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K Y B E R N E T I K A — V O L U M E 4 3 ( 2 0 0 7 ) , N U M B E R 5 , P A G E S 6 1 9 – 6 3 1

MARGINAL PROBLEM, STATISTICAL ESTIMATION,

AND MÖBIUS FORMULA

Martin Janžura

A solution to the marginal problem is obtained in a form of parametric exponential
(Gibbs–Markov) distribution, where the unknown parameters are obtained by an opti-
mization procedure that agrees with the maximum likelihood (ML) estimate. With respect
to a difficult performance of the method we propose also an alternative approach, providing
the original basis of marginals can be appropriately extended. Then the (numerically fea-
sible) solution can be obtained either by the maximum pseudo-likelihood (MPL) estimate,
or directly by Möbius formula.
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1. INTRODUCTION

In the present paper we address the so-called marginal problem, i. e. the problem of
reconstruction of a joint (global) distribution from a collection of marginal (local)
ones. To the contrary with some other approaches, where the problem is studied
either by graphical or combinatorial reasoning, or by iterative computational al-
gorithms (see, e. g., [10] or [11]), here the problem is studied, more-or-less, from
the “statistical” point of view. The “input” information contained in the system
of marginal (local) distributions is understood as an evidence, and the problem of
finding the unknown joint distribution is re-formulated as a parameter estimation
problem.

Namely, in order to find a unique representing joint distribution for the system,
we employ the maximum entropy principle (MAXENT). Then, under some technical
assumptions, the solution agrees with a parametric exponential (Gibbs) distribution
as the most natural and convenient representative. The distribution is also Marko-
vian with the neighborhood system induced by the system of marginals (Section 7).
Thus the structure of the distribution is known but the parameters are given only
implicitly. In order to fix the parameters, we have to solve the same task as within
the problem of statistical estimation. In particular, the parameters are obtained by
an optimization procedure that agrees with the maximum likelihood (ML) estimate
(as if the marginals were obtained from data). But, as it is well known, under a
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certain size of the model, any direct optimization method is unfeasible. Thus, for
calculating parameters of the representing distributions in full generality we need to
apply some simulation procedures, usually based on the Markov Chain Monte Carlo
methods (MCMC, see Section 8).

Nowadays, a standard choice for statisticians is a substitution of the ML estima-
tor for multidimensional models by a more suitable alternative estimator, usually
the maximum pseudo-likelihood (MPL) one, which is numerically easily feasible. We
show that within the marginal problem the MPL approach would lead to the true
parameter as well (Section 9). Unfortunately, the formula for the MPL estimate
involves marginals over larger sets of nodes, namely over the neighborhoods of par-
ticular nodes. Thus, for an easy calculation of the maximal entropy solution to the
marginal problem by the MPL approach, we have, at first, to extend the original
marginals to these larger sets, at least approximately.

But, as we show finally in Section 10, once having the needed extended marginals,
we can also apply directly the combinatorial Möbius formula for direct evaluating
the potentials of the Gibbs distributions, and these potentials are equal exactly to
the unknown parameters.

For many topics of the present paper [11] or [14] are the basic references. For
exponential distributions see [1] and [7] or, more generally, [3]. For stochastic gra-
dient method see [15] or [14], for general MCMC simulations see [5]. The maximum
pseudo-likelihood method was at first mentioned in [2], detailed treatment can be
found, e. g., in [6]. For the marginal problem see, e. g., [10] and the references therein.

Personal remark. When I joined the Institute of Information Theory and Au-
tomation to pass my postgraduate studies, it was Dr. Albert Perez who was estab-
lished as my supervisor. Soon, he suggested two research topics to me. The first one
was the problem of simplification of the dependence structure [12], closely related to
the subject of the present paper. Nevertheless, I chose the second one, namely the
Gibbs random fields, which was still a rather new topic in those days, initiated only
about ten years earlier by the pioneering work of Dobrushin [4] and others. But,
and it was one of the reasons why we esteemed him, Dr. Perez was able to recog-
nize and anticipate its relevance and importance for the future. Moreover, he was
so generous that he decided to reserve the topic for me, which, of course, included
continual concern, encouragement and stimulating discussions.

It is great pleasure for me that in this contribution I can demonstrate the tight
inter-connection between both the topics, namely the significance of Gibbs distribu-
tions as the representatives for collections of prescribed marginals. And I am also
really happy to find that Dr. Perez was following in his late work a very similar
approach by his concepts of M-construct and explicit expression [13].

2. BASIC DEFINITIONS

Let us consider a finite set S of indices (sites, variables, nodes), and the space of
configurations

XS =
⊗

s∈S
Xs
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where Xs is a finite state space for every s ∈ S. For every V ⊂ S we denote by
PrV : XS → XV the projection onto the space XV =

⊗
s∈V Xs, and by BV = σ(PrV )

the σ-algebra of cylinder (local) sets.
Further, by PV we denote the class of all probability measures on BV , and by

FV the class of all real-valued BV -measurable functions. (PV can be alternatively
understood as the set of probability measures on XV , and FV as the set of functions
on XV . We shall not distinguish these two modes.) For PV ∈ PV and W ⊂ V
we shall denote by PV/W ∈ PW its projection into the space PW , i. e., the corre-
sponding marginal distribution. (Whenever no confusion may occur, we shall write
directly PW .) On the other hand, by PA|B for A,B ⊂ S,A ∩ B = ∅, we denote the
corresponding conditional distribution.

3. PROBLEM

Let us consider a system of (non-void) subsets V ⊂ expS and a collection of marginal
distributions

Q = {QV }V ∈V
where

QV ∈ PV for every V ∈ V.
Let us denote

PQ = {PS ∈ PS ;PS/V = QV for every V ∈ V}.

If PQ 6= ∅ we quote the collection Q as strongly consistent.
The problem to be solved now consists in finding a suitable (in the sense specified

below) representative
PS ∈ PQ,

providing Q is strongly consistent.

4. MAXIMUM ENTROPY PRINCIPLE

Whenever |PQ| > 1 we have to employ some additional criterion for selecting PS ,
which, in our case, will be the maximum entropy principle (MAXENT). For a justi-
fication of such approach see, e. g., [9] as the standard reference.

Let us recall the formulas for the entropy and the I-divergence, respectively,
namely

H(P ) =
∫
− logP dP =

∑

xS∈XS
− logP (xS)P (xS),

and
I(P |Q) =

∫
log

P

Q
dP =

∑

xS∈XS
log

P (xS)
Q(xS)

P (xS)

providing the terms are well defined. Otherwise, we can set H(P ) = 0 and I(P |Q) =
=∞.

Thus, applying the MAXENT, we seek for

PS ∈ argmaxPS∈PQH(PS)
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or, more generally,
PS ∈ argminPS∈PQI(PS |RS)

where RS ∈ PS is some fixed reference probability measure.
For the sake of brevity, we shall deal directly with the first definition, which agrees

with the latter one for uniform RS .

5. MAXIMUM ENTROPY WITH LINEAR CONSTRAINTS

Primarily, let us formulate the solution in a more general framework. Let us consider
a collection of statistics

f = {fj}j∈K with |K| <∞,
where

fj ∈ FS for every j ∈ K.

Moreover, in order to guarantee the basic regularity (identifiability) condition, we
assume the system

1, {fj}j∈K

to be linearly independent. (If we assume in addition, e. g., fj(xS) = 0 for every
j ∈ K and some fixed xS ∈ XS , we may omit the constant from the collection.)

Further, let us introduce the exponential distribution PαS given by

PαS (xS) = exp





∑

j∈K
αj fj(xS)− c(α)





where α = (αj)j∈K ∈ RK is a parameter, and

c(α) = log
∑

xS∈XS
exp





∑

j∈K
αj fj(xS)





is the appropriate normalizing constant.
Now, thanks to the identifiability condition above, we have a one-to-one relation

between the parameter α and the exponential distribution PαS . Namely, for PαS = P βS
we have 〈α − β,f〉 = const. Further, c(α) is obviously (by the Hölder inequality)
convex function of α ∈ RK, with the gradient ∇c(α) =

∫
f dPαS and the Hessian

matrix ∇2c(α) = covPαS (f ,f). Due to the identifiability condition it is also strictly
and even strongly (with the positive definite Hessian matrix) convex.

Now, for a collection of constants m = {mj}j∈K we denote

M(m,f) =
{
PS ∈ PS ;

∫
fj dPS = mj for every j ∈ K

}
.
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Proposition 1. Let PαS ∈M(m,f). Then

H(PαS ) ≥ H(PS)

for every PS ∈M(m,f) with the equality iff PS = PαS .

P r o o f . As it is well-known, we have

0 ≤ I(PS |PαS ) = c(α)− 〈α, m〉 −H(P ) = H(PαS )−H(PS)

where the inequality turns into equality iff PS = PαS . 2

Moreover, whenever PαS ∈M(m,f) exists, it is given uniquely.

Proposition 2. Let PαS , P
β
S ∈M(m,f). Then α = β.

P r o o f . We observe

0 ≤ I(PαS |P βS ) + I(P βS |PαS ) =
〈
β − α,

∫
f dP βS −

∫
f dPαS

〉
= 0.

Hence PαS = P βS , and, due to the identifiability condition, we have α = β. 2

Thus, we may conclude that whenever there exists the exponential representative
PS = PαS ∈M(m,f) then it satisfies the MAXENT.

6. EXISTENCE

Let us consider the problem of existence

PαS ∈M(m,f)

for some α ∈ RK. Thus, α should be given implicitly as a solution of the system of
equations ∫

f dPα = m.

Due to the convex property of the normalizing constant c(α) as a function of α, the
above condition is equivalent to the variational principle

α = argmin
α∈RK

{c(α)− 〈α, m〉} .

We define the closed convex hull

Cf = co {f(xS);xS ∈ XS} ⊂ RK,

and its (relative) interior riCf .
Then, directly by the definitions

M(m,f) 6= ∅ iff m ∈ Cf .
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Proposition 3. The exponential representation Pα ∈ M(m,f) exists for some
α ∈ RK iff m ∈ riCf .

P r o o f . See [1] for the general result, or, e. g. [11], Theorem D.1. 2

Remark. The condition of the above proposition is obviously equivalent to the
following one:

max
xS∈XS

〈α, f(xS)〉 > 〈αm〉

for every α ∈ S1 = {α ∈ RK; ‖α‖ = 1}, i. e. m can be separated by a hyperplane
from any face (external subset) of the convex set Cf . This equivalence can also
serve as a key for the proof of Proposition 3.

Anyhow, the condition m ∈ riCf is the crucial condition for the existence of the
exponential representation.

7. APPLICATION TO THE MARGINAL PROBLEM

In order to apply the above results to the marginal problem we have to find a suitable
collection of statistics f and a collection of constants m so that

PQ =M(m,f).

Natural candidates for the statistics {fj}j∈K are the Dirac functions (indicators)

DV = {δxV }xV ∈XV ,V ∈V
but these are apparently linearly dependent. Thus, we have to choose a reasonable
basis.

Let us fix a configuration 0S ∈ XS . For V ⊂ S we denote X 0
V =

⊗
v∈V (Xv \{0v}).

Further, we denote

V = {W ⊂ S; ∅ 6= W ⊂ V for some V ∈ V}.
Now, we set D0

V = {δxW }xW∈X 0
W ,W∈V .

Proposition 4. We have

i) {1, D0
V} linearly independent,

ii) DV ⊂ Lin(1, D0
V).

P r o o f . We shall omit the tedious calculations of the general proof. Let us
only illustrate the terms for the special case of S = {1, 2}, V = {{1, 2}}. Then
V = {{1}, {2}, {1, 2}} and D0

V = {δx1 , δx2 , δx1x2}x1x2∈X0
{1,2}

. Suppose

α+
∑

x1∈X 0
{1}

αx1δx1 +
∑

x2∈X 0
{2}

αx2δx2 +
∑

x1x2∈X 0
{1,2}

αx1x2δx1x2 = 0.
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Then by substituting (01, 02) we obtain α = 0, by substituting (01, y2) we obtain
αy2 = 0 for every y2 ∈ X 0

{2}, etc. This proves i).
In order to prove ii) we observe

δ01x2 = δx2 −
∑

x1∈X 0
{1}

δx1x2 for every x2 ∈ X 0
{2},

symmetrically for δx102 , and

δ0102 = 1−
∑

x1∈X0
{1}

δx1 −
∑

x2∈X0
{2}

δx2 +
∑

x1x2∈X 0
{1,2}

δx1x2 .

2

From now, we shall understand f = {fj}j∈K = D0
V with K =

⋃
W∈V X 0

W , and
consequently, we set

m = {mxW }xW∈X 0
W ,W∈V

where mxW = QV/W (xW ) for some V ⊃ W,V ∈ V. Obviously, due to the (strong)
consistency of Q, the above terms are well defined since QV1/W = QV2/W if W ⊂
V1 ∩ V2.

Then, provided the crucial condition m ∈ riCf is satisfied, we obtain by the
MAXENT the exponential representative PS = PαS in the form

PαS (yS) ∝ exp





∑

xW∈X0
W ,W∈V

αxW δxW (yW )



 .

If we denote UαW =
∑
xW∈X0

W
αxW δxW , we have UαW ∈ FW and we may write

PαS (yS) ∝ exp





∑

W∈V
UαW (yW )



 .

Thus, PαS is the Gibbs distribution with the potential Uα = {UαW }W∈V (see, e. g.,
[14] for detailed treatment). Moreover, since

Pα{s}|S\{s}(y{s}|yS\{s}) ∝ exp





∑

W∈V,W3{s}
UαW (yW )



 ,

PαS is also Markovian with the neighborhood system ∂ = {∂(s)}s∈S given by

t ∈ ∂(s) iff {t, s} ⊂W for some W ∈ V.

Hence, the form and the structure of the solution PS is known, and it only
“remains” to identify the unknown parameters α.
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8. PARAMETER IDENTIFICATION

Let us recall that the collection of parameters α is given implicitly as a solution to
the system of equations ∫

f dPα = m.

or, equivalently, as

α = argmin
α∈RK

{c(α)− 〈α, m〉} .

where m and f are specified in the preceding section. Thus, for real computing we
need a convenient numerical method. Any version of the most common Newton’s
method yields an iterative procedure in the form

α(n+1) = α(n) + ρn

(
m−

∫
f dPα

(n)
)

where ρn should be, in the optimal case, inverse to the Hessian matrix of the function
c(α) at α(n). It could be, if needed, substituted by some more simple term but,
anyhow, each step of the procedure involves evaluating the expectation

∫
f dPα

(n)

which is numerically hardly feasible for large S. Hence, the stochastic gradient
method (cf. [15] or [14], Section 15.4) was introduced, consisting in substituting the
“theoretical” term by its empirical counterpart

∫
̂f dPα(n) =

1
L

L∑

`=1

f(x(`)
S )

where x(1)
S , . . . , x

(L)
S is a long enough sequence simulated with the distribution Pα

(n)
.

The Markov Chain Monte Carlo (MCMC) – or some similar method – can be
used for the simulation (cf., e. g., [5] for a survey).

With an appropriate choice of ρn (cf. [15]) the procedure converges in the a.s.
sense but, obviously, it is tedious, time consuming, and it may be unstable. On
the other hand, let us emphasize that the exponential form distribution with local
statistics is extremely well suited for the MCMC type simulations. Namely, e. g., the
most common Metropolis–Hastings algorithm deals at every step with a ratio like

PαS (xS)
PαS (yS)

= exp





∑

j∈K
αj fj(xS)−

∑

j∈K
αj fj(yS)





that does not involve the normalizing constant and, therefore, can be easily and
rapidly evaluated (cf., e. g., [5] or [14]).
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9. MAXIMUM PSEUDO–LIKELIHOOD

In principle, the above way of identifying the parameters α agrees with the statis-
tical parameter estimation, namely the maximum likelihood (ML), or, equivalently,
the minimum I-divergence method. The only difference consists in the fact that
within the statistical estimation the collection of constants m is given as the “ev-
idence” obtained from observed data, in particular mxW = P̂S/W (xW ) for every
xW ∈ X 0

W ,W ∈ V where P̂S is the empirical distribution. In order to avoid compu-
tational problems as indicated in the previous section, the ML approach is sometimes
exchanged with the maximum pseudo-likelihood (MPL) one. The MPL estimate of
the parameter α is given by the following formula:

α̂ ∈ argmaxα∈RK
∑

s∈S

∫
logPα{s}|S\{s}(y{s}|yS\{s})dP̂S(yS)

= argminα∈RK
∑

s∈S
I(P̂{s}|S\{s}|Pα{s}|S\{s}).

Evidently, the MPL estimate can be also understood as the minimum conditional
I-divergence estimate.

Since every PαS , α ∈ RK, is Markov with the neighborhood system ∂ = {∂(s)}s∈S ,
for solving the above optimization problem we actually need to have marginal dis-
tributions {

P̂S/∂(s)

}
s∈S

where ∂(s) = ∂(s) ∪ {s}.
Let us illustrate how the MPL idea could be applied to our marginal problem. We

still assume to have a strongly consistent system Q = {QV }V ∈V so that PαS ∈ PQ for
some α ∈ RK. Now, let us suppose we are able to extend the system Q consistently
to a system Q∂ = {Q∂(s)}s∈S so that PαS ∈ PQ∂ as well.

Remark. Theoretically, such extension always exists. Namely, we could simply
set Q∂(s) = Pα

S/∂(s)
for every s ∈ S. On the other hand, the numerical evaluation is

hardly feasible without actually having PαS (which represents the final goal). But,
fortunately, both the methods described below do not require absolutely precise val-
ues of the “input” marginals Q∂ = {Q∂(s)}s∈S . With some reasonable approximate
values we obtain a reasonable approximation of the true parameter. See also the
concluding remark.

Anyhow, under the above assumptions, we can now obtain the unknown param-
eter α ∈ RK with the aid of the MPL approach. The statement is worth to be
proved.

Proposition 5. Let PαS ∈ PQ ∩ PQ∂ . Then

α = argmaxα∈RK
∑

s∈S

∫
logPα{s}|∂(s)

(
y{s}|y∂(s)

)
dQ∂(s)(y∂(s)).
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P r o o f . Let α∗ be the maximizer. Since
∑

s∈S
I

(
Q{s}|∂(s)

∣∣Pα{s}|∂(s)

)
≥ 0

with the equality iff Q{s}|∂(s) = Pα{s}|∂(s) for every s ∈ S, and Pα
S/∂(s)

= Q∂(s) by
the assumption, we have

Pα
∗
{s}|∂(s) = Pα{s}|∂(s) for every s ∈ S.

Then Pα
∗

S = PαS by the Hammersley–Clifford identity:

PS(xS) = PS(0S) ·
∏

s∈S

P{s}|∂(s)

(
x{s}|0∂(s)+ , x∂(s)−

)

P{s}|∂(s)

(
0{s}|0∂(s)+ , x∂(s)−

)

where ∂(s)− = {t ∈ ∂(s); t ≺ s} with some fixed linear ordering ≺.
Thus α∗ = α finally by the identifiability condition. 2

Since the objective function is concave, the maximum can be obtained also as a
solution of the normal equations, i. e.

mxW =
1
|W |

∑

s∈W

{
PαQ

}(s)

∂(s)/W
(xW )

for every xW ∈ X 0
W , W ∈ V, where

{
PαQ

}(s)

∂(s)
(x∂(s)) = Pα{s}|∂(s)

(
x{s}|x∂(s)

)
·Q∂(s)/∂(s) (x∂(s)).

Let us recall that within the ML approach we have simply PαS/W (xW ) on the right
hand side.

The main advantage of the MPL approach consists in dealing with the local
characteristics Pα{s}|∂(s) which can be easily evaluated, and, whenever the size of the
neighborhoods {∂(s)}s∈S is reasonable, the problem can be numerically solved rather
directly, without any stochastic algorithm. Moreover, like within the statistical
estimation (cf., e. g., [7]), whenever the “input” marginals Q∂ = {Q∂(s)}s∈S are
close to the true marginals {Pα

S/∂(s)
}s∈S , then the solution exists and is close to the

true parameter α. (See Remark above.)

10. MÖBIUS FORMULA

Nevertheless, with the information as assumed in the preceding section, there is
much more straightforward method, given by Möbius formula (see, e. g., [14]), for
identifying the parameters. Let us introduce the formula in a general form. We shall
denote S = expS \ {∅} and
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U0 = {U = (UA)A∈S ;UA ∈ FA and UA(xA) = 0 for every xA ∈ XA \ X 0
A}

Then U0 is the space of so-called vacuum potentials (see, e. g., [6]). For our purpose
it is important that for U = (UA)A∈S ∈ U0 each UA, A ∈ S can be written as

UA =
∑

xA∈X 0
A

αxAδxA ,

where UA(xA) = αxA for xA ∈ X 0
A and UA(xA) = 0 otherwise (see also Section 7).

Proposition 6. (Möbius formula)

i) Let Φ ∈ FS . If we set

UA(xA) =
∑

B⊂A
(−1)|A\B|

[
Φ(xB , 0S\B)− Φ(0S)

]
for everyA ∈ S and xA ∈ XA

then U ∈ U0 and

Φ(xS) = Φ(0S) +
∑

A∈S
UA(xA) for every xS ∈ XS .

ii) If
Φ(xS) = const. +

∑

A∈S
UA(xA) for every xS ∈ XS

where U ∈ U0 then

UA(xA) =
∑

B⊂A
(−1)|A\B|

[
Φ(xB , 0S\B)− Φ(0S)

]
for everyA ∈ S and xA ∈ XA.

P r o o f . The relations can be verified by direct substitutions. 2

Now, let us apply the preceding statement ii) to the function

Φ(xS) = logPαS (xS)

with α ∈ RK such that again PαS ∈ PQ ∩ PQ∂ . We obtain

αxW =
∑

B⊂W
(−1)|A\B|

[
log

PαS (xB , 0S\B)
PαS (0S)

]

=
∑

B⊂W\{s}
(−1)|A\B|

[
log

PαS (xB , 0S\B)
PαS (xB∪{s}, 0S\{B∪{s}})

]

=
∑

B⊂W\{s}
(−1)|A\B|

[
log

Pα{s}|∂(s)(0{s}|xB∪{s}, 0S\{B∪{s}})
Pα{s}|∂(s)(x{s}|xB∪{s}, 0S\{B∪{s}})

]

=
∑

B⊂W\{s}
(−1)|A\B|

[
log

Q{s}|∂(s)(0{s}|xB∪{s}, 0S\{B∪{s}})
Q{s}|∂(s)(x{s}|xB∪{s}, 0S\{B∪{s}})

]
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for every xW ∈ X 0
W ,W ∈ V, where s ∈W is arbitrary fixed.

Thus, whenever we are able to extend the original system of marginals Q into the
system Q∂ , we can calculate the parameters α directly from the Möbius formula.
Actually, we do not need to know the complete distributions Q∂(s), s ∈ S, but only
Q∂(s)(xW , 0∂(s)\W ) for every W ∈ V,W ⊂ ∂(s), and xW ∈ XW .

Remark (concluding). Obviously, whenever we are not able to calculate the
extended marginals, we still can use some approximation (see, e. g., [10] or [8]) in
order to obtain at least approximative solution α̂. The question of approximation
is behind the scope of the present paper. But, anyhow, we may summarize the
recommended procedure:

i) Seek for the solution of the marginal problem in the exponential form PαS .

ii) Extend the system Q = {QV }V ∈V into Q̂∂ = {Q̂∂(s)}s∈S by some approxima-
tive method.

ii) Calculate the (approximate) parameters of the exponential distribution with
the aid of Möbius formula:

α̂xW =
∑

B⊂W\{s}
(−1)|A\B|

[
log

Q̂{s}|∂(s)(0{s}|xB∪{s}, 0S\{B∪{s}})
Q̂{s}|∂(s)(x{s}|xB∪{s}, 0S\{B∪{s}})

]

for every xW ∈ X 0
W ,W ∈ V, where s ∈W is arbitrary fixed.
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(1988), 2, 269–294.
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