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SYNCHRONIZATION WITH ERROR BOUND
OF NON–IDENTICAL FORCED OSCILLATORS

Jiangen Wang, Jianping Cai, Mihua Ma and Jiuchao Feng

Synchronization with error bound of two non-identical forced oscillators is studied in the
paper. By introducing two auxiliary autonomous systems, differential inequality technique
and active control technique are used to deal with the synchronization of two non-identical
forced oscillators with parameter mismatch in external harmonic excitations. Numerical
simulations show the effectiveness of the proposed method.

Keywords: chaotic synchronization with error bound, non-identical forced oscillator, differ-
ential inequality, active control
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1. INTRODUCTION

Chaotic synchronization have been extensively studied since the pioneer work of
Pecora and Carroll [10] due to its theoretical challenge and its great potential appli-
cations in secure communications, chemical and biomedical sciences, and other fields.
A wide variety of approaches have been proposed for the synchronization of chaotic
systems such as linear and nonlinear feedback controls, most of which synchronize
two identical systems or non-identical autonomous systems [2, 7, 11, 13, 14, 15].
However, more and more non-autonomous systems have been found in engineering
and physics [3, 4] therefore much attention should be paid to the synchronization
of two non-identical non-autonomous chaotic systems. But it is obvious that the
synchronization of two non-identical non-autonomous systems is rather difficult.

Although active control technique sometimes results in relatively complex con-
trollers, it is often used to synchronize two chaotic systems [1, 5, 6, 8, 9, 12]. Syn-
chronization between single and double wells Duffing–Van der Pol oscillators was
discussed in [15]. However, the control functions adopted there contain external
harmonic excitations, which are inconvenient in practice.

In this paper, synchronization between two non-identical forced oscillators with
parameter mismatch in the external harmonic excitations is investigated. Parameter
mismatch here implies that amplitude, frequency, and phase can be all or partly
different in the external harmonic excitations, which is different from [16], where
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robust synchronization of chaotic horizontal platform systems with phase difference
was studied.

By differential inequality technique, two auxiliary autonomous systems are con-
structed such that the trajectories of the error system of two non-identical oscillators
are bounded in between the trajectories of the two auxiliary autonomous systems,
so that the synchronization with a prescribed error bound can be achieved.

2. SYNCHRONIZATION OF NON-IDENTICAL FORCED OSCILLATORS

Consider the master-slave synchronization scheme of two non-identical forced oscil-
lators with parameters mismatch in the external harmonic excitations:

Master system: ẍ + F (x, ẋ)ẋ + G(x) = F0 cos(ω0t + ϕ0), (1)
Slave system: ÿ + f(y, ẏ)ẏ + g(y) = F1 cos(ω1t + ϕ1) + u(t), (2)

where · represents the derivative with respect to time t, f(y, ẏ), F (x, ẋ), g(y) and
G(x) are different functions, F0 cos(ω0t + ϕ0) and F1 cos(ω1t + ϕ1) are different
external harmonic excitations, and u(t) is a controller to be designed below.

Letting e = y − x, one obtains the error dynamical system

ë + f(e + x, ė + ẋ)(ė + ẋ) + g(e + x)− F (x, ẋ)ẋ−G(x)
= F1 cos(ω1t + ϕ1)− F0 cos(ω0t + ϕ0) + u(t). (3)

Definition. (Wu, Cai and Wang [16]) For a given real constant h > 0, the syn-
chronization scheme (1) – (2) is called synchronization with error bound h if for any
finite initial conditions of systems (1) and (2), there exist T > 0 such that |e(t)| < h
for all t > T .

If h is sufficiently small, then such a synchronization scheme is referred to as
nearly complete synchronization.

By active control technique, we choose the controller u(t) as

u(t) = −k1ė− k2e + v(x, ẋ, e, ė),

where v(x, ẋ, e, ė) is a nonlinear function, and k1, k2 are coupling coefficients, all to
be determined later.

Properly choosing controller u(t), the error dynamical system (3) is equivalent to
the following equation:

ë + (a + k1)ė + (b + k2) e = F1 cos(ω1t + ϕ1)− F0 cos(ω0t + ϕ0), (4)

where a, b are constants. Obviously, the inequalities −F1 −F0 ≤ F1 cos(ω1t + ϕ1)−
F0 cos(ω0t+ϕ0) ≤ F1 +F0 always hold for all t. Taking M = F1 +F0, two auxiliary
autonomous systems can be constructed as follows:

ë1 + (a + k1)ė + (b + k2) e−M = 0, (5)
ë2 + (a + k1)ė + (b + k2) e + M = 0. (6)

In order to show that the synchronization scheme (1) – (2) can achieve synchro-
nization with error bound h, we first give the following lemma.
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Lemma 1. Consider the following two non-autonomous systems:
{

z̈1 = f1(t, z1, ż1),
z1(t0) = z10, ż1(t0) = ż10,

(7)

and
{

z̈2 = f2(t, z2, ż2),
z2(t0) = z20, ż2(t0) = ż20,

(8)

where · represents the derivative with respect to time t. If

f1(t, z1, ż1) ≤ f2(t, z2, ż2), ∀ t > t0, (9)
z10 ≤ z20, ż10 ≤ ż20, (10)

then the solutions of systems (7) and (8), z1(t), z2(t), satisfy the inequality z1(t) ≤
z2(t) for all t ≥ t0.

P r o o f . Letting ϕ(t) = z2(t)−z1(t), we have ϕ̈(t) = z̈2(t)− z̈1(t) = f2(t, z2, ż2)−
f1(t, z1, ż1) ≥ 0, for t ≥ t0. Hence, ϕ̇(t) is a monotone non-decreasing function for
all t ≥ t0. By inequalities (10), we get ϕ̇(t0) = ż20 − ż10 ≥ 0. Then, the inequalities
ϕ̇(t) ≥ ϕ̇(t0) ≥ 0 hold for all t ≥ t0. Similarly, ϕ(t) ≥ ϕ(t0) ≥ 0 hold for all t ≥ t0,
i.e. z1(t) ≤ z2(t) holds for all t ≥ t0.

By Lemma 1, if e(t), e1(t), e2(t) are respectively the solutions of Eqs. (4), (5)
and (6) satisfying the same initial conditions, then the inequalities

e2(t) ≤ e(t) ≤ e1(t) (11)

hold for all t > t0. After transformation

ε1 = e1 −
M

b + k2
, ε2 = e2 +

M

b + k2
, (12)

Eqs. (5) and (6) become

ε̈1 + (a + k1)ε̇1 + (b + k2)ε1 = 0, (13)
ε̈2 + (a + k1)ε̇2 + (b + k2)ε2 = 0. (14)

If k1, k2 are selected to satisfy a + k1 > 0, b + k2 > 0, then the eigenvalues of the
corresponding characteristic equations of Eqs. (5) and (6) are all complex conjugates
with negative real parts. Therefore, Eqs. (13) and (14) are asymptotically stable at
the origin, that is,

lim
t→+∞

ε1(t) = lim
t→+∞

ε2(t) = 0.

According to Eq. (12), we obtain

lim
t→+∞

e1(t) =
M

b + k2
, lim

t→+∞
e2(t) = − M

b + k2
.
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Hence, through inequalities (11), we have

− M

b + k2
≤ lim

t→+∞
e(t) ≤ M

b + k2
.

For a prescribed error bound h > 0, if we choose k1 and k2 satisfying

k1 > −a, k2 >
M

h
− b, (15)

then M
b+k2

< h, which implies that there exits T > 0 such that

|e(t)| < h, ∀ t > T. (16)

Therefore, the scheme (1) – (2) achieves synchronization with error bound h.
If there only exist amplitude and phase mismatches in the external harmonic

excitations, i.e., ω1 = ω0 = ω, then by the differential mean-value theorem, we have

−|F1−F0|−F0|ϕ1−ϕ0| ≤ F1 cos(ωt+ϕ1)−F0 cos(ωt+ϕ0) ≤ |F1−F0|+F0|ϕ1−ϕ0|.

As a result, M in (12) becomes |F1 − F0|+ F0|ϕ1 − ϕ0|. Especially, if ω1 = ω0 = ω
and ϕ1 = ϕ0, then M = |F1 − F0|. Similarly, if ω1 = ω0 = ω and F1 = F0, then
M = F0|ϕ1 − ϕ0|. ¤

3. EXAMPLES

Two coupled systems consisting of a chaotic oscillator and a periodic oscillator with
parameter mismatch in the external harmonic excitations are adopted to verify the
effectiveness of the technique developed above.

Example 1. Consider the following master-slave synchronization scheme:

Master system: ẍ + x− µ(1− x2)ẋ = F0 cos(ω0t + ϕ0), (17)
Slave system: ÿ + cẏ + dy = F1 cos(ω1t + ϕ1) + u(t). (18)

For µ = 5, F0 = 5, ω0 = 2.465 and ϕ0 = 0, the forced Van der Pol oscillator exhibits
a chaotic behavior as shown in Figure 1 with initial conditions x(0) = 2, ẋ(0) = 2.
The slave system exits a stable limit cycle when c > 0 and u(t) = 0 (see Ref. [17]
for details). For c = 1, d = 6.0, F1 = 5.2, ω1 = 2.5, ϕ1 = 0.1 and u(t) = 0, the limit
cycle of the slave system is shown in Figure 2.

The error system of synchronization scheme (17) – (18) is

ë + cė + de + (d− 1)x + (c + µ)ẋ− µx2ẋ

= F1 cos(ω1t + ϕ1)− F0 cos(ω0t + ϕ0) + u(t). (19)

If the controller is selected as

u(t) = −k1ė− k2e + (d− 1)x + (c + µ)ẋ− µx2ẋ, (20)
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Fig. 1. For µ = 5, F0 = 5, ω0 = 2.465 and ϕ0 = 0, the forced Van der Pol oscillator (17)

exhibits a chaotic behavior with initial conditions x(0) = 2, ẋ(0) = 2.
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Fig. 2. For c = 1, d = 6.0, F1 = 5.2, ω1 = 2.5, ϕ1 = 0.1 and u(t) = 0,

the slave system (18) has a stable limit cycle.

then the error system (19) becomes

ë + (k1 + c)ė + (k2 + d) e = F1 cos(ω1t + ϕ1)− F0 cos(ω0t + ϕ0).

In view of equation (4), we have a = c, b = d. If k1, k2 are chosen to satisfy

k1 > −c, k2 >
M

h
− d, (21)

then inequality (16) holds. Hence, the master-slave scheme (17) – (18) will achieve
synchronization with error bound h.

If the parameter values of the master-slave synchronization scheme(17) – (18) are
µ = 5, F0 = 5, ω0 = 2.465, ϕ0 = 0, and c = 1, d = 6.0, F1 = 5.2, ω1 = 2.5, ϕ1 =
0.1 and for a prescribed error bound h = 0.1, then we get M = 10.2, k1 > −1,
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Fig. 3. Time history of the error system (19) with h = 0.1 and
u(t) = −97e + 5x + 6ẋ− 5x2ẋ when amplitude, frequency and phase

are mismatched at the same time.
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Fig. 4. Time history of the error system (19) with ω1 = ω0 = 2.465, h = 0.01

and u(t) = −65e + 5x + 6ẋ− 5x2ẋ.

k2 > 96. For k1 = 0 and k2 = 97, u(t) = −97e + 5x + 6ẋ − 5x2ẋ can be obtained
from Eq. (20). The master-slave scheme (17) – (18) can achieve synchronization with
error bound h = 0.1 as shown in Figure 3 with initial conditions x(0) = 2, ẋ(0) = 2
and y(0) = 0, ẏ(0) = 0, respectively. For a smaller error bound h = 0.01, we get
k1 > −1, k2 > 1014 from inequalities (21), where the other parameter values are
the same as in Figure 3. Obviously, k2 will become larger if the error bound h
becomes smaller. In other words, synchronization scheme (17) – (18) with smaller
error bound h = 0.01 needs a larger energy input, which means synchronization cost
will increase.

If ω1 = ω0 = 2.465, h = 0.01 and the other parameter values are the same as
in Figure 3, then M = |F1 − F0| + F0|ϕ1 − ϕ0| = 0.7, k1 > −1, k2 > 64. For
k1 = 0, k2 = 65, u(t) = −65e + 5x + 6ẋ − 5x2ẋ can be obtained from Eq. (20).
Achievement of synchronization scheme (17) – (18) with error bound h = 0.01 is
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Fig. 5. Time history of the error system (19) with ω1 = ω0 = 2.465,

ϕ1 = ϕ0 = 0, h = 0.01 and u(t) = −15e + 5x + 6ẋ− 5x2ẋ.

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

e

Fig. 6. Time history of the error system (19) with ω1 = ω0 = 2.465,

F1 = F0 = 5, h = 0.01 , and u(t) = −45e + 5x + 6ẋ− 5x2ẋ.

shown in Figure 4 with the same initial conditions as in Figure 3. Here, we note
that k2 = 65 < 1014, which means synchronization in the case of ω1 = ω0 can
achieve more easily than that of ω1 6= ω0 under the same error bound h = 0.01.

Especially, if ω1 = ω0 = 2.465, ϕ1 = ϕ0 = 0, h = 0.01 and the other parameter
values are the same as in Figure 3, then M = |F1 − F0| = 0.2, k1 > −1, k2 > 14.
For k1 = 0, k2 = 15, u(t) = −15e + 5x + 6ẋ− 5x2ẋ can be obtained from Eq. (20).
Achievement of synchronization scheme (17) – (18) with error bound h = 0.01 is
shown in Figure 5 with the same initial conditions as in Figure 3.

If ω1 = ω0 = 2.465, F1 = F0 = 5, h = 0.01, and the other parameter values are
the same as in Figure 3, then M = F0|ϕ1 − ϕ0| = 0.5, k1 > −1, k2 > 44. For
k1 = 0, k2 = 45, u(t) = −45e + 5x + 6ẋ− 5x2ẋ can be obtained from Eq. (16). The
master-slave scheme (17) – (18) achieves synchronization with error bound h = 0.01
as shown in Figure 6 with the same initial conditions as in Figure 3.

In Example 1, if we put the controller to the periodic system, then the periodic
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Fig. 7. For c = 1, d = 6.0, F0 = 28.7, ω0 = 0.9 and ϕ = 0.1,

the master system (22) has a stable limit cycle.
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Fig. 8. For λ = 0.2, α = 1.0, γ = 1.0, F1 = 28.5, ω1 = 0.86, ϕ1 = 0 and u(t) = 0,
the forced Duffing oscillator (23) exhibits a chaotic behavior

with initial conditions y(0) = 0, ẏ(0) = 0.

system can be controlled to be a chaotic system. In the same way, when we put the
controller to the chaotic system, the chaotic system can also be controlled to be a
periodic system, as shown in the following example.

Example 2. Consider the following master-slave synchronization scheme:

Master system: ẍ + cẋ + dx = F0 cos(ω0t + ϕ0), (22)
Slave system: ÿ + λẏ + αy + γy3 = F1 cos(ω1t + ϕ1) + u(t). (23)

For c = 1, d = 6.0, F0 = 28.7, ω0 = 0.9 and ϕ = 0.1, the master system has a
stable limit cycle, which is shown in Figure 7. For λ = 0.2, α = 1.0, γ = 1.0, F1 =
28.5, ω1 = 0.86, ϕ1 = 0 and u(t) = 0, the forced Duffing oscillator exhibits a chaotic
behavior, as shown in Figure 8 with initial conditions y(0) = 0, ẏ(0) = 0 .
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Fig. 9. Time history of the error system (24) with h = 0.1 and
u(t) = −572e + e3 − 5x− 0.8ẋ + x3 + 3x2e + 3xe2 when amplitude,

frequency and phase are mismatched at the same time.
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Fig. 10. Time history of the error system (24) with ω1 = ω0 = 0.9,

h = 0.01, u(t) = −307e + e3 − 5x− 0.8ẋ + x3 + 3x2e + 3xe2.

The error system of synchronization scheme (22) – (23) is

ë + λė + αe + γe3 + (α− d)x + (λ− c)ẋ + γx3 + 3x2γe + 3xγe2

= F1 cos(ω1t + ϕ1)− F0 cos(ω0t + ϕ0) + u(t). (24)

If we select the controller as

u(t) = −k1ė− k2e + γe3 + (α−d)x + (λ−c)ẋ + γx3 + 3x2γe + 3xγe2, (25)

then the error system (24) is equivalent to the following equation:

ë + (k1 + λ)ė + (k2 + α)e = F1 cos(ω1t + ϕ1)− F0 cos(ω0t + ϕ0).

Similarly, if k1 and k2 are chosen to satisfy

k1 > −λ, k2 >
M

h
− α, (26)
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Fig. 11. Time history of the error system (24) with ω1 = ω0 = 0.9,

ϕ1 = ϕ0 = 0.1, h = 0.01 and u(t) = −20e + ė3 − 5x− 0.8ẋ + x3 + 3x2ė + 3xe2.
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Fig. 12. Time history of the error system (24) with ω1 = ω0 = 0.9, F1 = F0 = 28.7,

h = 0.01, and u(t) = −287e + e3 − 5x− 0.8ẋ + x3 + 3x2e + 3xe2.

then the master-slave scheme (22) – (23) achieves synchronization with error bound h.
If the parameter values of the master-slave synchronization scheme (22) – (23)

are c = 1, d = 6.0, F0 = 28.7, ω0 = 0.9 and ϕ = 0.1, λ = 0.2, α = 1.0, γ = 1.0,
F1 = 28.5, ω1 = 0.86, ϕ1 = 0 and for a prescribed error bound h = 0.1, then
M = 57.2, k1 > −0.2, k2 > 571. For k1 = 0, k2 = 572, u(t) = −572e + e3 − 5x −
0.8ẋ+x3+3x2e+3xe2 can be got from Eq. (25). The master-slave scheme (22) – (23)
can achieve synchronization with error bound h = 0.1 as shown in Figure 9 with
initial conditions x(0) = 2, ẋ(0) = 2 and y(0) = 0, ẏ(0) = 0, respectively. For a
smaller error bound h = 0.01, we can get k1 > −0.2, k2 > 5719 from inequalities
(26), where the other parameter values are the same as in Figure 9. It can also
be seen that when amplitude, frequency and phase are mismatched at the same
time, synchronization of two non-identical forced oscillators with error bound needs
a larger energy input.

If ω1 = ω0 = 0.9, h = 0.01 and the other parameter values are the same as in
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Figure 9, then M = |F1 − F0| + F0|ϕ1 − ϕ0| = 3.07, k1 > −0.2, k2 > 306. For
k1 = 0, k2 = 307, u(t) = −307e + e3 − 5x − 0.8ẋ − 5x − 0.8ẋ + x3 + 3x2e + 3xe2

can be obtained from Eq. (25). Achievement of synchronization scheme (22) – (23)
with error bound h = 0.01 is shown in Figure 10 with the same initial conditions
as in Figure 9. From k2 = 307 < 5719, it can also be seen that the scheme with
ω1 = ω0 can achieve synchronization with error bound h = 0.01 more easily than
that of ω1 6= ω0.

Especially, if ω1 = ω0 = 0.9, ϕ1 = ϕ0 = 0.1, h = 0.01 and the other parameter
values are the same as in Figure 9, then M = |F1 − F0| = 0.2, k1 > −0.2, k2 > 19.
For k1 = 0, k2 = 20, u(t) = −20e+ ė3−5x−0.8ẋ+x3 +3x2ė+3xe2 can be obtained
from Eq. (25). The master-slave scheme (22) – (23) achieves synchronization with
error bound h = 0.01 as shown in Figure 11 with the same initial conditions as in
Figure 9.

If ω1 = ω0 = 0.9, F1 = F0 = 28.7, h = 0.01, and the other parameter values are
the same as in Figure 9, then M = F0|ϕ1 − ϕ0| = 2.87, k1 > −0.2, k2 > 286. For
k1 = 0, k2 = 287, u(t) = −287e + e3 − 5x− 0.8ẋ + x3 + 3x2e + 3xe2 can be obtained
from Eq. (25). The master-slave scheme (22) – (23) achieves synchronization with
error bound h = 0.01 as shown in Figure 12 with the same initial conditions as in
Figure 9.

4. CONCLUSIONS

We have presented a synchronization scheme of two non-identical forced oscillators
by differential inequality technique and active control technique. Numerical simu-
lations have shown that this method can control a chaotic system to be a periodic
system or a periodic system to be a chaotic system. The rest work can be done
to reduce the complexity of the controller, for instance through the combination
of the differential inequality technique developed in this paper with other control
techniques rather than the active control technique.
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