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KYBERNET IK A — VOLUME 4 3 ( 2 0 0 7 ) , NU MB ER 5 , P AG E S 7 4 7 – 7 6 4

EXPLOITING TENSOR RANK–ONE DECOMPOSITION
IN PROBABILISTIC INFERENCE

Petr Savicky and Jiř́ı Vomlel

We propose a new additive decomposition of probability tables – tensor rank-one de-
composition. The basic idea is to decompose a probability table into a series of tables, such
that the table that is the sum of the series is equal to the original table. Each table in
the series has the same domain as the original table but can be expressed as a product
of one-dimensional tables. Entries in tables are allowed to be any real number, i. e. they
can be also negative numbers. The possibility of having negative numbers, in contrast
to a multiplicative decomposition, opens new possibilities for a compact representation of
probability tables. We show that tensor rank-one decomposition can be used to reduce the
space and time requirements in probabilistic inference. We provide a closed form solution
for minimal tensor rank-one decomposition for some special tables and propose a numerical
algorithm that can be used in cases when the closed form solution is not known.

Keywords: graphical probabilistic models, probabilistic inference, tensor rank

AMS Subject Classification: 68T37, 62E15, 15A69

1. INTRODUCTION

The fundamental property of probabilistic graphical models [11, 13] that allows their
application in domains with hundreds to thousands variables is the multiplicative
factorization of the joint probability distribution. The multiplicative factorization is
exploited in inference methods, e. g., in the junction tree propagation method [12].
However, in some real applications the models may become intractable even when
the junction tree propagation method (or other exact inference methods) are used
because after the moralization and triangularization steps the graphical structure
becomes too dense, cliques consist of too many variables, and, consequently, the
probability tables corresponding to the cliques are too large to be efficiently ma-
nipulated. In such case, one usually turns to an approximative inference method.
Following the ideas presented in [5, 17] we propose a new decomposition of proba-
bility tables that allows to use exact inference in some models where – without the
suggested decomposition – the exact inference using the standard methods is impos-
sible. The basic idea is to decompose a probability table into a series of tables, such
that the table that is the sum of the series is equal to the original table. Each table
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in the series has the same domain as the original table but can be expressed as a
product of one-dimensional tables. Entries in tables are allowed to be any real num-
ber. Extending the range to negative numbers opens new possibilities for compact
representation of probability tables and allows to find a shorter series.

It is convenient to formally specify the task using the tensor terminology. Assume
variables Xi, i ∈ N ⊂ N, each variable Xi taking values (a value of Xi will be denoted
xi) from a finite set Xi. Let for any A ⊆ N the symbol xA denote a vector of the
values (xi)i∈A from the Cartesian product XA = ×i∈AXi, where for all i ∈ A: xi is
a value from Xi.

Definition. Tensor Let A ⊂ N . A tensor ψ over R indexed by XA is a mapping

XA 7→ R.

The cardinality |A| is called tensor dimension.

Note that every probability table can be looked upon as a tensor. Tensor ψ
indexed by XA is an (unconditional) probability table if for every xA it holds that
0 ≤ ψ(xA) ≤ 1 and

∑
xA

ψ(xA) = 1. Tensor ψ is a conditional probability table
(CPT) if for every xA it holds that 0 ≤ ψ(xA) ≤ 1 and if there exists B ⊂ A such
that for every xB it holds

∑
xA\B

ψ(xB , xA\B) = 1.
Next, we will recall the basic tensor notion. If, for a tensor indexed by XA,

|A| = 1, then the tensor is a vector. If |A| = 2 then the tensor is a matrix. The
outer product ψ⊗ϕ of two tensors ψ : ×i∈AXi 7→ R and ϕ : ×i∈BXi 7→ R, A∩B = ∅
is a tensor ξ : ×i∈A∪BXi 7→ R defined for all xA∪B as

ξ(xA∪B) = ψ(xA) · ϕ(xB).

Now, let ψ and ϕ are defined on the same domain ×i∈AXi. The sum ψ + ϕ of
two tensors is tensor ξ : ×i∈AXi 7→ R such that for all xA

ξ(xA) = ψ(xA) + ϕ(xA).

Definition 2. Tensor rank (H̊astad [10]) Tensor of dimension |A| has rank one
if it is an outer product of |A| vectors. Rank of tensor ψ is the minimal number of
tensors of rank one that sum to ψ. Rank of tensor ψ will be denoted as rank(ψ).

Remark. Note that the standard matrix rank is a special case of the tensor rank
for |A| = 2. An alternative definition of the matrix rank is that the rank of an m×n
matrix M is the smallest r for which there exist a m × r matrix F and a r × n
matrix G such that

M = FG. (1)

Let f i be the ith column of F and gi be the ith row of G. One can equivalently
write equation (1) as

M =
r∑

i=1

f i ⊗ gi. (2)

Since rank(f i⊗gi) = 1 one can see that the tensor rank of M is equal to the matrix
rank of M .
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Definition 3. Tensor rank-one decomposition Assume a tensor ψ indexed
by XA and an integer r. A series of tensors {%b}r

b=1 indexed by XA such that

• for b = 1, . . . , r: rank(%b) = 1, i. e., %b = ⊗i∈A ϕi,b, where ϕi,b, i ∈ A are
vectors and

• ψ =
∑r

b=1 %b

is called tensor rank-one decomposition of ψ of length r.

Note that from the definition of tensor rank it follows that such a series exists iff
r ≥ rank(ψ). The decomposition is minimal if r = rank(ψ).

Example 1. Let ψ : {0, 1} × {0, 1} × {0, 1} 7→ R be1




(
1
2

) (
2
4

)

(
2
4

) (
4
9

)


 .

This tensor has rank two since2

ψ = (1, 2)⊗ (1, 2)⊗ (1, 2) + (0, 1)⊗ (0, 1)⊗ (0, 1)

and there are no three vectors whose outer product is equal to ψ.

It was proved in [10] that the computation of tensor rank is an NP-hard prob-
lem, therefore determining the minimal rank-one decomposition is also an NP-hard
problem.

Definition 4. Tensor rank-one approximation Assume a tensor ψ and an
integer s ≥ 1. A tensor rank-one approximation of tensor ψ of length s is a series
{%b}s

b=1 of rank-one tensors %b that is a tensor rank-one decomposition of a tensor ψ̂

with rank(ψ̂) = s. If ψ̂ minimizes
∑

x(ψ(x)− ψ̂(x))2 we say that it is a best tensor
rank-one approximation of length s.

Higher-dimensional tensors are studied in multilinear algebra [3]. The problem of
tensor rank-one decomposition is also known as canonical decomposition (CANDE-
COMP) or parallel factors (PARAFAC). A typical task is to find a tensor of rank
one that is a best approximation of a tensor ψ. This task is usually solved using an

1We visualize tensors using a matrix convention in the same way they are displayed by the
command MatrixForm in the computational tool Mathematica. The first dimension corresponds to
the raw of the most outer matrix, the second dimension to the column of the most outer matrix,
the third dimension to the raw of the second most outer matrix, etc. This means that a tensor of
dimension one will be displayed as a column vector, a tensor of dimension two as a matrix and a
tensor of dimension three as a matrix of vectors.

2To simplify notation we write all vectors in an outer product without the transposition signs,
i. e., as raw vectors.
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alternating least square algorithm (ALS) that is a higher-order generalization of the
power method for matrices [4].

The rest of the paper is organized as follows. In Section 2 we show using a simple
example how tensor rank-one decomposition can be used to reduce the space and
time requirements for the probability inference using the junction tree method. We
compare sizes of the junction tree for the standard approach, the parent divorcing
method, and the junction tree after tensor rank-one decomposition3. In Section 3
the main theoretical results are presented: the lower bound on the tensor rank for a
class of tensors and minimal tensor rank-one decompositions for some special tensors
– max, add, xor, and their noisy counterparts. In Section 4 we propose a numerical
method that can be used to find a tensor rank-one decomposition. We also present
results of experiments with the numerical method.

2. TENSOR RANK–ONE DECOMPOSITION
AND PROBABILISTIC INFERENCE

We will use an example of a simple Bayesian network to show computational savings
of the proposed decomposition. Assume a Bayesian network having the structure
given on the left hand side of Figure 1. Variables X1, . . . , Xm are binary taking
values 0 and 1. For simplicity, assume that m = 2d, d ∈ N, 2 ≤ d. Further assume
a variable Y

df= Xm+1, whose values y =
∑m

i=1 xi. This means that Y takes m + 1
values.

If one uses the standard junction tree construction [12], all parents of Y get
connected by edges (this step is often called moralization). One need not perform
triangulation since the graph is already triangulated. The resulting junction tree
consists of one clique containing all variables, i. e., C1 = {X1, . . . , Xm, Y }. See the
right hand side of Figure 1.

Y

X1 X2 Xm

Y,X1, . . . , Xm

Fig. 1. Bayesian network structure and its junction tree.

Since the CPT P (Y | X1, . . . , Xm) has a special form, one can use the parent
divorcing method [14] and introduce a number of auxiliary variables, one auxiliary
variable for a pair of parent variables. This is used hierarchically, i. e. one gets a
tree of auxiliary variables with node Y being the root of the tree. The resulting

3Several other methods were proposed to exploit a special structure of CPTs. For a review of
these methods see, for example, [17]. In this paper we do comparisons with the parent divorcing
method only.
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Bayesian network is given in Figure 2. The resulting junction tree consists of m− 1
cliques. See Figure 3.

A1
1

Y

Xm−1X1 X2 Xm

Ad
1 Ad

md

A1
m1

d = log2 m,md = 2

m1 = m/2

Fig. 2. Bayesian network after parent divorcing.

A1
1, X1, X2 A1

2, X3, X4 A1
m1

, Xm−1, Xm

A1
1, A

1
2, A

2
1

Ad
1, A

d
2, Y

m1 = m/2

m2 = m/4

md = 2

A1
m1−1, A

1
m1

, A2
m2

A1
m1−1, Xm−3, Xm−2

Fig. 3. Junction tree for the parent divorcing method.

In Section 3.2 we will show that if the CPT corresponds to addition of m binary
variables then we can decompose this CPT to a series of m + 1 tensors that are
products of vectors

P (Y | X1, . . . , Xm) =
m+1∑

b=1

ξb ⊗ (⊗m
i=1 ϕi,b),

which is a tensor rank-one decomposition of this CPT. Since tensor rank-one de-
composition is an additive decomposition, we can visualize it using one additional
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variable (which we will denote B) as suggested in [5]. In case of addition of m
binary variables, variable B will have m + 1 states. Instead of moralization, we
add variable B into the model and connect it with nodes corresponding to variables
Y,X1, . . . , Xm. We get the structure given in Figure 4. Note that all edges are
undirected, which means that we do not perform any moralization. It is not diffi-
cult to show (see [17]) that this model can be used to compute marginal probability
distributions as in the original model. The resulting junction tree of this model is
given in Figure 5.

Y

X1 X2 Xm

B

Fig. 4. Bayesian network after the decomposition.

B,X2B,X1 B,Xm

B, Y

Fig. 5. Junction tree for the model after the rank-one decomposition.

After a little algebra we get that the total clique size in the standard case is
(m + 1) · 2m, after parent divorcing it is 1

3m3 + 5
2m2 + 2m log m − 11

6 m − 1, and
after the tensor rank-one decomposition (described later in this paper) it is only
3m2 +4m+1. In Figure 6, we compare dependence of the total size of junction trees
on the number of parent nodes4 m of node Y . Note that we use the logarithmic
scale for the vertical axis.

It should be noted that the tensor rank-one decomposition can be applied to
any probabilistic model with discrete random variables. The savings depend on the
graphical structure of the probabilistic model. In fact, by avoiding the moralization
of the parents, we give the triangulation algorithm more freedom for the construction
of a triangulated graph so that the resulting tables corresponding to the cliques of
the triangulated graph can be smaller.

4It may seem unrealistic to have a node with more than ten parents in an real world application,
but it can easily happen, for example, when one needs to introduce logical constraints into the
model.
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Fig. 6. Comparison of the total size of junction tree.

We would like to stress that the above mentioned methods are not the only
methods that exploit local structure of conditional probability tables in probabilistic
inference. Since an overview of these methods would substiantially go beyond scope
of this paper we only provide few references to those we find most important.

One of the earliest examples is the Quickscore algorithm of Heckerman [7] which
exploits noisy-or relations in the Quick Medical Reference model. Most of other
approaches are based on a transformation of the network structure. Olesen et al. [14]
proposed the parent divorcing method. Heckerman and Breese [9] used a temporal
transformation. Zhang and Poole [18] introduced deputy variables that are used
to create a heterogeneous factorization in which the factors can be combined either
by multiplication or by a combination operator. Takikawa and D’Ambrosio [16]
used intermediate (hidden) variables, which allowed them to transform an additive
factorization into a multiplicative factorization. The additions are then achieved by
standard marginalization of the intermediate variables. Dı́ez [5] pointed out that
the transformation of noisy-max can be done using a single variable.

A different approach that exploits local structures of CPTs are arithmetic cir-
cuits [2]. An arithmetic circuit is a rooted, directed acyclic graph. The leaf nodes
are labelled with numeric constants or variables and all other nodes correspond to
summation or multiplication. They are usually constructed from a Bayesian net-
work via the conversion of Bayesian network to a multilinear function, which is then
converted to a an arithmetic circuit (usually via a logical formula of propositional
logic) – see [1, 2] for details.
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3. MINIMAL TENSOR RANK–ONE DECOMPOSITION

In this section we will present the main theoretical results. Recall that determining
the minimal rank-one decomposition is an NP-hard problem [10]. However, we will
provide closed-form solution for the problem of finding a minimal rank-one decom-
position of some special tensors that play an important role, since they correspond
to CPTs that are often used in Bayesian network models in real applications.

The class of tensors of our special interest are tensors ψf that represent a func-
tional dependence of one variable Y on variables X1, . . . , Xm. Let X = X1 × . . .Xm

and x = (x1, . . . , xm) ∈ X . Further, let

I(expr) =
{

1 if expr is true
0 otherwise.

Then for a function f : X 7→ Y the tensor is defined for all (x, y) ∈ X × Y as
ψf (x, y) = I(y = f(x)).

Let r = rank(ψf ) and

ψf =
r∑

b=1

ξb ⊗ (⊗m
i=1ϕi,b) , (3)

where ξb : Y 7→ R and ϕi,b : Xi 7→ R for all b ∈ {1, . . . , r}. Formula (3) is called a
minimal tensor rank-one decomposition of ψf .

First, we will provide a lower bound on the rank of tensors from this class. This
bound will be later used to prove the minimality of certain rank-one decompositions.

Lemma 1. Let function f : X 7→ Y and ψf : X × Y 7→ {0, 1} be a tensor repre-
senting the functional dependence given by f . Then rank(ψf ) ≥ |Y|.

P r o o f . For a minimal tensor rank-one decomposition of ψf it holds for all (x, y) ∈
X × Y that

ψf (x, y) =
r∑

b=1

ξb(y) ·
m∏

i=1

ϕi,b(xi), (4)

where r = rank(ψf ). Consider the matrices5

W = {ψf (x, y)}y∈Y
x∈X ,

U = {ξb(y)}y∈Y
b∈{1,...,r} ,

V =

{
m∏

i=1

ϕi,b(xi)

}b∈{1,...,r}

x∈X
.

Equation (4) can be rewritten as
W = UV .

Each row of W contains at least one nonzero entry, since each y ∈ Y is in the range
of f . Moreover, each column of W contains exactly one nonzero entry, since f is

5The upper index labels the rows and the lower index labels the columns.
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a function. Hence, no row is a linear combination of other rows. Therefore there
are |Y| independent rows in W and rank(W ) = |Y|. Since the rank of a matrix
product cannot be higher than the rank of matrices in the product [6], we get that
rank(W ) ≤ rank(U) ≤ r. Altogether, |Y| ≤ r. ¤

3.1. Maximum and minimum

An additive decomposition of max was originally proposed in [5]. This result is in-
cluded in this section for completeness and we add a result about its optimality. The
proofs are constructive, i. e., they provide a minimal tensor rank-one decomposition
for max and min.

Let us assume that Xi = [ai, bi] is an interval of integers for each i = 1, . . . ,m.
Clearly, the range Y of max on X1× . . .×Xm is [maxm

i=1 ai, maxm
i=1 bi] and the range

Y of min is [minm
i=1 ai, minm

i=1 bi].

Theorem 1. If f(x) = max{x1, . . . , xm} and xi ∈ [ai, bi] for i = 1, . . . ,m then
rank(ψf ) = |Y|.

P r o o f . Let for i ∈ {1, . . . ,m}, xi ∈ Xi, and b ∈ Y

ϕi,b(xi) =
{

1 xi ≤ b
0 otherwise

and for y ∈ Y, b ∈ Y

ξb(y) =





+1 b = y
−1 b = y − 1

0 otherwise.

Let ω(x, y) = I(max(x1, . . . , xm) ≤ y). Observe that

ω(x, y) =
m∏

i=1

ϕi,y(xi).

Therefore,

ψf (x, y) = ω(x, y)− ω(x, y − 1),

where ω(x, ymin − 1) is considered to be zero. Altogether,

ψf (x, y) =
m∏

i=1

ϕi,y(xi)−
m∏

i=1

ϕi,y−1(xi).

Since the product ξb(y)·∏m
i=1 ϕi,b(xi) is nonzero only for b = y and b = y−1, we have

ψf (x, y) = ξy(y) ·
m∏

i=1

ϕi,y(xi) + ξy−1(y) ·
m∏

i=1

ϕi,y−1(xi)

=
∑

b∈Y
ξb(y) ·

m∏

i=1

ϕi,b(xi) .
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Taking b′ = b + ymin − 1 we get the required decomposition

ψf =
|Y|∑

b′=1

ξb′ ⊗ (⊗m
i=1ϕi,b′) .

By Lemma 1, this is a minimal tensor rank-one decomposition of ψf . ¤

Theorem 2. If f(x) = min{x1, . . . , xm} and xi ∈ [ai, bi] for i = 1, . . . ,m then
rank(ψf ) = |Y|.

P r o o f . Let for i ∈ {1, . . . ,m}, xi ∈ Xi, and b ∈ Y

ϕi,b(xi) =
{

1 xi ≥ b
0 otherwise

and for y ∈ Y, b ∈ Y

ξb(y) =





+1 b = y
−1 b = y + 1

0 otherwise.

and follow an analogous argument as in the proof of Theorem 1 to obtain a tensor
rank-one decomposition of ψf . Again, by Lemma 1, this is a minimal tensor rank-one
decomposition. ¤

Remark. If for i ∈ {1, . . . ,m} Xi = {0, 1}, then the functions max{x1, . . . , xm}
and min{x1, . . . , xm} correspond to logical disjunction x1 ∨ . . . ∨ xm and logical
conjunction x1 ∧ . . . ∧ xm, respectively. In Example 2 we illustrate how this can be
generalized to Boolean expressions consisting of negations and disjunctions.

Example 2. In order to achieve a minimal tensor rank-one decomposition of

ψ(x1, x2, y) = I(y = (x1 ∨ ¬x2))

with variable B having two states 0 and 1, it is sufficient to use functions:

ϕ1,b(x1) = I(x1 ≤ b)
ϕ2,b(x2) = I(¬x2 ≤ b)

ξb(y) =





+1 y = b
−1 y = 1, b = 0

0 y = 0, b = 1.

3.2. Addition

In this section, we assume an integer ri for each i = 1, . . . ,m and assume that Xi is
the interval of integers [0, ri]. This assumption is made for simplicity and without
loss of generality. If Xi are intervals of integers, which do not start at zero, it is
possible to transform the variables by subtracting the lower bounds of the intervals
to obtain variables satisfying the assumption. Moreover, let f : Nm → N be a
function, such that f(x) = f0(

∑m
i=1 xi) where f0 : N → N. Let A be the interval of

integers [0,
∑m

i=1 ri]. Clearly, A is the range of
∑m

i=1 xi.
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Theorem 3. Let f0, f and A be as above. Then rank(ψf ) ≤ |A|. Moreover, if f0

is the identity function, then rank(ψf ) = |A|.

P r o o f . Consider the Vandermonde matrix



α0
1 α0

2 . . . α0
|A|

α1
1 α1

2 . . . α1
|A|

. . .

α
|A|−1
1 α

|A|−1
2 . . . α

|A|−1
|A|


 , (5)

where α1, . . . , α|A| are pairwise distinct real numbers and the upper index is the
exponent. This matrix is non-singular, since the corresponding Vandermonde deter-
minant is non-zero [6]. The system of equations

βt =
|A|∑

b=1

zb · αt
b, t ∈ A (6)

has the Vandermonde matrix as its system matrix and since the Vandermonde de-
terminant is non-zero it has always a solution for variables zb, b ∈ A.

For a fixed y ∈ Y, define ξb(y) to be the solution of system (6) with βt = I(y =
f0(t)). Therefore it holds for a fixed y ∈ Y and for all t ∈ A that

I(y = f0(t)) =
|A|∑

b=1

ξb(y) · αt
b. (7)

By substituting t =
∑m

i=1 xi and taking ϕi,b(xi) = αxi

b for b = 1, . . . , |A| we obtain
that for all combinations of the values of x and y

I(y = f0(
m∑

i=1

xi)) =
|A|∑

b=1

ξb(y) ·
m∏

i=1

ϕi,b(xi).

This proves the first assertion of the theorem.
If f0 is the identity, then the range of f is the whole A. It follows from Lemma 1

that rank(ψf ) ≥ |A| and therefore the above decomposition is minimal. ¤

Example 3. Let Xi = {0, 1} for i = 1, 2, f(x1, x2) = x1 + x2 and Y = {0, 1, 2}.
We have

ψf (x1, x2, y) = I(y = x1 + x2)

=







1
0
0







0
1
0







0
1
0







0
0
1









758 P. SAVICKY AND J. VOMLEL

As in the proof of Theorem 3, we assume ϕi,b(xi) = αxi

b for i = 1, 2 and distinct
αb, b = 1, 2, 3. For simplicity of notation, let us assume α1 = α, α2 = β, α3 = γ,
ξ1(y) = uy, ξ2(y) = vy, and ξ3(y) = wy. Let us substitute these ϕi,b(xi) and ξb(y)
into (3) and rewrite it using tensor product as follows.

ψf (x1, x2, y) = (α0, α1)⊗ (α0, α1)⊗ (u0, u1, u2)

+(β0, β1)⊗ (β0, β1)⊗ (v0, v1, v2)

+(γ0, γ1)⊗ (γ0, γ1)⊗ (w0, w1, w2).

For each y = 0, 1, 2 we require
(

I(y = 0) I(y = 1)
I(y = 1) I(y = 2)

)
= uy ·

(
α0 α1

α1 α2

)

+vy ·
(

β0 β1

β1 β2

)
+ wy ·

(
γ0 γ1

γ1 γ2

)
,

which defines a system of three linear equations with three variables uy, vy, wy



I(y = 0)
I(y = 1)
I(y = 2)


 =




α0 β0 γ0

α1 β1 γ1

α2 β2 γ2


 ·




uy

vy

wy


 .

If α, β, and γ are pairwise distinct real numbers then the corresponding Vander-
monde determinant is non-zero and a solution exists. The solution for α = 1, β =
2, γ = 3 is

ψf (x1, x2, y) = (1, 1)⊗ (1, 1)⊗
(

3,−5
2
,
1
2

)

+ (1, 2)⊗ (1, 2)⊗ (−3, 4,−1)

+ (1, 3)⊗ (1, 3)⊗
(

1,−3
2
,
1
2

)
.

3.3. Generalized addition

In this section, we present a tensor rank-one decomposition of ψf , where f is defined
as f(x) = f0(

∑m
i=1 fi(xi)). Let A be the set of all possible values of

∑m
i=1 fi(xi).

The rank of ψf depends on the nature of functions fi, more exactly, on the range of
the values of

∑m
i=1 fi(xi). The decomposition is useful, if this range is substantially

smaller than |X1| · . . . · |Xm|.

Theorem 4. If f(x) = f0(
∑m

i=1 fi(xi)), where fi are integer valued functions,
then rank(ψf ) ≤ |A|.

P r o o f . Without a loss of generality, we may assume that fi(xi) ≥ 0 for i =
1, . . . ,m and that zero is in the range of fi. If not, this may be achieved by using
fi(xi) − minzi fi(zi) instead of fi and modifying f0 so that f does not change.
The proof is analogous to the proof of the Theorem 3, where t =

∑m
i=1 fi(xi) and

ϕi,b(xi) = α
f(xi)
b for b = 1, . . . , |A|. ¤
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3.4. Exclusive-or (parity) function

Let ⊕ denote the addition modulo two, which is also known as the exclusive-or op-
eration. Parity is often used in coders and decoders. We conjecture tensor rank-one
decomposition may substantially speed up exact inference in probabilistic graphical
models used to model decoders for noisy channels. By the parity or exclusive-or
function, we will understand the function x1 ⊕ . . .⊕ xm.

Theorem 5. Let Xi = Y = {0, 1} for i = 1, . . . ,m and f(x) = x1⊕ . . .⊕xm. Then
rank(ψf ) = 2.

P r o o f . The exclusive-or function may easily be expressed as a product, if the
values {0, 1} are replaced by {1,−1} using substitution 0 7→ 1, 1 7→ −1. An odd
number of ones in the 0/1 representation is equivalent to a negative product of
the corresponding values in the 1/ − 1 representation. Expressing the required
transformations in the form of a linear transformation, we obtain

x1 ⊕ . . .⊕ xm =
1
2
(1− (1− 2x1) . . . (1− 2xm)).

Since ψf (x, y) = I(y ⊕ x1 ⊕ . . .⊕ xm = 0) = y ⊕ x1 ⊕ . . .⊕ xm ⊕ 1, we have

ψf (x, y) =
1
2
(1 + (1− 2y)(1− 2x1) . . . (1− 2xm)).

Hence, ψf may be expressed as a sum of two functions, the first of which is the
constant 1

2 and the second is ( 1
2 −y)(1−2x1) . . . (1−2xm). It is now easy to express

ψf in the form of (3), if we use tensors defined as follows. Let for i ∈ {1, . . . ,m},
xi ∈ {0, 1}, and b ∈ {1, 2}

ϕi,b(xi) =
{

1 b = 1
1− 2xi b = 2

and
ξb(y) =

{
1
2 b = 1
1
2 − y b = 2 .

It follows from Lemma 1 that this defines a minimal tensor rank-one decomposition
of exclusive-or. ¤

3.5. Noisy functional dependence

For every i = 1, . . . ,m we define a dummy variable X ′
i taking values x′i from set

X ′
i = Xi. The noisy functional dependence of Y on X = (X1, . . . , Xm) is defined by

ψf,κ1,...,κm(x, y) =
∑

x′

ψf (x′, y) ·
m∏

i=1

κi(xi, x
′
i), (8)

where ψf is tensor that represent a functional dependence y = f(x′) and for i =
1, . . . ,m tensors κi represent the noise for variable Xi. Note that models like noisy-
or, noisy-and, etc., fall within the scope of the above definition. Actually, the defi-
nition covers the whole class of models known as models of independence of causal
influence (ICI) [8].
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Theorem 6. Let tensor ψf,κ1,...,κm represent the noisy functional dependence f
defined by formula (8). Then rank(ψf,κ1,...,κm) ≤ rank(ψf ).

P r o o f . Let r = rank(ψf ). Then

ψf (x′, y) =
r∑

b=1

ξb(y) ·
m∏

i=1

ϕi,b(x′i).

Substituting this to formula (8) we get

ψf,κ1,...,κm(x, y) =
∑

x′

r∑

b=1

ξb(y) ·
m∏

i=1

(ϕi,b(x′i) · κi(xi, x
′
i))

=
r∑

b=1

ξb(y)
m∏

i=1

∑

x′
i

(ϕi,b(x′i) · κi(xi, x
′
i))

=
r∑

b=1

ξb(y) ·
m∏

i=1

ϕ′b,i(xi),

where ϕ′b,i(xi) =
∑

x′
i
(ϕi,b(x′i) · κi(xi, x

′
i)).

The last equation proves that rank(ψf,κ1,...,κm) ≤ rank(ψf ). ¤

4. NUMERICAL METHOD

In the previous section we showed how a minimal tensor rank-one decomposition can
be found for some special CPTs. But since it would be useful to get tensor rank-one
decompositions for CPTs with an unknown closed-form solution we tested several
numerical methods.

Recall that a tensor rank-one approximation of length s (Definition 4) is a series
{%b}s

b=1 of rank-one tensors %b that is a tensor rank-one decomposition of a tensor ψ̂

with rank(ψ̂) = s. If ψ̂ minimizes
∑

x(ψ(x)− ψ̂(x))2 we say that it is a best tensor
rank-one approximation of length s.

Note that if s = rank(ψ) then the minimal value of
∑

x(ψ(x)− ψ̂(x))2 is zero and
a best tensor rank-one approximation of length s is also a minimal tensor rank-one
decomposition of ψ. Therefore, one can search numerically for a minimal tensor
rank-one decomposition by solving the task from Definition 4 starting with s = 1
and then incrementing s by one until

∑
x(ψ(x)− ψ̂(x))2 is sufficiently close to zero.

We performed tests with several gradient methods. The best performance was
achieved with Polak–Ribière conjugate gradient method [15] that used the Newton
method in one dimension. We performed experiments for tensors corresponding to
the exclusive-or and maximum functions of three binary variables. The tensor rank
of these functions is two therefore we were able to verify whether for s = 2 the
algorithm found a tensor rank-one decomposition of these tensors.

The initial values for the algorithm were random numbers from interval [−0.5, 0.5].
In most cases, the algorithm converged to vectors that were tensor rank-one decom-
position. However, sometimes we needed to restart the algorithm from another
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starting values since it got stuck in a local minima. Figures 7 and 8 illustrate the
convergence using three sample runs. The displayed value is one value of ψ̂ as it
changes with the progress of the algorithm.
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Fig. 7. Development of one value of ψ′ in case of decomposition of xor.

We also applied the numerical algorithm to tensors for which we do not know
the rank. Namely, it was the family of tensors corresponding to CPTs representing
Boolean functions – the Boolean threshold functions and exactly-t functions.

Definition 5. Boolean threshold function is a Boolean function f such that

f(x) =
{

0 if |x| < t
1 if |x| ≥ t.

where t ∈ {0, . . . ,m + 1} is the threshold value.

Note that if t = 0 then it corresponds to the true function, if t = m + 1 it is the
false function, if t = 1 then it is the or function, and if t = m then it is the and
function.

Definition 6. Let ft+1 be the Boolean threshold function with threshold t + 1
and ft+2 be the Boolean threshold function with threshold t + 2. Then for any
t ∈ {1,m− 1} the exactly-t function is function gt(x) = ft+1(x)− ft+2(x).

To compute numerically the rank of tensors corresponding to the threshold func-
tion, the exactly-t function, and a general randomly generated Boolean functions
we again used the Polak–Ribière conjugate gradient method. For each s = 1, 2, . . .
we searched for the best tensor rank-one approximation of length s until we found
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an approximation that was sufficiently close to the tensor of a given Boolean func-
tion (we again started the algorithm from ten different randomly generated starting
points). As a stopping criterion we used the condition

∑

x

(ψ(x)− ψ̂(x))2 < 10−5.

The lowest value of s for which the above condition was met we regarded to be the
rank of the tensor of the given Boolean function.
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Fig. 8. Development of one value of ψ′ in case of decomposition of max.

In Table 1 we compare the rank of the threshold Boolean functions with the
average rank of randomly generated Boolean functions. The average was computed
from tensor rank values of fifty randomly generated Boolean functions. The values
in brackets correspond to the interval of the rank values. Note that this does not
mean that there do not exist Boolean functions with lower or higher rank. In Table 2
we present similar comparisons for the exactly-t function.

Table 1. Rank of the threshold Boolean functions with threshold t compared with

the average rank and the rank interval of randomly generated Boolean functions.

t 0 1 2 3 4 5 6 random
m = 2 1 2 2 1 1 1 1 1.92 [1,2]
m = 3 1 2 3 2 1 1 1 2.78 [2,3]
m = 4 1 2 3 3 2 1 1 3.94 [3,5]
m = 5 1 2 3 4 3 2 1 6.62 [5,8]
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Table 2. Rank of the exactly-t function compared with

the average rank and the rank interval of randomly generated Boolean functions.

t 0 1 2 3 4 5 6 random
m = 2 2 2 2 1 1 1 1 1.92 [1,2]
m = 3 2 3 3 2 1 1 1 2.78 [2,3]
m = 4 2 3 4 3 2 1 1 3.94 [3,5]
m = 5 2 3 4 4 3 2 1 6.62 [5,8]

From the tables one can see that the rank of the threshold Boolean functions (for
m > 3) and also the exactly-t Boolean functions (for m > 4) is lower than rank of
a randomly generated Boolean functions. The lower the rank, the more compact is
the tensor rank-one decomposition, which implies that probabilistic inference with
these models can be performed more efficiently.

5. CONCLUSIONS

In many applications of Bayesian networks, special types of relations between vari-
ables are used. The transformation applied in this paper exploits functional depen-
dence in order to achieve substantially more efficient probabilistic inference. The
transformation is based on introducing an auxiliary variable. Fewer states of the
auxiliary variable mean more efficient probabilistic inference. We observed the cor-
respondence between the problem of minimal number of states of the auxiliary vari-
able and the problem of the rank of a tensor. We proposed a new factorization for
the addition and parity functions and their noisy counterparts. The factorization
with an auxiliary variable can be also used to approximate large potentials. This
could be used in an approximate propagation method when the exact inference is
not possible.

ACKNOWLEDGMENTS

The authors were supported by the Ministry of Education Youth and Sports of the Czech
Republic under the project No. 1M0545 (P. Savicky) and No. 1M0572 (J. Vomlel). J. Vomlel
was also supported by the Czech Science Foundation under the project No. 201/04/0393.

(Received June 12, 2006.)

REFERENC ES

[1] M. Chavira and A. Darwiche: Compiling Bayesian networks with local structure. In:
Proc. 19th Internat. Joint Conference on Artificial Intelligence (IJCAI), Edinburgh
2005, pp. 1306–1312.

[2] A. Darwiche: A differential approach to inference in Bayesian networks. J. Assoc.
Comput. Mach. 50 (2003), 3, 280–305.



764 P. SAVICKY AND J. VOMLEL

[3] L. De Lathauwer and B. De Moor: From matrix to tensor: multilinear algebra and
signal processing. In: 4th Internat. Conference on Mathematics in Signal Processing,
Part I, IMA Conference Series, Warwick 1996, pp. 1–11.

[4] L. De Lathauwer, B. De Moor, and J. Vandewalle: On the best Rank-1 and Rank-
(R1, R2, . . . , RN ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl.
21 (2000), 4, 1324–1342.

[5] F. J. Dı́ez and S. F. Galán: An efficient factorization for the noisy MAX. Internat. J.
Intell. Systems 18 (2003), 2, 165–177.

[6] G.H. Golub and C. F. Van Loan: Matrix Computations. Third edition. Johns Hopkins
University Press, Baltimore 1996.

[7] D. Heckerman: A tractable inference algorithm for diagnosing multiple diseases. In:
Proc. Fifth Annual Conference on Uncertainty in AI (M. Henrion, R. D. Shachter,
L.N. Kanal, and J. F. Lemmer, eds.), August 18–21, 1989, Windsor, ON, pp. 163–171.

[8] D. Heckerman: Causal independence for knowledge acquisition and inference. In: Proc.
Ninth Conference on Uncertainty in AI (D. Heckerman and A. Mamdani, eds.), July
9–11, 1993, Washington, D.C., pp. 122–127.

[9] D. Heckerman and J. S. Breese: A new look at causal independence. In: Proc. Tenth
Conference on Uncertainty in AI (R. Lopez de Mantaras and D. Poole, eds.), July
29–31, 1994, Seattle, WA, pp. 286–292.

[10] J. H̊astad: Tensor Rank is NP-complete. J. Algorithms 11 (1990), 644–654.
[11] F.V. Jensen: Bayesian Networks and Decision Graphs. (Statistics for Engineering and

Information Science.) Springer–Verlag, New York –Berlin –Heidelberg 2001.
[12] F.V. Jensen, S. L. Lauritzen, and K.G. Olesen: Bayesian updating in recursive graph-

ical models by local computation. Computat. Statist. Quart. 4 (1990), 269–282.
[13] S. L. Lauritzen: Graphical Models. Clarendon Press, Oxford 1996.
[14] K.G. Olesen, U. Kjærulff, F. Jensen, F.V. Jensen, B. Falck, S. Andreassen and S. K.

Andersen: A MUNIN network for the median nerve – a case study on loops. Appl.
Artif. Intell., Special issue: Towards Causal AI Models in Practice 3 (1989), 384–403.

[15] E. Polak: Computational Methods in Optimization: A Unified Approach. Academic
Press, New York 1971.

[16] M. Takikawa and B. D’Ambrosio: Multiplicative factorization of noisy-max. In: Proc.
Fifteenth Conference on Uncertainty in AI (K. B. Laskey and H. Prade, eds.), July
30 –August 1, 1999, Stockholm, pp. 622–630.

[17] J. Vomlel: Exploiting functional dependence in Bayesian network inference. In: Proc.
Eighteenth Conference on Uncertainty in AI (UAI) – Edmonton (Canada), Morgan
Kaufmann, San Francisco 2002, pp. 528–535.

[18] N. L. Zhang and D. Poole: Exploiting causal independence in Bayesian network infer-
ence. J. Artif. Intell. Res. 5 (1996), 301–328.

Petr Savicky, Institute of Computer Science – Academy of Sciences of the Czech Repub-
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