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STABILITY ESTIMATING
IN OPTIMAL STOPPING PROBLEM

Elena Zaitseva

We consider the optimal stopping problem for a discrete-time Markov process on a
Borel state space X. It is supposed that an unknown transition probability p(·|x), x ∈ X,
is approximated by the transition probability ep(·|x), x ∈ X, and the stopping rule eτ∗,
optimal for ep, is applied to the process governed by p. We found an upper bound for the
difference between the total expected cost, resulting when applying eτ∗, and the minimal
total expected cost. The bound given is a constant times supx∈X ‖p(·|x) − ep(·|x)‖, where
‖ · ‖ is the total variation norm.
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1. SETTING OF THE PROBLEM AND MOTIVATION

In this paper we find an upper bound for stability index (or index of robustness
in other terminology) in the problem of optimal stopping of a general discrete-time
Markov process. In the setting under consideration the transition probability of the
Markov process is assumed to be known only approximately. We follow the approach
and the definition of stability index proposed in [8]. Upper bounds for such index
were obtained for various classes of Markov control processes, for instance, in [7–
11, 15, 16]. A different view on stability estimating of control processes is given,
for example, in [4, 5, 18]. For the optimal stopping and for the related total cost
minimization, the stability problem has been still open.

Let us consider the classical optimal stopping problem for a discrete-time Markov
process on a general Borel state space (X,BX). The process {xt, t = 0, 1, 2, . . .} is
specified by a given initial state x0 ∈ X and a transition probability p(B|x), B ∈ BX ,
x ∈ X. We denote by Px0 the corresponding probability on the product space
Ω = X∞, and by Tx0 , the set of all stopping times (with respect to the natural
filtration of this space), such that Px0(τ <∞) = 1 for each τ ∈ Tx0 .

Two measurable bounded functions c0 : X → [0,∞), r : X → [0,∞) are given,
and

c := sup
x∈X

c0(x), r := sup
x∈X

r(x). (1.1)
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Any τ ∈ Tx0 defines a stopping rule of the process {xt} in such a way that
the process is stopped at τ with the revenue equal to r(xτ ) and with the costs
c0(x0), c0(x1), . . . , c0(xτ−1) paid for the extension of observations till the moment τ
(i. e. for “nonstopping” until τ).

To deal with a minimization problem, we define the cost of the stopping rule
τ ∈ Tx0 (with the initial state x0) as follows:

W (x0, τ) := Ex0

[
τ−1∑

t=0

c0(xt)− r(xτ )

]
, (1.2)

where Ex0 is the expectation with respect to Px0 , and, by the convention,∑−1

t=0
[ ] := 0.

The value function of the optimal stopping problem is

W∗(x0) := inf
τ∈Tx0

W (x0, τ), x0 ∈ X. (1.3)

Since τ ≡ 0 is one of the admissible stopping rules, we get that W∗(x0) ∈ [−r, 0],
x0 ∈ X. Under assumptions made in Section 2, there exists an optimal stopping rule
τ∗, that is

W (x0, τ∗) = W∗(x0), x0 ∈ X.
We consider the following way to approximate the rule τ∗ in the situation when

we know the transition probability p(B|x) only approximately. It is supposed that
instead of an unknown “real” transition probability p(B|x) we deal with some its
approximation p̃(B|x), B ∈ BX , x ∈ X, obtained, for example, from statistical
estimations or (and) theoretical simplifications. Also, assuming the existence of
an optimal stopping rule τ̃∗ for the Markov process {x̃t, t = 0, 1, 2, . . .} with the
transition probability p̃(B|x) and the initial state x0, we admit that one can find
τ̃∗ in order to try the latter as a reasonable approximation to the unknown “real”
optimal rule τ∗.

Similarly to (1.2) and (1.3) the stopping rule τ̃∗ is defined as follows:

W̃ (x0, τ̃∗) = W̃∗(x0) = inf
τ∈eTx0

W̃ (x0, τ), (1.4)

where

W̃ (x0, τ) := Ẽx0

[
τ−1∑

t=0

c0(x̃t)− r(x̃τ )

]
, (1.5)

and Ẽx0 is the expectation with respect to the probability P̃x0 corresponding to
the process {x̃t, t = 0, 1, 2, . . .}, and T̃x0 is the set of all stopping times satisfying:
P̃x0(τ <∞) = 1.

Having in the mind the application of the “approximating” stopping rule τ̃∗ to
the real process {xt, t = 0, 1, 2, . . .} (given by p), we will measure the quality of
approximation by the following stability index [8]:

∆(x0) := W (x0, τ̃∗)−W (x0, τ∗) ≥ 0, (1.6)
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where W is the expected cost defined in (1.2). This index evaluates the excess of
the cost over the minimal value W (x0, τ∗) when applying the stopping rule τ̃∗.

Remark 1.1. Under the assumptions of Section 2, we will get that τ̃∗ ∈ Tx0 , that
makes consistent the definition in (1.6).

The aim of the paper is to find an inequality (an upper bound of the stability
index) of the form:

∆(x0) ≤ K d(p, p̃), (1.7)

where K is an explicitly calculated constant that does not depend on x0 ∈ X,

d(p, p̃) = sup
x∈X
‖p(·| x)− p̃(·| x)‖, (1.8)

and ‖ · ‖ is the total variation norm.
To prove (1.7) (Theorem 2.1 in Section 2), we use the geometric ergodicity of

the processes {xt}, {x̃t} and the conditions that guarantee the existence of optimal
stopping rules τ∗ and τ̃∗ that order to stop at first passage time to certain subsets
S and, respectively, S̃ of X.

In Section 3 we give simple examples of “unstable” optimal stopping models,
in which the stability index remains to be greater than a positive constant while
the measure of disturbance d(p, p̃) approaches zero. Also we apply the inequality
of Theorem 2.1 (Section 2) to evaluate the stability in the asset selling problem.
For this problem, in particular, we compare the cases of independent and weakly
dependent offers.

2. ASSUMPTIONS AND RESULT

It is well-known (see, for instance, [20], Chapt. II, § 14) that the value functions in
(1.3) and (1.4) satisfy the following optimality equations:

W∗(x) = min
{
−r(x), c0(x) +

∫

X

W∗(y) p(dy|x)
}
, (2.1)

W̃∗(x) = min
{
−r(x), c0(x) +

∫

X

W̃∗(y)p̃(dy|x)
}
, (2.2)

x ∈ X.
We define the Borel subsets S and S̃ of X (possibly empty) by setting:

S :=
{
x ∈ X : W∗(x) = −r(x)

}
, (2.3)

S̃ :=
{
x ∈ X : W̃∗(x) = −r(x)

}
. (2.4)

Also we set
τ∗ := a moment of the first entrance (2.5)

of a process in the set S,
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τ̃∗ := a moment of the first entrance (2.6)
of a process in the set S̃.

Relationship (2.5) defines two stopping times, respectively, for the process {xt}
and {x̃t}, when it is applied to these processes. Similarly, (2.6) determines two
corresponding stopping times. To this end, for example, the statement τ∗ ∈ Tx0

means the application of (2.5) to {xt} with Px0(τ <∞) = 1.
It is known, and it will be seen later in this paper, that if τ∗ ∈ Tx0 , τ̃∗ ∈ T̃x0 ,

then these stopping times generate optimal stopping rules (for the processes {xt}
and {x̃t}, respectively).

Assumption 1.

(a) The processes {xt} and {x̃t} have stationary probabilities π and, respec-
tively, π̃.

(b) There exist constants δ, 0 ≤ δ < 1, and M <∞ such that

sup
x∈X
‖pt(·|x)− π(·)‖ ≤Mδt, t = 1, 2, . . . , (2.7)

sup
x∈X
‖p̃t(·|x)− π̃(·)‖ ≤Mδt, t = 1, 2, . . . , (2.8)

where pt and p̃t are the t-step transition probabilities for the processes {xt}
and {x̃t}, respectively, and

‖µ− ν‖ := 2 sup
B∈BX

|µ(B)− ν(B)|

≡ sup
ϕ:‖ϕ‖∞≤1

∣∣∣∣
∫

X

ϕ(x) dµ−
∫

X

ϕ(x) dν
∣∣∣∣

(2.9)

is the total variation norm.

Assumption 2. There exists α > 0 such that

π(S) ≥ α, π(S̃) ≥ α, π̃(S) ≥ α, π̃(S̃) ≥ α. (2.10)

Lemma 2.1. Under Assumptions 1 and 2, τ∗ ∈ Tx0 , τ̃∗ ∈ T̃x0 and τ̃∗ ∈ Tx0 for
all x0 ∈ X and, consequently, the stopping rules τ∗, τ̃∗ in (2.5), (2.6) are optimal
respectively for the processes {xt} and {x̃t}.

Remark 2.1.

(a) The stability index in (1.6) is well defined due to Lemma 2.1.

(b) Example 4 of Section 3 shows that in general the stopping rules defined in
(2.5), (2.6) may be not optimal.

(c) See, for instance, [14] for conditions sufficient for (2.7), (2.8) which are given
in terms of stochastic Lyapunov functions.
We are ready to formulate the main result of the paper.
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Theorem 2.1. Let Assumptions 1 and 2 hold. Then

sup
x0∈X

∆(x0) ≤ K sup
x∈X
‖p(·|x)− p̃(·|x)‖, (2.11)

where

K =
2
3

max{c, r}
α

N(N + 1), (2.12)

and

N =

[
log

(
α

2M

)

log(δ)

]
+ 2. (2.13)

Remark 2.2.

(a) The constants c and r in (2.12) come from (1.1). In (2.13) the symbol [·]
denotes the integer part. If δ = 0, then in (2.12) N := 2 .

(b) In some specific cases the stability bound (2.11) might be inaccurate. For
instance, in Example 1 of Section 3 ∆(x0) = o(ε) as ε → 0 (see Remark 3.2),
where ε := supx∈X ‖p(·|x)− p̃(·| x)‖. It even could be that ∆(x0) = 0 in spite
of ε > 0. On the other hand, it is easy to give simple examples of chains
on two-point state space X (satisfying the hypothesis of Theorem 2.1), such
that the stability index ∆(x0) on the left-side of (2.11) is of order ε times a
constant.

3. EXAMPLES

3.1. Example 1. Stability estimating in the asset selling problem

In the recent years new important applications related to this old problem have
appeared. These are, for example, the models of optimization of an option exercising
times (see, for instance, [1, 21]) and of optimization of a risk process stopping to
recalculate premiums ([13, 17]).

In the classical version of the problem the state space is a bounded interval [0, L],
an initial state is x̃0 = 0, while the Markov process {x̃t, t = 1, 2, . . .} is a sequence
of i.i.d. random variables taking values in [0, L] with a given distribution function
F̃ . These random variables represent offers received from period to period for the
asset on sale. If an owner of the asset accepts at time t the offer x̃t, then he/she gets
a revenue equal to r(x̃t) = x̃t; otherwise the constant holding cost c0 > 0 is paid for
expecting the next offer. It is assumed that the past offers can be accepted at any
future period and that

Ex̃1 > c0. (3.1)

As is well-known (see, for instance, [2], Sec. 6.3), the optimal stopping rule τ̃∗ is
determined by (2.6) with S̃ = [x̃∗, L] in (2.4). Here the number x̃∗ < L can be found
(for the case of a continuous F̃ ) as a solution to the equation

x̃∗ = x̃∗F̃ (x̃∗) +
∫ L

ex∗
y dF̃ (y)− c0. (3.2)



Stability Estimating in Optimal Stopping Problem 405

Now we suppose that the hypothesis that the offers are independent is only a
theoretical simplification of a “real” situation, in which successive offers x1, x2, . . .
form a Markov process on the state space X = [0, L]. We let that this process
satisfies Assumptions 1 and 2. The two last inequalities in (2.10) turn into the
following ones:

F̃ (S) := P (x̃1 ∈ S) ≥ α, 1− F̃ (x̃∗) ≥ α. (3.3)

Note that for c0 > 0 equation (3.2) provides that 1− F̃ (x̃∗) > 0.
Conditions (2.8) trivially hold if we choose π̃ = F̃ and δ = 0. Consequently, we

can apply Theorem 2.1, and, taking into account that by (3.1) max(c, r) ≤ L, we
get that

∆(0) ≤ 4L
3α
N(N + 1) sup

x∈[0,L]

sup
B∈B[0,L]

|p(B|x)− F̃ (B)|, (3.4)

where p(B|x) is the transition probability of the “real offer process” {xt, t ≥ 1}.

Remark 3.1. The right-hand side of (3.4) is “small” when {xt, t ≥ 1} consists
of some sort “weakly dependent” random variables with the marginal distributions
close to F̃ .

Let us consider two particular cases. First is the simplest one, when the random
variables x1, x2, . . . are independent and identically distributed with a distribution
function F , for which F̃ serves as a known approximation. Assuming that Ex1 > c0
and that F is continuous, we see again that the optimal stopping rule τ∗ is determined
by (2.3), (2.5) with S = [x∗, L], x∗ < L, and

x∗ = x∗F (x∗) +
∫ L

x∗

y dF (y)− c0. (3.5)

Assumption 1 holds trivially with δ = 0. Further, assuming, for instance, that

[γ, L] ⊂ supp(F ) and [γ, L] ⊂ supp(F̃ ) for some γ < L,

we can choose a suitable α > 0 to satisfy Assumption 2.
Hence the inequality (3.4) turns into the following one:

∆(0) ≤ 8L
α

sup
B∈B[0,L]

|F (B)− F̃ (B)|. (3.6)

Remark 3.2. The direct calculations show that if F = U [0, 1], F̃ = U [0, 1 − ε],
then the right-hand side of (3.6) is 8

α ε while ∆(0) = o(ε) as ε→ 0. The arguments
given in Remark 2.2 (b) of Section 2 refer to this particular case.

To consider the second particular case, let ξ1, ξ2, . . . be i.i.d. random variables
with the density f satisfying on [0, L] the Lipschitz condition with the constant ρ.
Let x̃t := ξt, t ≥ 1, while the “real” process is defined by the equations: xt =
εxt−1 + (1 − ε)ξt, t ≥ 1, where ε ∈ (0, 1/2). It is easy to check that the ergodicity
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condition (2.7) is fulfilled with δ = ε, M = 4L2ρ and π being the distribution of the
random variable (1 − ε) ∑∞

k=1 ε
k−1ξk. For c0 > 0 Assumption 2 is satisfied under

certain mild restrictions on f .
Denoting by F̃ the distribution function of x̃1 = ξ1, we have:

sup
x∈[0,L]

‖p(·| x)− F̃ (·)‖ = sup
x∈[0,L]

∫ L

0

∣∣∣∣
1

1− εf
(
y − εx
1− ε

)
− f(y)

∣∣∣∣ dy ≤ 2ε(1 + 3ρL2).

Thus inequality (3.4) provides the following stability bound: ∆(0) ≤ Kε, where K
is an explicitly calculated constant.

3.2. Counterexamples

Example 2. In Example 1 with L = 1, let ε ∈ (0, 1) be a small enough number,
x̃1, x̃2, . . . be i.i.d. random variables with the distribution F̃ = U [0, 1] (the uni-
form distribution on the segment [0, 1]) and, finally, let x1, x2, . . . be i.i.d. random
variables with the distribution F = U [0, 1− ε+ ε2]. We choose also c0 = ε2/2.

The solution to equation (3.2) is x̃∗ = 1− ε. Thus the optimal for {x̃t} stopping
rule τ̃∗ is to stop at first instant t when x̃t ≥ 1− ε. Applying this rule to the “real”
process {xt}, we find that (see (1.2))

W (0, τ̃∗) = E0[c0τ̃∗ − xeτ∗ ]→ −
1
2

(3.7)

as ε→ 0.
This is due to the fact that for x0 = 0, under the probability P0, the random

variable τ̃∗ is geometric with the parameter equal to ε2 = 2c0.
On the other hand, resolving equation (3.5) we get x∗ = 1 − δ − √2c0

√
1− δ,

δ = ε− ε2, or 1− δ − x∗ = ε
√

1− ε+ ε2 ∼ ε =
√

2c0 as ε→ 0.
Hence the stopping time τ∗ has the geometric distribution with parameter of

order
√

2c0 (under the probability P0). Taking into account the expression for W
given in (3.7), we find that W (0, τ∗) → −1 as ε → 0, and the stability index ∆(0)
in (1.6) is greater than 1

3 for all small enough ε > 0. On the other hand,

sup
x∈[0,1]

‖p(·|x)− p̃(·|x)‖ = 2 sup
B∈B[0,1]

|F (B)− F̃ (B)| → 0 as ε→ 0.

Note that Assumption 2 does not hold (while Assumption 1 does). In this coun-
terexample we have chosen the cost function c0 dependent on “the proximity pa-
rameter” ε. Actually, this changes the original problem setting. The next example
is free from such shortcoming.

Example 3. Let X = {0, 1, 2, 3}, x0 = 0 be the initial state, ε ∈ (0, 1) and the
transition probability of the Markov chain {xt} be defined as follows: p(1|0) =
p(2|1) = 1, p(2|2) = 1− ε, p(3|2) = ε, p(3|3) = 1. The “approximating chain” {x̃t}
is defined by the transition probabilities:

p̃(1|0) = p̃(2|1) = p̃(2|2) = p̃(3|3) = 1.
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The functions c0 and r are such that c0(1) = 1, c0(x) = 0 for x 6= 1 and r(3) = 3,
r(x) = 0 for x 6= 3.

Under the transition probabilities p the state “3” is accessible from the state “0”
for a finite, with probability 1, time. Moreover, on the “route” from “0” to “3” the
“penalized” state “1” is visited only once.

Since c0(1) = 1 < r(3) = 3, the optimal rule τ∗ is to stop at “3” with the optimal
(minimal) cost W∗(0) = W (0, τ∗) = 1− 3 = −2. On the other hand, as far as “3” is
not attainable from “0” under the transition probability p̃, and r(x) = 0 for x 6= 3,
the rule τ̃∗, optimal for the approximating model, is to stop at t = 0.

Consequently, W (0, τ̃∗) = 0, and ∆(0) = W (0, τ̃∗) − W∗(0) = 2 for all ε > 0.
Along with this we see that

max
x∈X
‖p(·|x)− p̃(·|x)‖ → 0 as ε→ 0.

Note that in this example the “approximating chain” contains two recurrent classes
and condition (2.8) is violated.

Example 4. Modifying Example 2, let c0 = 0, x1, x2 . . . be i.i.d. random variables
with the uniform distribution F = U [0, 1] and, for every ε ∈ (0, 1), x̃1, x̃2, . . . be
i.i.d. random variables distributed as follows (with the distribution function denoted
by F̃ ):

x̃1 =

{
x1 with probability 1− ε,
1 with probability ε.

We fix the initial states x0 = x̃0 = 0. It is easy to see that W∗(x) = W̃∗(x) = −1,
x ∈ X = [0, 1], and in (2.3), (2.4) S = S̃ = {1} (since r(x) = x). Thus (2.5),
(2.6) define the stopping rules τ∗ and τ̃∗ that order to stop on the first passage
at the point 1. Surely, τ̃∗ ∈ T̃0, and it is optimal for {x̃t} (W̃ (0, τ̃∗) = −1). On
the other hand, τ∗, τ̃∗ 6∈ T0 (and they take the value +∞ with P0-probability 1),
W (0, τ∗) = 0 6= W∗(0) (supposing that in (1.2) r(xτ ) := 0 if τ =∞), and there does
not exist an optimal stopping rule for the process {xt}. However, for every δ > 0
there is a rule τδ such that W (0, τδ) = −1 + δ. In spite of the fact that

sup
B∈B[0,1]

|F (B)− F̃ (B)| → 0 as ε→ 0,

the usage of τ̃∗ as “an approximation” to τδ is senseless, since W (0, τ̃∗) = 0.

Remark 3.3. To prove the stability inequality in the next section, we reduce the
optimal stopping problem to the problem of minimization of the total expected
cost (nonnegative one) for a “derived” Markov control process. Example 4 is given
to show that, in general, such reduction does not provide an equivalent problem.
Indeed, as it is easily seen from the definitions given in Section 4, the stationary
policy

f(x) =
{

to stop if x = 1,
to continue the process if x 6= 1
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is optimal for the “derived” Markov control process which corresponds to {xt}. But
for the original stopping rule optimization problem this policy is the worst one.

4. THE PROOFS

In order to prove Theorem 2.1, we first pass to an equivalent (under Assumptions 1
and 2) problem of minimization of the total expected (nonnegative) cost for the
Markov control process {zt} described below. Such a transformation is standard.
On the other side, the key step in the proof of inequality (2.11) is showing certain
contractive properties of the operators defined below in (4.14), (4.15).

The control process {zt} is specified by (Z,A,A(z), q, c), where:

• Z := X ∪ {∞} is the state space, and “∞” denotes an absorbing state where
the process “lives” once it has been stopped;

• A = {1, 2} is the action space, the action “1” prescribes to stop the process,
while the action “2” orders to continue observations of the trajectory of {xt};

• A(z) ≡ A is the set of admissible actions at a state z ∈ Z;

• q(D|z, a), D ∈ BZ , z ∈ Z, a ∈ A(z), is the transition probability of the control
process {zt} defined as follows:

q(D|z, 2) :=





p(D′|z) if z ∈ X,
1 if z =∞ and ∞ ∈ D,
0 if z =∞ and ∞ 6∈ D,

(4.1)

where D′ = D\{∞};

q(D|z, 1) :=
{

1 if ∞ ∈ D, z ∈ Z,
0 if ∞ 6∈ D, z ∈ Z; (4.2)

• c : Z ×A→ [0,∞) is the one-stage cost function defined as:

c(z, 2) :=
{
c0(z) if z ∈ X,
0 if z =∞; (4.3)

c(z, 1) :=
{
r − r(z) if z ∈ X,
0 if z =∞ (4.4)

(the number r was defined in (1.1)).

This definition means that z-component of the trajectory {(zt, at), t = 0, 1, 2, . . .}
coincides with {xt, t = 0, 1, 2, . . .} (with the payments c0(xt)) until the first appli-
cation of the “stopping action” a = 1. At such instant τ the nonnegative “payoff”
r − r(xτ ) is made, and the process moves to the absorbing state “∞”.



Stability Estimating in Optimal Stopping Problem 409

Similarly, replacing p by p̃, we define the “approximating” Markov control pro-
cess (Z,A,A(z), q̃, c). The trajectories of this process we denote by {(z̃t, ãt), t =
0, 1, 2, . . .}.

For a given initial state z ∈ Z and a control policy π (see, e. g. [3, 6, 12] for the
definition), for the both processes, the total expected costs are defined as follows:

V (z, π) := Eπz

[ ∞∑

t=0

c(zt, at)

]
, (4.5)

Ṽ (z, π) := Ẽπz

[ ∞∑

t=0

c(z̃t, ãt)

]
. (4.6)

The corresponding value functions

V∗(z) := inf
π∈u

V (z, π), Ṽ∗(z) := inf
π∈u

Ṽ (z, π), z ∈ Z,

are finite and nonnegative. Here u denotes the class of all control policies.
Since c ≥ 0, the following optimality equation takes place (see, for instance,

[2, 19]):

V∗(z) = inf
a∈A

{
c(z, a) +

∫

Z

V∗(y) q(dy|z, a)
}
, z ∈ Z, (4.7)

or, in view of (4.1), (4.4), and, because of V∗(∞) = 0,

V∗(x) = min
{
r − r(x), c0(x) +

∫

X

V∗(y) p(dy|x)
}

(4.8)

for z = x ∈ X.
Comparing (2.1) with (4.8), we see that V∗(x) = W∗(x) + r, x ∈ X, and that the

stationary policy

f∗(z) :=





1 if z ∈ S
2 if z ∈ X\S
1 if z =∞

(4.9)

minimizes the right-hand side of (4.7). Therefore (see [19]), the policy f∗ is V -optimal,
i. e. V (z, f∗) = V∗(z), z ∈ Z. Meanwhile, if we choose z = x0 ∈ X, then the policy
f∗ in (4.9) generates the stopping rule τ∗ defined in (2.5). Moreover, (2.7) and (2.10)
ensure that the stopping time τ∗ is Px0 -almost surely finite, i. e. τ∗ ∈ Tx0 (see, e. g.
[14], § 16.2). Collating (4.5) with (1.2), we get that

V (x0, f∗) = Ef∗x0

[
τ∗−1∑

t=0

c0(xt) + r − r(xτ∗)
]

= r +W (x0, τ∗). (4.10)

Therefore the stopping rule given in (2.5) is W -optimal, that proves the correspond-
ing part of Lemma 2.1.
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Similarly we define the stationary policy f̃∗ for the process {z̃t} (see (2.4) for the
definition of the set S̃):

f̃∗(z) :=





1 if z ∈ S̃
2 if z ∈ X\S̃
1 if z =∞.

(4.11)

Using the same arguments we find that the policy f̃∗ is Ṽ -optimal, and that the
stopping rule, defined in (2.6), is generated by f̃∗. Moreover, in view of Assump-
tions 1 and 2, τ̃∗ ∈ T̃x0 , and, by the equality analogous to (4.10) (see (1.5)), the
stopping rule τ̃∗ is W̃ -optimal.

On the other hand, by (2.7) and (2.10) we obtain that τ̃∗ ∈ Tx0 (that completes
the p r o o f o f L e m m a 2.1), and, in view of (4.3), (4.4) and (4.5), we get that

V (x0, f̃∗) = E ef∗x0

[eτ∗−1∑

t=0

c0(xt) + r − r(xeτ∗)
]
. (4.12)

Comparing (4.10), (4.12) with (1.2) and (1.6) we conclude that the stability index
in (1.6) can be rewritten in the following way:

∆(x0) = V (x0, f̃∗)− V (x0, f∗) ≥ 0, (4.13)

where f∗, f̃∗ are the stationary policies that are optimal, respectively, for the control
processes {zt} and {z̃t}.

Remark 4.1. Returning to Example 4 in the previous section, we can see that, for
the corresponding to this example “derived” control process, V∗ ≡ 0, and, since in
(4.9) S = {1}, the application of the policy f∗ means never stop (with probability 1).
However, by (4.5) and (4.8), V (z, f∗) = 0 = V∗(z), i. e. the policy f∗ is V -optimal
for the control process {zt}. As we had noted early, in this example the stopping
rule, defined by f∗, is the worst one among all possible stopping rules.

Let B be the Banach space of all bounded measurable functions u : Z → R
such that u(∞) = 0. The space B is equipped with the uniform norm ‖u‖ :=
supz∈Z |u(z)| ≡ supx∈X |u(x)|. Let F = {f∗, f̃∗}, where the stationary policies f∗
and f̃∗ were defined in (4.9) and (4.11). For every f ∈ F we define the operators
Tf : B → B, T̃f : B → B by the formulas:

Tfu(z) := c(z, f(z)) +
∫

Z

u(y) q(dy|f(z)), (4.14)

T̃fu(z) := c(z, f(z)) +
∫

Z

u(y)q̃(dy|f(z)), (4.15)

where u ∈ B, z ∈ Z. Since c(∞, a) = 0 and q({∞}|∞, a) = 1, a ∈ A, the operators
Tf and T̃f map B into B.
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Lemma 4.1. Let Assumptions 1 and 2 hold, and N be the integer from (2.13).
Then for every f ∈ F ,

‖TNf u− TNf v‖ ≤
(

1− 3
4
α

)
‖u− v‖ (4.16)

and

‖T̃Nf u− T̃Nf v‖ ≤
(

1− 3
4
α

)
‖u− v‖ (4.17)

for all u, v ∈ B. The constant α > 0 was specified in Assumption 2.

P r o o f . Let us prove, for example, (4.16) for f = f̃∗. We denote by {zt} the
Markov process on Z with the transition probability q(·|z) ≡ q(·|z, f̃∗(z)), z ∈ Z,
where q(·|z, a) was defined in (4.1) and (4.2), and f̃∗ is the stationary policy from
(4.11). By the Markov property and by (4.14), we get that for every integer n ≥ 1

Tnf u(z) = Rf,nc(z, f(z)) +
∫

Z

u(y) qn
(
dy|z, f(z)

)
, (4.18)

z ∈ Z, u ∈ B, where the function Rf,nc does not involve u, and qn is the n-step
transition probability of {zt}.

Since u(∞) = v(∞) = 0, we can write:

‖Tnf u− Tnf v‖ = sup
x∈X

∣∣∣∣
∫

Z

u(y) qn
(
dy|x, f(x)

)
−

∫

Z

v(y) qn
(
dy|x, f(x)

)∣∣∣∣

= sup
x∈X

∣∣∣∣
∫

X

[
u(y)− v(y)

]
qn

(
dy|x, f(x)

)∣∣∣∣

≤ ‖u− v‖ sup
x∈X

qn
(
X|x, f(x)

)
.

(4.19)

Choosing N as in (2.13), we have for m = N − 1 that Mδm ≤ α
2 , and, in view of

(2.7) and (2.9),
sup
x∈X

sup
B∈BX

∣∣pm(B|x)− π(B)
∣∣ ≤ α

4
. (4.20)

By (4.20) and (2.10), for all x ∈ X,

pm(S̃|x) ≥ 3α
4
, (4.21)

where the set S̃ was defined in (2.4) and was used in (4.11) to define the policy
f = f̃∗.

For every x ∈ S̃ f(x) = 1 and, by (4.2), q
(
{∞}|x, 1

)
= 1. Therefore, we have

the following inequality (recall that “∞” is an absorbing state):

qm+1
(
{∞}|x, f(x)

)
≥ pm(S̃|x), x ∈ X.
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Thus from (4.21) it follows that

qN
(
{∞}|x, f(x)

)
≥ 3α

4
, x ∈ X.

Finally, qN
(
X|x, f(x)

)
= 1 − qN

(
{∞}|x, f(x)

)
, and it is enough to take n = N in

(4.19). ¤

P r o o f o f T h e o r e m 2.1. It is easy to show (see [8]) that for the stability
index given in (4.13) the following inequality holds true:

∆(x0) ≤ 2 max
f∈F

∣∣∣V (x0, f)− Ṽ (x0, f)
∣∣∣ , (4.22)

where V and Ṽ are defined, respectively, in (4.5) and (4.6).
Note that for every z ∈ Z

0 ≤ V (z, f∗) = V∗(z) ≤ r, (4.23)

0 ≤ Ṽ (z, f̃∗) = Ṽ∗(z) ≤ r,
because of V (z, τ0) = Ṽ (z, τ0) = r− r(x0) for the stopping rule τ0 ≡ 0. We will also
show that V (·, f̃∗), Ṽ (·, f∗) ∈ B. By (4.3) and (4.4), 0 ≤ c(z, a) ≤ max{c, r}. In
view of (4.6) the boundedness, for example, of the function Ṽ (·, f∗) would follow if

sup
x∈X

Ẽxτ∗(x) <∞, (4.24)

where τ∗(x) := inf{t ≥ 0 : x̃t ∈ S} given that x̃0 = x. Under ergodicity conditions
(2.8) and (2.10), inequality (4.24) follows from Theorem 16.2.2 in [14], § 16.2.

For any stationary policy f (particularly, for f ∈ F) the expected total costs
satisfy the equations (see, e. g. [3], § 9.4):

Vf = TfVf , Ṽf = T̃f Ṽf , (4.25)

where Vf (·) := V (·, f), Ṽf (·) := Ṽ (·, f), and the operators Tf , T̃f were defined in
(4.14), (4.15). Let us fix, for example, f = f∗ in the term under the sign of maximum
in (4.22). By (4.25),

∣∣V (x0, f∗)− Ṽ (x0, f∗)
∣∣ =

∣∣T̃Nf∗ Ṽf∗(x0)− TNf∗Vf∗(x0)
∣∣

≤
∣∣T̃Nf∗ Ṽf∗(x0)− T̃Nf∗Vf∗(x0)

∣∣ +
∣∣TNf∗Vf∗(x0)− T̃Nf∗Vf∗(x0)

∣∣.
(4.26)

Simplifying the notation, we write:

f := f∗, V := Vf , Ṽ := Ṽf , T := Tf , T̃ := T̃f .

Then from (4.26),

‖V − Ṽ ‖ ≤ ‖T̃N Ṽ − T̃NV ‖+ ‖TNV − T̃NV ‖,
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and, by (4.17),

‖V − Ṽ ‖ ≤ 4
3α
‖TNV − T̃NV ‖. (4.27)

Applying the induction and the Fubini Theorem, we obtain from (4.14) and (4.15)
the following specification of (4.18):

TNV (z) = c
(
z, f(z)

)
+

∫

Z

c
(
y, f(y)

)
q
(
dy|z, f(z)

)
+

∫

Z

c
(
y, f(y)

)
q2

(
dy|z, f(z)

)

+ · · ·+
∫

Z

c
(
y, f(y)

)
qN−1

(
dy|z, f(z)

)
+

∫

Z

V (y) qN
(
dy|z, f(z)

)
, z ∈ Z,

and a similar expression for T̃NV .
Thus, from (4.23) and the fact that 0 ≤ c

(
z, f(z)

)
≤ c̃ := max{c, r}, it follows

that

‖TNV − T̃NV ‖ ≤ c̃
N∑

n=1

sup
z∈Z

sup
ϕ∈B1

∣∣∣∣
∫

Z

ϕ(y) [qn (dy|z, f(z))− q̃n (dy|z, f(z))]
∣∣∣∣ , (4.28)

where B1 := {ϕ ∈ B : 0 ≤ ϕ ≤ 1}.
Denoting by Qn(f) the nth summand on the right-hand side of (4.28), we will

verify by induction that for n = 1, 2, . . .

Qn(f) ≤ n sup
z∈Z

sup
ϕ∈B1

∣∣∣∣
∫

Z

ϕ(y) q(dy|z, f(z))−
∫

Z

ϕ(y)q̃(dy|z, f(z))
∣∣∣∣

≤ n

2
sup
x∈X
‖p(·|x)− p̃(·|x)‖.

(4.29)

The last inequality in (4.29) is true because of the following facts:

1) ϕ(∞) = 0, so we can replace
∫
Z

by
∫
X

.

2) For any a ∈ A q({∞}|∞, a) = q̃({∞}|∞, a) = 1, hence instead of supz∈Z we
can use supx∈X .

3) For every x ∈ X if f(x) = 1, then q({∞}|x, f(x)) = q̃({∞}|x, f(x)) = 1, and
for such x the difference between the integrals in the intermediate term in
(4.29) is equal to zero.

4) By (4.1) (and, analogously, for q̃)

q(D|x, 2) = p(D|x), q̃(D|x, 2) = p̃(D|x)

for every x ∈ X, D ∈ BX .

5) From (2.9) it easily follows that

sup
0≤ϕ≤1

∣∣∣∣
∫

X

ϕ(x) dµ−
∫

X

ϕ(x) dν
∣∣∣∣ =

1
2
‖µ− ν‖.
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For n = 1 the first inequality in (4.29) holds trivially. Suppose that it is true for
some n ≥ 1. Then for any z ∈ Z, ϕ ∈ B1 we have:

δn =
∣∣∣∣
∫

Z

ϕ(y) qn+1 (dy|z, f(z))−
∫

Z

ϕ(y)q̃n+1 (dy|z, f(z))
∣∣∣∣

=
∣∣∣∣
∫

Z

ϕ1(u) qn(du|z, f(z))−
∫

Z

ϕ2(u)q̃n(du|z, f(z))
∣∣∣∣ ,

where
ϕ1(u) =

∫

Z

ϕ(y) q(dy|u, f(u)),

ϕ2(u) =
∫

Z

ϕ(y)q̃(dy|u, f(u)), u ∈ Z,

are the functions which belong to B1 (due to the above point 2). Thus,

δn ≤
∫

Z

|ϕ1(u)− ϕ2(u)|qn(du|z, f(z))

+
∣∣∣∣
∫

Z

ϕ2(u) [qn (du|z, f(z))− q̃n (du|z, f(z))]
∣∣∣∣

≤ sup
u∈Z

∣∣∣∣
∫

Z

ϕ(y) [q (dy|u, f(u))− q̃ (dy|u, f(u))]
∣∣∣∣

+ n sup
z∈Z

sup
ϕ∈B1

∣∣∣∣
∫

Z

ϕ(y) [q (dy|z, f(z))− q̃ (dy|z, f(z))]
∣∣∣∣ .

From this inequality we obtain the inequality in (4.29) for n+ 1.
Combining the inequalities in (4.26), (4.27), (4.28) and (4.29), we obtain the

following bound:

|V (x0, f∗)− Ṽ (x0, f∗)| ≤
c̃

3α
N(N + 1) sup

x∈X
‖p(·|x)− p̃(·|x)‖.

By similar arguments we get the same upper bound for |V (x0, f̃∗) − Ṽ (x0, f̃∗)|.
Taking into account (4.22) we finally obtain the desired stability inequality (2.11).¤
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[11] E. I. Gordienko, E. Lemus-Rodŕıguez and R. Montes-de-Oca: Discounted cost opti-
mality problem: stability with respect to weak metrics. In press in: Math. Methhods
Oper. Res. (2008).

[12] O. Hernández-Lerma and J. B. Lassere: Discrete-Time Markov Control Processes:
Basic Optimality Criteria. Springer-Verlag, N.Y. 1996.

[13] U. Jensen: An optimal stopping problem in risk theory. Scand. Actuarial J.2 (1997),
149–159.

[14] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability. Springer-
Verlag, London 1993.

[15] R. Montes-de-Oca and F. Salem-Silva: Estimates for perturbations of an average
Markov decision process with a minimal state and upper bounded by stochastically
ordered Markov chains. Kybernetika 41 (2005), 757–772.

[16] R. Montes-de-Oca, A. Sakhanenko, and F. Salem-Silva: Estimate for perturbations of
general discounted Markov control chains. Appl. Math. 30 (2003), 287–304.

[17] B. K. Muciek: Optimal stopping of a risk process: model with interest rates. J. Appl.
Prob. 39 (2002), 261–270.

[18] A. Müller: How does the value function of a Markov decision process depend on the
transition probabilities? Math. Oper. Res. 22 (1997), 872–885.

[19] M. Schäl: Conditions for optimality in dynamic programming and for the limit of
n-stage optimal policies to be optimal. Z. Wahrsch. verw. Gebiete 32 (1975), 179–196.

[20] A. N. Shiryaev: Optimal Stopping Rules. Springer-Verlag, New York 1978.
[21] A. N. Shiryaev: Essential of Stochastic Finance. Facts, Models, Theory. World Scien-

tific Publishing Co., Inc., River Edge, N.J. 1999.

Elena Zaitseva, Universidad Autónoma Metropolitana — Unidad Iztapalapa, Av. San

Rafael Atlixco # 186, Colonia Vicentina, México, D.F. 09340. México.
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