β)u + γδ
, (14)

pAss =
δ αu

αβu2 + δ (α + β)u + γδ
. (15)

According to [5], the rate of photosynthetic production (specific growth rate µ)
is proportional (there is a proportional constant κ) to the transition rate from the
resting to the activated state, i. e.:

µ = κγpAss =
κ γδ αu

αβu2 + δ (α + β)u + γδ
. (16)

Equation (16) gives the relation between irradiance and production (growth)
rate in the steady state. This steady state growth kinetics is of Haldane type [17]
or Substrate inhibition kinetics [4] and we realise that the value of irradiance to
maximise growth rate is uopt =

√
γδ/(αβ) (see Figure 3).
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max

S

µ∗

µ

KIKS

Fig. 3. Steady-state production curve of Haldane type or Substrate inhibition kinetics.

The governing relation is: µ = µ∗ S/[KS + S + S2/KI ], where µ is specific growth rate

and S is limiting substrate, µ∗, KS , KI are model constants. Maximum occurs at S =

(KS KI)
0.5, when µmax = µ∗/(2(KS/KI)

0.5 + 1). The connection between PSF model and

Haldane kinetics could be described as follows: µ∗ = κγ · α
α+β

, KS = γ/(α + β), and

KI = δ(α + β)/(αβ). Note that for KI →∞ (e. g. for β
δ
→ 0), the production curve is of

Monod type.

Only three of the five parameters (κ, α, β, γ, δ) could be estimated from the
steady-state production curve of Haldane type. To estimate other two parameters
corresponding to the time constants of two interconnected processes (i. e. photo-
synthetic light and dark reactions and photoinhibition), we need certain dynamic
measurements.

Although Eilers and Peeters, in their first paper about PSF model [5], did not
fully exploit the dynamic character of PSF model, precisely the simple connection
between the growth process (specific growth rate µ) and the time averaged value
of pA is the most important advantage of PSF model, which permits e. g. mod-
elling and simulations of the so-called flashing light experiments. The states of PSF
model satisfactorily reflect the fluctuations of irradiance in time micro-scale and the
averaging is made without loss of accuracy.

Before to continue working with PSF model, we will transform the vector of state
variables as follows 


x1

x2

x3


 =




pR − 1
pA

pB


 . (17)

The purpose of such a transformation is twice:

• To formulate our problem of microalgal growth, with the initial condition
x(t0) = [x10, x20, x30]T , in form of bilinear system Eq. (1), as we did in Sub-
section 2.1, enabling an application of our Theorem 2.

• To have the “natural” initial condition for PSF model, an initial state of vector
x, in form of x(t0) = [0, 0, 0]T , which corresponds to the steady-state value for



Bilinear System and Microalgal Growth 9

u = 0, i. e. this initial state is reachable after a long incubation in the dark,
when PSF is in its resting state.

Taking into account the linear dependence of the three states of PSF model (i. e.
x1 + x2 + x3 = 0), further only two state variables x1 and x2 will be used. The
resulting ODE system is then:

[
ẋ1

ẋ2

]
=

[
−δ γ − δ

0 −γ

] [
x1

x2

]
+ u

[
−α 0

α −β

] [
x1

x2

]
+

[
−α
α

]
u, (18)

where α, β, γ and δ are rate constants of PSF model and u(t) is the known scalar
function. It is assumed that u(t) is at least piecewise continuous.

The analytical solution of an initial value (Cauchy) problem, and the problem
of quasi steady-state under intermittent light regime will be performed in Subsec-
tion 2.5, and 2.6, respectively.

2.5. Model of PSF and initial value problem

Eilers and Peeters presented in [6] a solution of ODE (13) for constant irradiance u
and for “natural” initial condition pR(t0) = 1, and pA(t0) = 0. In this subsection,
we will briefly present the solution of an initial value problem for the system (18),
constant control variable u > 0, and general initial condition x(t0) = [x10, x20]T . The
results cannot be simply used for u = 0, thus the same proceeding (i. e. eigenvectors
and fundamental matrix determination) for u = 0 will be briefly presented in the
end of this subsection.

The system matrix from (18), which could be described as (A + uB), is regular,
i. e. det(A + uB) 6= 0, for all u ≥ 0. First of all, we will look for the eigenvalues
of system matrix (A + uB), and for steady state solution. The matrix (A + uB)
has two negative eigenvalues λ1, λ2; see Eq. (22) and Eq. (23). Let be |λ1| > |λ2|.
After some simplification, aiming to avoid loss of the precision in the numerical
calculation,2 the next formulas hold

λ1 = − (α + β)u + γ + δ

2
−

√
[(α− β)u + γ − δ]2 + 4βu(γ − δ)

2
, (19)

λ2 = − (α + β)u + γ + δ

2
+

√
[(α− β)u + γ − δ]2 + 4βu(γ − δ)

2
. (20)

The steady-state solution of (18) for a constant u ≥ 0, xss = [x1ss, x2ss]T , which
will be used in the next as a particular solution of the system (18), is

[
x1ss

x2ss

]
=




−(δ+βu)αu
λ1λ2

δ·αu
λ1λ2


 . (21)

2 The ODE system (18) is stiff and the stiffness ratio is about 103 (depending on u). The
eigenvalues λ1 and λ2 were calculated for the values of PSF model parameters α=1.935 × 10−3

µE−1 m2, β=5.785 × 10−7 µE−1 m2, γ=1.460 × 10−1 s−1, δ=4.796 × 10−4 s−1, taken from [19]
for the microalga Porphyridium sp. and for the irradiance u=250 µEm−2 s−1, with the result:
λ1=-0.63, λ2=-0.59 10−3.
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Note that the steady-state solution is stable, because the eigenvalues of system
matrix (18) are negative for every u ≥ 0 :

λ1λ2 = (αu + βu + γ)δ + αβu2 = det(A + uB) > 0, (22)
and

λ1 + λ2 = −(αu + βu + γ + δ) < 0. (23)

Let u > 0, then the eigenvectors K1, K2 of system matrix (A + uB), and the
fundamental matrix Φ(u, t) of ODE (18) are:

K1 =
[

(γ + βu + λ1)
αu

]
, (24)

K2 =
[
−(γ + βu + λ2)

−αu

]
, (25)

Φ(u, t) =

[
(γ + βu + λ1)eλ1t −(γ + βu + λ2)eλ2t

αueλ1t −αueλ2t

]
. (26)

For the standard form of the solution of Cauchy problem the matrix Φ−1(u, t0) is
needed. Let t0 be set to 0, without loss of generality, then:

Φ−1(u) =
1

λ1 − λ2




1 (1 + δ+λ1
αu )

1 (1 + δ+λ2
αu )


 , (27)

and the solution of Cauchy problem can be presented in the standard form:

x(t) = Φ(u, t) Φ−1(u)(x0 − xss) + xss . (28)

Further by the following equation:

U(u, t) = Φ(u, t) Φ−1(u), (29)

we define the matrix of transition or standard form of fundamental matrix.3

Now the special case for u = 0 will be treated: The ODE (18) is reduced to the
form dx/dt = Ax, hence the eigenvalues are (-γ) and (-δ) and the matrices Φ(0, t)
and Φ−1(0) are:

Φ(0, t) =

[
e−γt e−δt

−e−γt 0

]
, (30)

Φ−1(0) =

[
0 −1

1 1

]
. (31)

The matrix of transition U(0, t) is now very simple:

U(0, t) =

[
e−δt (e−δt − e−γt)

0 e−γt

]
. (32)

3 Note that the product of fundamental matrices Φ(u, t) Φ−1(u) is unique, i. e. independent on
the form of fundamental matrix Φ(u, t).
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2.6. Model of PSF and periodic intermittent input signal

Having already resolved the initial value problem for the system with input variable
u, we can advance to more specific case: the periodic intermittent input u ∈ {ua, ub},
with period h = ha + hb; see Figure 1.

In this case, as it will be seen during explicit computations later on, there exists
a unique periodic solution of the system (18). Similar statement was obtained also
e. g. in [8] (see Proposition 1) for the case of continuous periodic right hand side.
Nevertheless, in our case the system (18) under influence of the intermittent input is
the linear periodic system where the system matrix is discontinuous, but piecewise
constant, so that our case is neither more, nor less general than the mentioned result
in [8].

More specifically, we aim to prove that for every set of system parameters and
parameters defining the intermittent input there exists an unique initial conditions,
such that for the corresponding trajectory of (18) it holds that:

x(t) = x(t + h). (33)

To show this property, let t0 be the beginning of the “darker” a-interval of cycle,
t1 is the beginning of the “lighted” b-interval of cycle, and xssa , resp. xssb

denotes
the steady-state solution of (18), for u = ua, resp. u = ub. Then the above equation
(33) to be proved is equivalent to the equality:

x(t0) = Φ(ub, hb) Φ−1(ub)×
{[

Φ(ua, ha) Φ−1(ua)(x(t0)− xssa) + xssa

]
− xssb

}
+ xssb

,
(34)

where we set t = t0 and after that the equation (28) have been used twice, first for
u = ua, then for u = ub. For the common case of light/dark cycles, i. e. when ua is
actually equal to zero, taking into account that xssa = [0, 0]T , equation (34) can be
rewritten as follows:

[I − U(ub, hb)U(0, ha)]x(t0) = [I − U(ub, hb)]xssb
. (35)

Here, I is the (2 × 2)-dimensional identity matrix and U(ub, hb), and U(0, ha) are
matrices of transition defined by the equation (29), resp. by the equation (32).

Equation (35), which connects the unknown boundary value of state vector x
with the model parameters (α, β, γ, δ), the parameters of light/dark cycles (ha, hb),
and the value of input variable (ub), is actually the system of two linear algebraic
equations (LAE). The system matrix of LAE (35) is regular for every value of the
light regime parameters, i. e. for every positive ha, hb, ub, the determinant of system
matrix (35) is positive:

∆Dir = det [I − U(ub, hb)U(0, ha)] > 0 . (36)

In other words, one can resolve uniquely the equation (35) with respect to x(t0)
and therefore the periodic solution of ODE system (18) under periodic intermittent
input signal exists and is unique.
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After somewhat tedious calculation we receive the following symbolic expression
for the determinant of the system matrix of LAE (35) and for the first and second
component of state vector x(t0):

∆Dir = 1 + e(hb(λ1+λ2)−ha(γ+δ)) + λ1+δ
λ2−λ1

(
e(λ2hb−δha) + e(λ1hb−γha)

)

− λ2+δ
λ2−λ1

(
e(λ2hb−γha) + e(λ1hb−δha)

)
,

(37)

x1(t0) = − αub

(λ2−λ1) ∆Dir
{ (eλ2hb − eλ1hb)(1− e−δha)

+(1− eλ1hb)
[

δ
λ1

(1− e(λ2hb−δha)) + βub

λ1
(1− e(λ2hb−γha))

]

−(1− eλ2hb)
[

δ
λ2

(1− e(λ1hb−δha)) + βub

λ2
(1− e(λ1hb−γha))

]
} ,

(38)

x2(t0) = αub

(λ2−λ1) ∆Dir
{(eλ2hb − eλ1hb)(1− e−δha)

+ δ
λ1

(
1− eλ1hb

) [
1− e(λ2hb−δha)

]
− δ

λ2

(
1− eλ2hb

) [
1− e(λ1hb−δha)

]
}.

(39)
The state vector x at the moment when the light is switched on, i. e. at the end

of the first (“dark”) interval of light/dark cycle when t = t1 = t0 + ha, could be
simply calculated using the Eq. (28). The other way is to use again the condition
of periodicity (33) with new boundaries at t = t0 + ha and t = t0 + ha + h. This
represents more tedious calculation and served us as the proof of the next results:

x1(t1) = − αub

(λ2−λ1) ∆Dir
{e−γha(eλ2hb − eλ1hb)(1− e−δha)

+(1− eλ1hb)
[

δ
λ1

e−γha
(
1− e(λ2hb−δha)

)
+ βub

λ1
e−δha

(
1− e(λ2hb−γha)

)]

−(1− eλ2hb)
[

δ
λ2

e−γha(1− e(λ1hb−δha)) + βub

λ2
e−δha(1− e(λ1hb−γha))

]
},

(40)

x2(t1) = e−γhax2(t0) . (41)

Once we have the values of state vector x at the moments when the light is switched
on and off, the time course of state vector x in an arbitrary instant t of light/dark
cycle could be easily determined by applying Eq. (28) with corresponding initial
conditions and corresponding level of irradiance u. This will be used in the following
section to calculate time-averaged value of state x2.

Remark 3. The variables λ1 , λ2, resp. −γ , −δ, in the above equations (37) – (41)
are the eigenvalues of system matrix (18) for u = ub and u = 0, respectively. Note
also that in Eqs. (37) – (41), the model parameters, the parameters of light/dark
cycles and the variable ub are put together to form dimensionless expressions.
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Fig. 4. Time course of the second component of state vector x under different values of

irradiance (PFD). The dotted line represents the steady state value x2ss for optimal value of

PFD, i. e. for 250 µE m−2 s−1. The bold line represents the case for uopt=250 µE m−2 s−1.

The bottom thin line corresponds to the case for u=100 µE m−2 s−1. The line which firstly

reaches the highest value of x2 but finally falls to the lowest value of x2 corresponds to the

case for u =1000 µEm−2 s−1. The simulations started from the “natural” initial condition

x = [0, 0]T , i. e. after a long time of incubation in the dark, and was stopped after t = 1800

s = 30 minutes. To reach the highest value of the state x2 was necessary about 30 s.

3. RESULTS AND DISCUSSION

3.1. Relation for photosynthetic production of PSF Model

In this paper, we restrict ourselves to model the continuous reactor operation (e. g.
chemostat or turbidostat, see [4, 17]). Hence, we work on previously not specified
time interval. Further, in a real PBR, only the intermittent control signal u∗∗,
i. e. the periodic switching between higher and lower irradiance induced by the flow
regime (which depends either on the PBR design and on PBR operating conditions),
is worth to consider. Applying the control signal u∗∗, the state vector x exhibits
periodic behaviour after sufficiently large time of transition to so-called quasi–steady
state. The quantification of the transient phenomena for PSF model and high–
frequency light/dark cycles is governed by the relation:

x2av = x2ss +
αuav

λ2 − λ1

[
−eλ1t

(
δ

λ1
+ 1

)
+ eλ2t

(
δ

λ2
+ 1

)]
, (42)

and graphically depicted in Figure 4.
Accordingly to [5], the photosynthetic production is directly proportional to the

average value of PSF closed state x2av
; see Eq. (16), which represents the special

case for u = uc. The average value of state x2 for the intermittent control signal
u∗∗, when the “quasi–steady state” is reached, can be evaluated by the integration
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over one cycle period h:

x2av =
1
h

∫ t0+h

t0

x2(t) dt =
1
h

(∫ t1

t0

x2(t) dt +
∫ t0+h

t1

x2(t) dt

)
. (43)

Considering our previous results in Subsections 2.5 and 2.6, the further evaluation
of Eq. (43) is straightforward and leads to the following result:

x2av = hb

h x2ssb
+ 1−e−γha

γh x2(t0) + αub

λ1λ2 h

(
1− λ2e

λ1hb−λ1e
λ2hb

λ2−λ1

)
(x1(t1)− x1ssb

)

+ eλ2hb−eλ1hb

(λ2−λ1) h (x2(t1)− x2ssb
) + αub+δ

λ1λ2 h

(
1− λ2e

λ1hb−λ1e
λ2hb

λ2−λ1

)
(x2(t1)− x2ssb

) .

(44)
This result could be expressed, accordingly to the Terry’s work [18] in terms of
light/dark cycle frequency ν = 1/h, ratio φb = hb/h, and average irradiance uav =
φbub. Such a choice of independent variables will be preferred in Subsection 3.3.

3.2. Intermittently optimal control

The main objective of our paper is to show that the bilinear system with single
input models very well the behaviour of microalgal culture under both constant and
intermittent light regime. The following Theorem 3 takes advantage of Theorem 2
and formulates a simple condition to achieve an extreme level of a performance
index or cost functional. The motivation of Theorem 3 is more clear regarding to
PSF model: It provides the tool for optimisation of intermittent input signal.4

Definition 3. Let us consider system (1) with initial state x(t0) = x0. Let have
the constant control uc on [t0, tf ], uc ∈ [ua, ub]. By constant optimal control uopt we
denote such constant control that optimise (maximise or minimise) cost functional
J(uc), given as

J(uc) :=
∫ tf

t0

f0(xc(t), uc) dt, (45)

where xc(t) is the solution of system (1) with u = uc. Let have the periodic inter-
mittent piecewise constant control u∗∗(t) on [t0, tf ], u∗∗(t) ∈ {ua, ub}. By φa, resp.
φb let be denoted the ratios ha/h, resp. hb/h. By intermittently ε-optimal control
u∗∗opt,ε we denote such an intermittent control that

1
tf − t0

∫ tf

t0

‖x∗∗ε (t)− xopt(t)‖Rn dt ≤ ε. (46)

where x∗∗ε (t) and xopt(t) are solutions of (1) for u∗∗opt,ε(t) and uopt respectively.

4The more cumbersome way to optimise light regime parameters of PSF model (i. e. mainly the
optimisation of ratio φb = hb/h for some value of light/dark cycle frequency and for some fixed
value ub) goes through the analysis of Eq. (44).
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Theorem 3. Let system (1) with initial state x(t0) = x0 be given and let have the
intermittent input signal u∗∗ua,ub,h,φa

determined by two constant parameters ua, ub

and two variables h, φa. Then for any εJ > 0 exist h∗∗ and φopt
a that for any h ≤ h∗∗

it holds that the corresponding intermittent control u∗∗ua,ub,h,φa
is intermittently

ε-optimal.

P r o o f . In order to prove assertion of Theorem 3 it only suffices to apply Theo-
rem 1 and Theorem 2 and find the relations for h∗∗ and φopt

a depending on εJ . These
relations we define in the following Lemma 2, thus proving Lemma 2, Theorem 3
will be proven too. 2

Lemma 2. Let be done the relation between the values of uopt and φopt
a as follows

uopt = φopt
a ua + (1− φopt

a ) ub, (47)

then estimate (46) is valid, if

h∗∗ ≤ εJ(ub − ua)
K(ub − uopt)(uopt − ua)

. (48)

P r o o f . Lemma 2 will be proven in two steps:

1) Derivation of an auxiliary estimate using Theorem 1 and Theorem 2.

2) Derivation of the condition for maximal possible value of h (i. e. h∗∗), leading
to the satisfaction of the condition (46), always when the ratio φa of light/dark
cycles obeys the relation (47).

Let now proceed to each item separately:

Ad 1) Putting together the estimate Eq. (2) from Theorem 1 and estimate Eq. (9)
from Lemma 1, the following estimate results:

max t0≤t≤tf
‖x∗∗(t)− xc(t)‖Rn ≤ K (ub − ua)

ha

h

(
1− ha

h

)
h , (49)

Further integration of this estimate (49) leads to
∫ tf

t0

‖x∗∗(t)− xc(t)‖Rn dt ≤ K (ub − ua)
ha

h

(
1− ha

h

)
h (tf − t0) , (50)

and finally

1
tf − t0

∫ tf

t0

‖x∗∗(t)− xc(t)‖Rn dt ≤ K (ub − ua)
ha

h

(
1− ha

h

)
h . (51)

Ad 2) In order to satisfy the estimate (46) for an arbitrary εJ > 0, regarding the just
derived estimate (51), we receive the following condition

εJ ≤ K (ub − ua)
ha

h

(
1− ha

h

)
h . (52)

Then, after applying the relation (47), the condition for h∗∗ in form of estimate
(48) results and proof is completed. 2
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Remark 4. Theorem 3 seems to be an obvious extension of Theorem 2, i. e. also
Theorem 3 states that for known constant optimal control uopt, the corresponding
trajectory of state vector x could be approximated by the trajectory of x under in-
termittent control u∗∗ua,ub,h,φa

on interval [t0, tf ] with an arbitrary precision (in sense
of the Euclidean vector norm). Nevertheless, Theorem 3 and Lemma 2 give the an-
swer about light-to-dark ratio and minimal light/dark cycle frequency (i. e. maximal
h∗∗) to ensure intermittently optimal control for general BLSSI (1). Naturally, for a
specific case, e. g. PSF model represented by ODE system (18), the constant K from
estimate (2) and consequently h∗∗ from estimate (48) could be evaluated exactly,
e. g. employing Eq. (44). This problem and the problem of existence and finding of
a ratio φa = ha/h, which optimise some functional J for some given h, is left to the
near future.

3.3. Numerical simulations of growth experiments in flashing light

Many algal biotechnologists are still experimenting with influence of intermittent
light on microalgal growth. These so-called flashing light experiments are described
e. g. in [9, 14, 16, 18]. Although the first results of flashing light experiments were
published some 50 years ago, no convincing conclusion was made in this topic.

The most relevant results of our numerical simulations based on data published
in [19] are presented in the following figures.

Firstly, in Figure 5, the course of x2av depending on frequency ν = 1/h is shown.
The average value of irradiance is maintained constant and set to the characteristic
value uopt =

√
γδ/(αβ), resulting in 250µEm−2s−1 for model parameters taken

from [19]. All three curves differing in value of ratio φb = hb/h have the same
superior limit, which is the steady state value of x2 for u = uopt (the dotted curve).
Hence, our general statement of Theorem 2 is confirmed in this special case of PSF
model.

In Figure 6, the course of x2av depending on ratio hb/h is shown. Now, the
value of incident irradiance ub is set to 2000 µE m−2 s−1 and ratio φb = hb/h is the
independent variable. Obviously, the average value of irradiance is varying accord-
ingly to ubφb. Not all curves in this figure (differing in value of light/dark cycle
frequency ν) show similar tendencies as the P–I curve of Haldane type kinetics (see
Figure 3 of this paper). For lower light/dark cycle frequency (for periods h in order
of tens of seconds) almost no light integration occurs (see the dotted curve), i. e.
the photosynthetic growth could be calculated separately for light period and dark
period.

The purpose of Figure 6 is either to verify Theorem 3 and to illustrate the old
concept of photosynthetic production enhancement due to the flashing light. In
outdoor condition, the value of incident irradiance could not be easily changed,
therefore, the idea of “cutting light” or “light dilution” appeared on the laboratories
of algal researchers. Two curves for light/dark cycle frequency of 0.1Hz and 0.5Hz
have the sharp maximum for certain value of ratio φb = hb/h, i. e. cutting the period
in some way into light and dark period enhances the growth. For high light/dark
cycle frequency, the optimal ratio φopt

b could be calculated accordingly to Theorem
3 (in Figure 6, see that the curve for ν = 0.5Hz is almost identical to bold curve
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Fig. 5. Dependence of x2av , i. e. the second component of state vector x, on light/dark

cycles frequency ν = 1/h. For all curves the average value of irradiance was 250 µEm−2 s−1.

The dotted line represents the value of superior limit corresponding to the continuous light,

x2ss(250). Three full lines correspond from bottom to top to following values of light period-

to-total period ratio hb/h: 0.1, 0.5, and 0.8, respectively.

corresponding to the steady state relation).
The independent variable in the x-axis of Figure 7 is logarithm of light/dark

cycle period duration log h. The reason why is due to more evident comparison
with experimental results published in work of Nedbal et al.; see Figure 2 in [14].
The average value of irradiance uav is again maintained constant, but it is set to
value of 500 µEm−2 s−1, accordingly to [14]. All curves in Figure 7, differing in value
of ratio hb/ha, show the same tendency as those in the Nedbal’s paper, providing
once again the perfect concordance with general Theorem 2, and at the same time
proving the validity of our modelling approach based on bilinear systems.

4. CONCLUSIONS

The models describing microalgal growth are usually based on so-called P–I curve,
i. e. on the empirical description of microbial kinetics. Thereafter, the interconnec-
tion between the steady state model and the dynamic one is often artificial, see e. g.
the concept of integration of light intensity – factor Γ, introduced by Terry in [18].

In this paper, we have considered a bilinear system with single input as modelling
framework for lumped parameter model of microalgal growth. We developed the
earlier works [1, 2, 3] on bilinear systems and we studied its properties under periodic,
piecewise constant input signal, i. e. under intermittent light regime. We have
shown that the state trajectory of a bilinear system for a constant control signal can
be approximated by the state trajectory corresponding to the intermittent control
signal, with an arbitrary precision, depending on cycle period (see Theorem 2).
Hence, the capacity described in [18] as the capacity of the “integration of light
intensity” is inherent to bilinear systems.
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Fig. 6. Dependence of x2av on ratio hb/h for different values of light/dark cycles frequency

ν. The maximal value of irradiance was ub = 2000 µEm−2 s−1. The dotted line represents

the case for ν = 0.01 Hz, when almost no light integration occurs. Three full thin lines

correspond from bottom to top to values of light/dark cycles with frequency 0.05 Hz, 0.1 Hz,

and 0.5Hz, respectively. Finally, the bold line corresponds to the steady state curve for

continuous light and corresponding limits of irradiance (i. e. from 0 to 2000 µE m−2 s−1).

In order to verify our theoretical results we have chosen the four-parameter model
of photosynthetic factory as a model example. We first determined the steady state
solution of PSF model, which leads to the substrate inhibition or Haldane type
kinetics. Next we resolved an initial value (Cauchy) problem for the system of ordi-
nary differential equations that qualitatively reproduces the dynamics of the states
of photosynthetic factory. Then, knowing that the unique periodic solution of PSF
model exists, we analytically resolved the time course of states of PSF under peri-
odic intermittent input. Finally, the average value of state component x2, which is
directly proportional to the photosynthetic growth rate, was evaluated; see Eq. (44).

For the model parameters, published in [19], the numerical simulations of so-
called flashing light experiments are presented as graphical outputs of calculations
performed in the MAPLE programming environment [12]. We realise that our re-
sults are in good qualitative agreement with the experimental data measured by
Nedbal et al. [14]. In all cases the asymptotic behaviour of growth rate was ex-
pected from Theorem 2, since the average value of input signal (i. e. the average
irradiance in the culture) is normalised. The analysis of influence of light regime pa-
rameters on microalgal culture growth and the optimisation of parameters involved
in cost functional related to average value of state component x2, however, cannot
be understood without a careful analysis of Eq. (44). Such analysis is currently
under investigation. Nevertheless, Theorem 3 gives the answer to problem of light
regime optimisation for the case when “sufficiently” high light/dark cycle frequency
could be reached.

Resuming: our analytical modelling approach based on bilinear systems (leading
to announcement of Theorem 2 and 3) reveals at the same time good qualitative
properties and the coherence of model structure, permitting its further implementa-
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Fig. 7. Dependence of x2av on light/dark cycle period h (in logarithmic scale) for different

values of light-to-dark period hb/ha. Accordingly to [14], the average value of irradiance was

500 µEm−2 s−1. Two dotted line correspond from bottom to top to the case for hb/ha =

1 : 5 and hb/ha = 1 : 1. Two full bold lines correspond from bottom to top to values of

light-to-dark ratio 1:2 and 2:1, respectively. The thin line represents to the steady state

value x2ss for continuous light (i. e. for 500 µEm−2 s−1).

tion into the distributed parameter model of microalgal growth.
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[1] S. Čelikovský: On the representation of trajectories of bilinear systems and its appli-
cations. Kybernetika 23 (1987), 198–213.
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