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APPLICATIONS OF REGIME–SWITCHING MODELS
BASED ON AGGREGATION OPERATORS

Jozef Komorńık and Magda Komorńıková

A synthesis of recent development of regime-switching models based on aggregation
operators is presented. It comprises procedures for model specification and identification,
parameter estimation and model adequacy testing. Constructions of models for real life
data from hydrology and finance are presented.
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1. INTRODUCTION

The aim of this paper is to sum up a series of studies of its authors and some
of their collaborators on regime-switching models. Special attention will be paid
to threshold variables, transition functions and their construction via aggregation
operators. Some further problems related to testing adequacy will be indicated and
discussed.

2. STRUCTURE OF REGIME–SWITCHING MODELS

A readable introduction to regime-switching models accompanied by procedures of
model selection, testing and parameter estimation as well as applications to real life
data is presented in [8].

2.1. Origins of regime-switching models

The idea of multi-regime forecasting models dates back to [2]. In [15] a Threshold
Autoregressive (TAR) model has been proposed. It assumes that the regime that
occurs at time t can be determined by an observable variable qt relative to a threshold
value, which is denoted as c. The resulting model is called a Self-Exciting TAR
(SETAR) model. SETAR model is linear within a regime, but liable to move between
regimes as the process crosses the threshold. For example, a two-regime model for
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a state variables series yt with AR(p1) and AR(p2) has the form

yt = (φ0,1 + φ1,1yt−1 + · · ·+ φp1,1yt−p1)I[qt ≤ c] (1)
+(φ0,2 + φ1,2yt−1 + · · ·+ φp2,2yt−p2) I[qt > c] + εt

where φi,j , i = 0, 1, . . . , pij , j = 1, 2 are autoregressive coefficients, I[A] is an indi-
cator function with I[A] = 1 if event A occurs and I[A] = 0 otherwise, and εt’s are
assumed to be a martingale difference sequence with respect to the history of the
time series up to time t− 1.

A more gradual transition between different regimes can be obtained by replacing
the indicator function I[A] in (1) by a continuous function G(qt, γ, c), which changes
smoothly from 0 to 1 as qt increases. The resulting model is called a Smooth Tran-
sition AR (STAR) model and is given by (see, e. g. [14])

yt = (φ0,1 + φ1,1yt−1 + · · ·+ φp1,1yt−p1)(1−G(qt, γ, c)) + (2)
+(φ0,2 + φ1,2yt−1 + · · ·+ φp2,2yt−p2)G(qt, γ, c) + εt

Both models (1) and (2) allow multi-dimensional interpretation (when we interpret
yt as a state vector yt = (y1,t, . . . , ys,t)

′ and coefficient Φi,j as matrices of the type
s× s.

A popular choice for the so-called transition function G(qt, γ, c) is the logistic
function

G(qt, γ, c) =
1

1 + e−γ(qt−c) (3)

and the resulting model is called a Logistic STAR (LSTAR) model. The parameter
c in (3) can be interpreted as the threshold between the two regimes corresponding
to G(qt, γ, c) = 0 and G(qt, γ, c) = 1, in the sense that the logistic function changes
monotonously from 0 to 1 as qt increases, while G(c, γ, c) = 0.5. The parameter γ
determines the smoothness of the change in the value of the logistic function (the
maximum of its derivative is G′(c, γ, c) = γ/2), and thus the transition from one
regime to the other.

2.2. Models using aggregation operators

Let us recall that the most interesting types of aggregation operators (as mapping
from Rn onto R) are

— arithmetic mean M(x1, . . . , xn) = 1
n

∑n
i=1 xi;

— weighted means W(x1, . . . , xn) =
∑n
i=1 wixi, where the weights wi ∈ [0, 1],∑n

i=1 wi = 1;

— OWA operators W ′(x1, . . . , xn) =
∑n
i=1 wix

′
i with weights as in the case of

weighted means, but with x′i as non-decreasing permutation of xi inputs, i. e.,
x′1 ≤ · · · ≤ x′n.

In the class of OWA operators we can find also MIN and MAX operators, corre-
sponding to the extreme cases w1 = 1 and wi = 0 otherwise (alternatively wn = 1
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and wi = 0 otherwise) and all order statistics. Similarly projection to k-ary coordi-
nate with wk = 1 and wi = 0 otherwise is a special weighted mean. A convenient
way of producing a decreasing sequence (w1, . . . , wn) of weight coefficients is based
on utilization of increments of a generating increasing convex bijection ϕ of [0, 1], if
we put wk = ϕ

(
n−k+1
n

)
−ϕ

(
n−k
n

)
, k = 1, . . . , n. More about aggregation operators

can be found, for example, in [6].

Outputs of aggregation operators have been used in [12] in the role of threshold
variables. For a fixed number k > 0 of observations of a suitable auxiliary variable
zt and an aggregation operator A the values of output threshold variable

qt = A(zt−1, . . . , zt−k) (4)

will indicate (by crossing a threshold level c) switching between 2 individual regimes
described by the models (1) or (2).

3. MODEL IDENTIFICATION AND PARAMETER ESTIMATION

3.1. Model identification

Identification of the appropriate threshold value c, lag order d and orders p1, p2 for
AR in two regimes can be chosen from model that will minimize an information
criterion. Liew and Chong in [13] presented AIC (Akaike’s Information Criterion)
and SIC (Schwarz’s information criterion) for a 2-regime STAR model as:

AIC(p1, p2) = ln σ̂2 +
2(p1 + p2)

n
(5)

SIC(p1, p2) = ln σ̂2 +
(p1 + p2) lnn

n
(6)

where σ̂2 is the estimate of variance of the residuals (equal to the average of the sum
of their squares).

3.2. Estimation of SETAR models

The parameters of interest in the 2-regime SETAR model (1) can be conveniently
estimated by sequential conditional least squares.

We can rewrite (1) as

yt = φ1xt,1I[qt ≤ c] + φ2xt,2I[qt > c] (7)

where φj =
(
φ0,j , φ1,j , . . . , φpj ,j

)′, xt,j =
(
1, yt−1, yt−2, . . . , yt−pj

)′, j = 1, 2.

Estimates of φ = (φ1,φ2)′ can be obtained by Ordinary Least Squares (OLS) as

φ̂(c) =

(
n∑

t=1

xt(c) · xt(c)′
)−1 (

n∑

t=1

xt(c)yt

)
(8)
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where xt(c) = (xt,1′I[qt ≤ c],xt,2′I[qt > c])′. The corresponding residuals are de-
noted as ε̂t(c) = yt− φ̂(c)′xt(c) with the estimate of variance σ̂2(c) = 1

n

∑n
t=1 ε̂t(c)

2.

The least squares estimate of c can be obtained by minimizing this residual vari-
ance ĉ = argminc∈C σ̂2(c), where C denotes the set of all allowable threshold values.

3.3. Estimation of STAR models

Estimation of the parameters θ̂ = (φ1, φ2, γ, c)
′ in the STAR model (2) is a rela-

tively straight-forward application of nonlinear least squares

θ̂ = argminθ

n∑

t=1

(yt − F (xt;θ))2
,

where F (xt;θ) = φ1xt,1(1−G[qt, γ, c]) + φ2xt,2G[qt, γ, c].

For fixed values of the parameters γ and c, the STAR model is linear in the au-
toregressive parameters φ1 and φ2. Thus, conditional upon γ and c, estimates of
φ = (φ1,φ2)′ can be obtained by OLS as

φ̂(γ, c) =

(
n∑

t=1

xt(γ, c) · xt(γ, c)′
)−1 (

n∑

t=1

xt(γ, c)yt

)
,

where xt(γ, c) = (xt,1′(1−G[qt, γ, c], xt,2′G[qt, γ, c])
′.

The corresponding residuals are denoted as ε̂t(γ, c) = yt − φ̂(γ, c)′xt(γ, c) with
the estimate of variance σ̂2(γ, c) = 1

n

∑n
t=1 ε̂t(γ, c)

2.

4. TESTING MODEL ADEQUACY

4.1. Tests for univariate STAR model

For testing the linearity of (2) (or H0: γ = 0) we can proceed similarly as in [8] and
utilizing the difference

G∗(qt) = G(qt, γ, c)− 1/2 = h(γ(qt − c)),

where h(u) = 1
1+e−u − 1

2 .

In the reparametrized model equation the linearity can be tested by means of
a Lagrange Multiplier [LM] statistic with a standard asymptotic χ2-distribution
under the null hypothesis. We denote p = max(p1, p2), xt = (1, x̃′t)

′ with x̃t =
(yt−1, . . . , yt−p)′ and φi = (φi,0, φi,1, . . . , φi,p)′, i = 1, 2. Then we rewrite the model
(2) as

yt = φ′1xt[1/2−G∗(qt)] + φ′2xt[1/2 +G∗(qt)] + εt
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or

yt = 1/2(φ1 + φ2)′xt + (φ2 − φ1)′xtG∗(qt) + εt

= 1/2(φ1 + φ2)′xt + (φ2 − φ1)′xth(γ(qt − c)) + εt .

In order to derive a linearity test against (2), we approximate the function G∗(qt)
with a third-order Taylor approximation around γ = 0. This results in the auxiliary
regression

yt = α′0 + β′0xt + β′1xtqt + β′2xtq
2
t + β′3xtq

3
t + et (9)

where qt = A(yt−1, . . . , yt−d), α0 and βi = (βi,0, βi,1, . . . , βi,p)′, i = 0, 1, 2, 3 are
functions of the parameters φ1, φ2, γ, c and et = εt+(φ2−φ1)′xtR3(qt) with R3(qt)
the remainder term from the Taylor approximation. Under the null hypothesis,
R3(qt) ≡ 0 and et = εt (see e. g. [8]). Consequently, this remainder term does
not affect the properties of the errors under the null hypothesis. Inspection of the
exact relationships shows that the null hypothesis H ′0: γ = 0 corresponds to H ′′0 :
β1 = β2 = β3 = 0, which can be tested by a standard LM-type test. Under the null
hypothesis of linearity, the test statistic, to be denoted as LM3, has an asymptotic
χ2 distribution with 3(p+ 1) degrees of freedom.

The LM3 statistic based on (9) can be computed as follows:

1. Estimate the model under the null hypothesis of linearity by regressing yt on xt.
Compute the residuals ε̂t and the sum of squared residuals SSR0 =

∑n
t=1 ε̂

2
t .

2. Estimate the auxiliary regression of yt on xt and xtqit , i = 1, 2, 3. Compute
the residuals êt and the sum of squared residuals SSR1 =

∑n
t=1 ê

2
t .

3. The LM3 statistic can be computed as

LM3 =
n(SSR0 − SSR1)

SSR0
. (10)

4.2. Tests for multivariate TAR model

Testing linearity of the 2-regimes model alternative with a threshold variable qt
satisfying (4) is based on the method of arranged regression described in [17]. Let

y′t = X ′tΦ + εt , t = h+ 1, . . . , n (11)

be the vector version of (2), where h = max(p, k), X ′t =
(
1,y′t−1, . . . ,y

′
t−p

)
is a

(2p+ 1) dimensional regressor and Φ denotes the parameter matrix. Let us denote
q(i) the ith smallest value of the threshold variable qt for i = 1, . . . , n − h. Let t(i)
be the index of z(i), i. e., zt(i) = z(i). When we rewrite (11) in the form

x′t(i) = X̂
′
t(i)Φ + εt(i) , i = 1, . . . , n− h (12)

the dynamic of yt will not change. Only the order in which data enter the regression
will change. The arranged regression transforms a threshold model into a change-
point problem.
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Predictive residuals ε̂t(i+1) in the arranged regression can be used for detecting a
change point. Namely, they are uncorrelated with the regressor Xt(i+1) in case that
yt is linear. Let Φ̂m be a least squares estimate of Φ in the arranged regression (12)
using data points associated with m smallest values of qt. Let

êt(m+1) = yt(m+1) − Φ̂′
mXt(m+1) (13)

be the residual of the 1− step ahead prediction in the arranged regression. Let the
standardized version of êt(m+1) be

η̂t(m+1) =
êt(m+1)

[
1 +X ′t(m+1)V mXt(m+1)

]1/2
(14)

where V m =
[∑m

i=1Xt(i)X
′
t(i)

]−1

.

Under the hypothesis H0 of linearity of yt ,η̂(j) and Xt(j) should be uncorrelated
for all j = 1, . . . , n− h. We test this hypothesis using the regression

η̂′t(j) = X ′t(j)Ψ +w′t(l), j = m0 + 1, . . . n− h (15)

where m0 is the starting point of recursive regression (m0 ≈ 3
√
n). The Tsay’s test

statistic applied in [17] is

C = [n− h−m0 − p− 1)]× [ln(detS0)− ln(detS1)], (16)

where

S0 =
1

n− h−m0

n−h∑

j=m0+1

η̂t(j)η̂
′
t(j), S1 =

1
n− h−m0

n−h∑

j=m0+1

ŵt(j)ŵ
′
t(j),

Under the null that yt is linear, C is asymptotically a χ2 random variable with
(p+ 1) degrees of freedom.

Let for i = 1, 2, Σi be the covariance matrix of residuals ε(i) in regime i. Let∑(i)
t denotes summing over observations in regime i. Then under certain regularity

conditions (cf. [17]) the least square estimates

Φ̂
′
i =




(i)∑

t

XtX
′
t



−1 


(i)∑

t

Xtxy
′
t


 , (17)

Σ̂i =

∑(i)
t

(
yt −X ′tΦ̂i

)(
yt −X ′tΦ̂i

)′

ni − s
(18)

are strongly consistent estimators of parameters Φ(i) and Σi. Moreover,
√
ni

(
Φ̂i−Φi

)

is asymptotically normal with zero mean and covariance matrix equal to the Kro-
necker product Γi⊗Σi, where Σi can be estimated by Σ̂i and Γi by

∑(i)
t XtX

′
t/n.
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For selection between alternative 2-regimes models we use the Akaike information
criterion for multivariate TAR models

AIC =
2∑

j=1

nj ln
(

det
(
Σ̂j

))
+ 2s(sp+ 1). (19)

5. PRACTICAL APPLICATIONS

5.1. Applications in Hydrology (univariate model)

In first example discussed in this article we analyze 12 univariate time series of
monthly average stream flows of the Slovak rivers. The data used for testing regime-
switching nonlinearity with aggregation operators are residuals obtained after remov-
ing periodic components. We followed the approach of [8] estimating appropriate
orders p of linear models AR(p) for considered time series by minimizing the above
mentioned AIC and BIC information criteria. The number of delayed state variables
that enter any aggregation operator (for individual time series models) is h = k− 1,
where k is the first value of delay for which the values of the autocorrelation function
are not significantly different from 0. In the role of aggregation operators we used
Arithmetic Mean (M), Weighted average with the generating functions x2 (W2)
and x3 (W3) and OWA operators MIN and MAX . Usual LSTAR models with
threshold variables yt−d can be considered as products of a special trivial type of
aggregation operators (that map the sequence (yt−1, . . . , yt−h) on its single compo-
nents).

The following Table 1 shows the results of testing of adequacy of 2-regime models
for 12 univariate time series of monthly average stream flows [m3/s] from observation
stations at the Slovak rivers in the period November 1930 – October 2003. For each
river, items in the last 7 columns of its row represent p-values for LM3 tests given by
(10). The first 2 model classes are standard LSTAR models with threshold variables
yt−d, d = 1, 2 (without an explicit aggregation operator). The next 5 model classes
correspond to LSTAR models with the threshold variable qt as the output from the
aggregation operators MAX , MIN , M, W2 and W3.

From results in Table 1 we can derive several basic conclusions:

• All p-values in the row of the Kysuca river greatly exceed the standard thresh-
old of weak significance 0.1, which indicates that 1-regime models outperform
2-regime alternatives.

• In case of the operatorMIN only for one river (Dobšiná) the result of testing
is significant. Other operators provide models with significant non-linearity
for much larger numbers of rivers.

In the subsequent analysis, we restrict our attention to these combinations of rows
and columns of the Table 1, where the corresponding p-value are smaller then the
threshold of strong significance 0.01 (this way we eliminate the row corresponding
to Kysuca river and the column corresponding to the MIN operator).
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Table 1. The results of testing of adequacy of 2-regime models.

p-value for LM3 test
River k p for standard for LSTAR with aggregation operator

LSTAR with
d = 1 d = 2 MAX MIN M W2 W3

Vlkyňa 4 2 0.0554 0.0018 0.0001 0.0119 0.0005 0.0004 0.0013
Št́ıtnik 4 1 0.0002 × 0.0033 0.4339 0.0452 0.0024 0.0007
Boca 5 2 0.0060 0.1246 0.0039 0.2048 0.0535 0.0046 0.0019
Ipel’ 3 1 0.0073 × 0.0239 0.4751 0.0494 0.0133 0.0071
Kysuca1 2 2 0.4746 0.9972 0.7756 0.4144 0.8558 0.5313 0.5168
Kysuca2 2 1 0.1413 × 0.1613 0.6591 0.3093 0.1729 0.1532
Litava 15 2 0.2190 0.0005 0.1303 0.0261 0.0007 0.0004 0.0067
Bebrava 4 2 0.0006 0.9173 0.0065 0.4222 0.0642 0.0366 0.0330
Dobšiná 15 2 0.0013 0.2494 0.0056 0.0059 0.0004 0.0001 0.00001
Krupinica 15 2 0.0555 9.4981 0.0004 0.6796 0.0015 0.0051 0.0098
Hron1 5 2 0.0011 0.9913 0.0019 0.2586 0.0011 0.0002 0.0001
Hron2 6 1 0.0014 × 0.0079 0.6757 0.4191 0.0346 0.0102

The next Table 2 shows an overview of the models characteristics for 10 observa-
tion stations, where the adequacy of regime-switching models has been demonstrated
by the previous tests.For each p-value smaller than 0.05 we estimates parameters
of the model with p1, p2 ≤ 3 of the considered river flow in the corresponding
class of models. The best model of the class is determined by information crite-
ria AIC and BIC modified for regime-switching models (see [13]). The criterion

RMSE =
√

1
m

∑m
i=1 (yi − Fi)2 (where m is the number of predictions, yi is an

observed value and Fi a prediction, i = 1, . . . ,m) is measure of out-of-sample fit-
ting (for the last year data left out from the model building sample and used for a
subsequent testing, see [8]).

The above results demonstrate that regime-switching models based on aggrega-
tion operators provide clearly better fit in 8 of 10 cases and comparable fit in 2
cases.

5.2. Applications in Finance (multivariate model)

Czech and Slovak Crowns separated soon after the velvet divorce of Czechoslovakia
on January 1, 1993. Thanks to continuing intensive economic ties between both
countries one can expect that the development of exchange rates of their currencies
to EURO has common features that can be described by a 2-dimensional time series
model. Furthermore, the Polish economy is the largest one in the so-called Visegrad
group of new EU countries (that also includes the Czech Republic, Slovakia and
Hungary). It is believed by many local bank specialists that London banks dealers
treat Visegrad currencies as one group lead by the Polish Zloty. Consequently shocks
in the Polish political and economic life that cause drops in the value of its national
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Table 2. The measures of out-of-sample fitting for 12 predictions.

River Standard LSTAR Aggregation operator
(p1, p2, d)RMSE Type RMSE TypeRMSE TypeRMSE TypeRMSE

Vlkyňa (2,2,2) 5.068 MAX 4.835 M 5.326 W2 5.223 W3 5.209
Št́ıtnik (1,1,1) 0.695 MAX 0.593 W2 0.663 W3 0.654 × ×
Ipel’ (2,1,1) 1.089 W3 1.093 × × × × × ×
Boca (2,2,1) 0.960 MAX 1.127 W2 1.210 W3 0.954 × ×
Hron1 (1,2,1) 18.501 MAX 23.761 M 20.496 W2 19.830 W3 18.184
Dobšiná (2,2,1) 0.273 MAX 0.167 M 0,182 W2 0.179 W3 0.185
Litava (2,1,2) 0.473 M 0.426 W2 0.419 W2 0.423 × ×
Bebrava (2,1,1) 0.405 MAX 0.541 × × × × × ×
Krupinica (2,2,1) 0.685 MAX 0.590 M 0.924 W2 0.995 W3 0.944
Hron2 (1,2,1) 24.08 MAX 23.67 × × × × × ×

currency Zloty are also supposed to influence negatively the values of other currencies
of the Visegrad group countries. On the other hand, strong appreciations of the
Polish Zloty are believed to causes appreciations of other currencies of the Visegrad
group. Therefore, we have chosen the exchange rate of EURO to Polish Zloty as an
auxiliary variable. The results of the modelling procedure are as follows.

We denoted by y1,t, y2,t and zt daily values of EURO in Slovak Crowns, Czech
Crowns and Polish Zlotys for working days in the period January 4, 1999 – Jan-
uary 13, 2006 (ȳ1 = 41.8, s2

1 = 3.84, ȳ2 = 32.9, s2
2 = 6.3, z̄ = 4.11, s2

z = 0.1).
First we found a 2-dimensional Autoregressive model for the vector y. Its optimal

form (minimizing the AIC and BIC criterion) has the order of autoregression equal
to 8.

The following Table 3 contains the results of tests of linearity for different val-
ues of the delay parameter d and standard 2-regimes alternative MTAR models.
The resulting p-values correspond to test statistics given by (16). We see that the
minimum of p-values was attained for the delay d = 6.

Table 3. Results of tests of linearity

for standard MTAR (p = 8, df = 34).

Delay d Test statistic C(d) p-value
3 39.15 0.3452
4 42.85 0.1421
5 49.32 0.0433
6 52.00 0.0247
7 51.34 0.0285
8 49.59 0.0410

In the role of aggregation operators we used Arithmetic Mean (M), Weighted
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average with the normalized Fibonacci triangle (W1) (see, e. g. [6]), operators with
the generating functions x2 (W2), x3 (W3) and OWA operators MIN and MAX .

Analogical results for linearity tests against optimal 2-regimes alternatives based
on threshold variables in the form (4) for aggregation operators in different classes
(described above) are in Table 4. For each class of selected operators we find the
minimal p-value and corresponding number of inputs.

Table 4. Results of tests of linearity

for standard MTAR with aggregation operators (p = 6).

Type Number of inputs C p-value
M 15 39.63 0.0423
W1 20 34.62 0.0417
W2 15 39.02 0.0386
W3 20 40.26 0.0384
MAX 10 35.69 0.0382
MIN 20 43.94 0.0153

We see the minimal levels of p-values for best models corresponding to individual
classes of aggregation operators (that are derived from values of the statistics (16)).
We can conclude that the extreme value operators MAX (with number of inputs
equal to 10) and MIN (with number of inputs equal to 20) attain lower minimal
p-values than the remaining classes of operators.

We continue by selection of the best model for each investigated class of aggre-
gation operators applying minimalization of the AIC criterion given by (19) over all
model classes.

Table 5. Results of AIC model selection.

Type MTAR c (Euro/PlZ) AIC
Standard (d = 6) 4.044 −15 328.1
with M 4.075 −15 325.5
with W1 4.069 −15 296.1
with W2 4.058 −15 323.2
with W3 4.058 −15 325.9
with MAX 3.970 −15 354.3
with MIN 4.041 −15 343.3

We see that the values of the AIC criterion for individual operator classes differ
only slightly. Nevertheless, the standard methodology of model selection procedures
leads to the choice of the operatorMAX for which the minimum of the AIC criterion
is attained.

Next we calculate estimates of model parameters for this type of model using
(16). We present estimates of covariance matrices of residuals for individual regimes.



Applications of Regime–Switching Models Based on Aggregation Operators 441

The diagonal elements of these matrices are lower by more than 2 orders than the
variances of the original components of yt.

Table 6. Covariance matrices Σ̂1 and Σ̂2.

Σ̂1 Σ̂2

0.0126 0.0054 0.0137 0.0039
0.0054 0.0145 0.0039 0.0152

From the previous results we can conclude that extremes of exchange rate of Pol-
ish Zloty in the period of 2 weeks (10 working days) exhibit expected influence on
the pair of exchange rate of EURO to Slovak and Czech Crowns.
This is the first example of aggregation operators based construction of threshold
variables when extreme value operators MIN and MAX have demonstrated su-
perior applicability. It seems to confirm that currency markets are exceptionally
sensitive to shocks.

6. CONCLUSION

The above practical modeling results indicate that the regime-switching models
based on aggregation operators provide promising methods for analysis of complex
real life data from various fields. Concerning the theoretical methodology, it looks
tempting to elaborate testing procedures of part 4.1 to multivariate STAR models
(replacing test statistic (10) by an analogy of (16)). Similarly, the testing methods
based on arranged regression from the part 4.2 seem to be extendable to multivari-
ate STAR models. Except for a careful checking of main theoretical fundamentals
(or their suitable modification), appropriate simulation studies (similarly to those
in [1],[17]), as well as practical modeling experiments would be desirable.
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Jozef Komorńık, Faculty of Management, Comenius University, 820 05 Bratislava. Slo-

vak Republic.

e-mail: Jozef.Komornik@fm.uniba.sk
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