Mathematic Slovaca

Milan Medved'
Generic bifurcations of second order ordinary differential equations on differentiable manifolds

Mathematica Slovaca, Vol. 27 (1977), No. 1, 9--24

Persistent URL: http://dml.cz/dmlcz/136133

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

GENERIC BIFURCATIONS OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS ON DIFFERENTIABLE MANIFOLDS

MILAN MEDVEĎ

1. Introduction. This paper describes generic properties of parametrized second order ordinary differential equations on differentiable manifolds. Generic properties of such equations without parameters have been considered by S. Shahshahani [8]. The problem of generic properties of 1-parametric dynamical systems is studied e.g. in [3], [6], [7], [9].

Let A be a compact C^{r} manifold and let X be a compact C^{r+1} manifold. Let $T(X)$ denotes the tangent bundle of X. Let $K_{i}(i=1,2, \ldots)$ be compact subsets of $T(X)$ such that $K_{i} \subset K_{i+1}$ for all i and $\bigcup_{i=1}^{\infty} K_{i}=T(X)$. Denote by $\Gamma_{1}(T X)$ the set of C^{r} vectorfields on $T(X)$. Since $T(X)$ is not compact, we endow the set $\Gamma_{1}(T X)$ with the Whitney C^{r} topology. A basis for this topology is given by the sets of the form

$$
B(\zeta, \delta)=\left\{\eta \in \Gamma_{1}^{r}(T X) \mid d_{r}\left(\zeta / K_{i} \text {-int } K_{i-1}, \eta / K_{i} \text {-int } K_{i-1}\right)<\delta_{i} \text { fol all } i\right\},
$$

where $\zeta \in \Gamma_{\mathrm{i}}(T X), \delta: T(X) \rightarrow R$ is a continuous positive-valued function with $\delta_{i}=\min \delta$ on $K_{i}-K_{i-1}$. The set $\Gamma_{1}(T X)$ has the Baire property, i.e. a countable intersection of open and dense sets is dense.

Let $\tau_{X}: T(X) \rightarrow X$ be the natural projection. A vectorfield $\zeta \in \Gamma_{\mathrm{l}}(T X)$ is called a second order ordinary differential equation on X if $D \tau_{x}{ }^{\circ} \zeta=1_{\tau(X)}$, where $D \tau_{x}$ denotes the differential of the mapping τ_{X} and $1_{T(X)}$ is the identical mapping of $T(X)$ onto $T(X)$. Denote the set of second order ordinary differential equations on X by $\Gamma_{\mathrm{H}}(T X)$.

Denote by $H_{1}^{\prime}(A, T X)$ the set of parametrized C^{r} vectorfields on $T(X)$ with the parameter set A (cf. $[1, \S 21])$. Similarly to the case of the set $\Gamma_{1}(T X)$, we can endow the set $H_{\mathrm{i}}^{\prime}(A, T X)$ with the Whitney C^{r} topology. Then the set $H_{\mathrm{I}}^{\prime}(A, T X)$ has the Baire property.

A parametrized vectorfield $\xi \in H_{1}(A, T X)$ is called a C^{r} parametrized second order ordinary differential equation on X if $\xi_{a} \in \Gamma_{\mathrm{H}}(T X)$ for all $a \in A$, where $\xi_{a}(x)=\xi(a, x)$ for $x \in T(X)$. Denote the set of C^{r} parametrized second order ordinary differential equations by $H^{r}(A, X)$. This set is a closed subspace of
$H_{1}(A, T X)$ and we can endow it with the topology induced by the topology on $H_{1}^{\prime}(A, T X)$. Then the set $H^{\prime}(A, X)$ has the Baire property.

A property P of a parametrized second order ordinary differential equation is called generic in $H^{\prime}(A, X)$ if the set $\left\{\xi \in H^{\top}(A, X) \mid P\right\}$ contains a residual set, i.e. a set which is a countable intersection of open and dense sets in $H^{r}(A, X)$.

We shall suppose that $\operatorname{dim} A=1$ and $\operatorname{dim} X=n$. Let $\xi \in H^{\prime}(A, X)$ and let $(U, \alpha),(V, \beta)$ be charts on A and X, respectively. Then from the property $D \tau_{\dot{x} \circ} \xi_{a}=i d_{T(X)}$ for every $a \in A$ it follows that the local representative ξ^{\prime} of ξ with respect to these charts has the form

$$
\begin{equation*}
\xi^{\prime}(\mu, x, v)=\left(x, v, v, \xi_{\alpha \beta}(\mu, x, v)\right), \tag{1}
\end{equation*}
$$

where

$$
\mu \in \alpha(U), \quad(x, v) \in \beta(V) \times R^{n}, \quad \xi_{\alpha \beta}: \alpha(U) \times \beta(V) \times R^{n} \rightarrow R^{n} \text { is } C^{r} .
$$

2. The case of a zero eigenvalue. Let $(T X)_{0}$ denote the image of the zero section in $T(X)$, i.e. $(T X)_{0}=\left\{0_{x} \in T(X) \mid x \in X\right\}$, where 0_{x} denotes the zero of $T_{x} X$. The set $(T X)_{o}$ is a closed submanifold of $T(X)$, which is diffeomorphic to X. Let $T(T X)_{0}$ be the tangent bundle of $(T X)_{0}$ and let $\left(T^{2} X\right)_{0}=$ $=\left\{0[x] \in T(T X)_{0} \mid x \in(T X)_{0}\right\}$, whee $0[x]$ denotes the zero of $T_{x}(T X)_{0}$. Since ($T X)_{0}$ is a closed submanifold of $T(X)$ of dimension $n,\left(T^{2} X\right)_{0}$ is a closed submanifold of $T^{2}(X)=T(T(X))$ of dimension n. Since X is compact, $(T X)_{o}$ and $\left(T^{2} X\right)_{\mathrm{o}}$ are compact too.

Let $\tau_{X}: T(X) \rightarrow X, \tau_{T(X)}: T^{2}(X) \rightarrow T(X)$ be the natural projections. Denote by $Y\left(T^{2} X\right)$ the set of $z \in T^{2}(X)$ with the following properties

$$
\begin{align*}
& \tau_{T(X)}(z) \in(T X)_{0} \tag{1}\\
& D \tau_{X}(z) \in(T X)_{0} \tag{2}
\end{align*}
$$

This set is well defined and the definition is independent of coordinates. It is easy to see that if (U, α) is a chart on X and $\left(T_{\alpha}^{2}, T_{\alpha}, \tau_{x}^{-1}(U)\right)$ is a natural C^{r} vector bundle chart on $T^{2}(X)$ associated with the chart (U, α), then for $z \in \tau_{x}^{-1}(U)$, $T_{a}^{2}(z)=(x, 0,0, y)$, where $x \in R^{n}, y \in R^{n}$. Now, it is clear that the set $Y\left(T^{2} X\right)$ is $a C^{r}$ submanifold of $T^{2}(X)$ isomorphic to $T(X)$. Therefore we can identify them. Since $(T X)_{0}$ is isomorphic to X, we can identify them too. Therefore if $\xi \in H^{\prime}(A, X)$, we can consider the mapping $r(\xi)=\xi / A \times(T X)_{0}$: $A \times(T X)_{0} \rightarrow Y\left(T^{2} X\right)$ as a mapping $r(\xi): A \times X \rightarrow T(X)$.

Now, define the set $H_{0}^{\prime}(A, X)=\left\{\xi \in H^{\top}(A, X) \mid r(\xi) \cap(T X)_{0}\right\}$, where $r(\xi) \bar{\cap}(T X)_{o}$ means that the mapping $r(\xi)$ transversally intersects the submanifold ($T X)_{0}$ in $T(X)$ (cf. [1, § 17]).

Lemma 1. The set $H_{0}^{r}(A, X)$ is open and dense in $H^{r}(A, X)$.
Proof. Define the mapping $\varrho: H^{r}(A, X) \rightarrow C^{r}(A \times X, T(X)), \varrho(\xi)=r(\xi)$ for $\xi \in H^{r}(A, X)$. This mapping is a C^{r} representation (For the definition of C^{r} representation see $[1, \S 18])$. Since $A \times X$ is a compact manifold and $(T X)_{0}$ is a closed submanifold of $T(X)$, then by [1, Theorem 18.2], the set $H_{0}^{\prime}(A, X)$ is open in $H^{\prime}(A, X)$. The density follows from [1, Theorem 19.1]. The assumptions of this theorem can be verified similarly to the proof of [6, Lemma 1].

Denote $C(\xi)=\left\{(a, x) \in A \times T(X) \mid \xi(a, x) \in\left(T^{2} X\right)_{0}\right.$. From (1) it follows that $C(\xi) \subset A \times(T X)_{0}$.

Proposition 1. If $\xi \in H_{0}^{r}(A, X)$, then $C(\xi)$ is a compact 1-dimensional C^{r} submanifold of $A \times T(X)$.

Proof. If $\xi \in H_{0}^{\prime}(A, X)$, then $r(\xi) \bar{\cap}(T X)_{0}$ and by [1, Corollary 17.2] $C(\xi)=[r(\xi)]^{-1}(T X)_{o}$ is a closed 1 -dimensional C^{r} submanifold of $A \times(T X)_{o}$ and since $A \times(T X)_{0}$ is compact, the set $C(\xi)$ is compact too.

Let $h_{0}: X \rightarrow T(X)$ be the zero section. This mapping is a diffeomorphism of X onto $(T X)_{0}$. Denote $K(\xi)=R(C(\xi))$, where $R=i d_{\mathrm{A}} \times h_{0}^{-1}$, id d_{A} is the identical mapping of A onto A. By Proposition 1, the set $K(\xi)$ is a compact 1-dimensional submanifold of $A \times X$ (We have identified ($T X)_{0}$ and X).

Since the mapping $r(\xi): A \times X \rightarrow T(X)$ for $\xi \in H^{\prime}(A, X)$ is a parametrized vectorfield, then if $(a, x) \in K(\xi)$, we can define the Hessian $\dot{r}(\xi)_{a}(x): T_{x} X \rightarrow T_{x} X$ at x of the vectorfield $r(\xi)_{a}$, where $r(\xi)_{a}(y)=r(\xi)(a, y)$ for $y \in X$ (cf. [1, §22]).

Denote $X_{1}(\xi)=\left\{(a, x) \in K(\xi) \mid \dot{r}(x)_{a}(x)\right.$ is not surjective $\}$. Let $Z_{1}(\xi)=R^{-1}\left(X_{1}(\xi)\right) \subset A \times T(X)$. By almost the same procedure used in [6], it is possible to prove the following proposition.

Proposition 2. There exists an open, dense subset $H_{01}^{r}(A, X)$ in $H_{0}^{r}(A, X)$ such that for every $\xi \in H_{01}^{r}(A, X)$
(1) $Z_{1}(\xi)$ is finite
(2) If $\left(a_{0}, x_{0}\right) \in Z_{1}(\xi)$, then there exists a chart (W, h) on $A \times T(X)$ at $\left(a_{0}, x_{0}\right)$ such that
$h(C(\xi))=\left\{\left(\mu, y_{1}, \ldots, y_{n}, 0, \ldots, 0\right) \in R^{2 n+1} \mid \mu=\varphi_{0}\left(y_{n}\right), y_{i}=\varphi_{i}\left(y_{n}\right), i=1,2, \ldots\right.$, $\left.n-1, y_{n} \in J\right\}$,
where $\varphi_{i} \in C^{r}$ on J for $i=0,1, \ldots, n-1, J$ is an open interval, $0 \in J$, $\frac{d^{2} \varphi_{0}(0)}{d y_{n}^{2}} \neq 0$.
(3) The principal part ξ_{h} of the local representative of ξ has the form
(*) $\xi_{h}\left(\mu, x_{1}, y, v\right)=\left(v, \alpha \mu+\beta x_{1}^{2}+\omega\left(\mu, x_{1}, y, v\right), B y+\chi\left(\mu, x_{1}, y, v\right)\right)$, where B is a regular $(n-1) \times(n-1)$ matrix, $y=\left(x_{2}, x_{3}, \ldots, x_{n}\right), \omega, \chi \in C^{r}$, $\chi(0,0, \ldots, 0)=0, \omega\left(\mu, x_{1}, 0,0\right)$ contains only $\mu^{2}, \mu x_{1}$ and terms of higher order than $2, \alpha \neq 0$.

Lemma 2. Let $C, D \in A(n, n), C=\left(c_{i j}\right), D=\left(d_{i j}\right)$. Let $c_{11}=0$ for $i=1,2, \ldots, n$ and

$$
\operatorname{det}\left[\begin{array}{c}
c_{12}, \ldots, c_{1 n}, d_{11} \\
\ldots \ldots \ldots . \\
c_{n 2}, \ldots, c_{n n}, d_{n 1}
\end{array}\right] \neq 0
$$

Then the matrix

$$
H=\left[\begin{array}{cc}
0_{n} & E_{n} \\
C & D
\end{array}\right]
$$

has one eigenvalue $\lambda=0$ of multiplicite $1 .\left(0_{n}\right.$ is the zero matrix in $A(n, n)$ and E_{n} is the unit matrix in $A(n, n), A(i, j)$ denotes the set of all $i \times j$ matrices $)$.

Proof. From the form of the matrix H it follows that $\lambda=0$ is the eigenvalue of H. Denote by $P_{O}(\lambda)$ the characteristic polynomial of a matrix Q. Then $P_{H}(\lambda)=\lambda P_{H_{1}}(\lambda)$, where

$$
H_{1}=\left[\begin{array}{cc}
0_{n, n-1} & E_{n-1} \\
C_{1} & D
\end{array}\right], \quad C_{1}=\left[\begin{array}{c}
c_{12}, \ldots, c_{1 n} \\
\ldots \ldots . . \\
c_{n 2}, \ldots, c_{n n}
\end{array}\right]
$$

$0_{n, n-1}$ is the zero matrix in $A(n, n-1)$. Since

$$
P_{H_{1}}(0)=\operatorname{det}\left[\begin{array}{c}
c_{12}, \ldots, c_{1 n}, d_{11} \\
\ldots \ldots \ldots . \\
c_{n 2}, \ldots, c_{n n}, d_{n 1}
\end{array}\right] \neq 0,
$$

then $P_{H_{1}}(\lambda)$ has no eigenvalue equal to zero and therefore $\lambda=0$ is an eigenvalue of H of multiplicity 1.

Let $\xi \in H_{01}^{r}\left(A^{\prime}, X\right),\left(a_{0}, x_{0}\right) \in Z_{1}(\xi)$ and let $\left(U \times V, h_{1} \times h_{2}\right)$ be a chart at $\left(a_{0}, x_{0}\right)$ such that $\xi_{h}\left(\varphi_{0}\left(x_{1}\right), x_{1}, \varphi_{2}\left(x_{1}\right), ., \varphi_{n}\left(x_{1}\right), 0, \ldots, 0\right)=0$ for $x_{1} \in J, \varphi_{i} \in C^{r}$ on J, where $\xi_{h}\left(\mu, x_{1}, y, v\right)$ has the form (*). Then $H\left(x_{1}\right)=D_{2} \xi_{h}\left(\varphi_{0}\left(x_{1}\right), x_{1}, \varphi_{2}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{1}\right), 0\right.$, $\ldots, 0)=\left[\begin{array}{cc}0_{n} & E_{n} \\ C\left(x_{1}\right) & D\left(x_{1}\right)\end{array}\right]$, where $D_{2} \xi_{n}$ denotes the derivative in $\left(x_{1}, y, v\right)$ and

$$
C\left(x_{1}\right)=\left[\begin{array}{cc}
2 \beta x_{1}+o\left(x_{1}\right), & 0, \ldots, 0 \\
0 & B \\
0 & B
\end{array}\right], \quad D\left(x_{1}\right)=\frac{\partial \xi_{h}}{\partial v}\left(\varphi_{0}\left(x_{1}, \ldots, 0\right) .\right.
$$

Denote by $H_{02}(A, X)$ the set of all $\xi \in H_{01}(A, X)$ such that $d_{11}(0) \neq 0$, where $D\left(x_{1}\right)=\left(d_{i j}\left(x_{1}\right)\right)$. It is easy to prove that this set is open and dense in $H_{01}^{r}(A, X)$. If $\xi \in H_{02}^{r}(A, X)$, then by Lemma 2 the matrix $H(0)$ has the eigenvalue $\lambda=0$ of multiplicity 1. From the form of $H\left(x_{1}\right)$ it follows that $\operatorname{det} H\left(x_{1}\right)=$
$\left(2 \beta x_{1}+o\left(x_{1}\right)\right)$ det B. From this and from the continuous dependence of eigenvalues of $H\left(x_{1}\right)$ on x_{1} it follows that the eigenvalues of $H\left(x_{1}\right)$ do not change the sign of its real parts in J for J sufficiently small except of one eigenvalue.

We have proved the following theorem.
Theorem 1. Assume $r \geqq 3$. Then there is an open, dense subset $H_{02}(A, X)$ in $H^{r}(A, X)$ with the following properties:
(1) For $\xi \in H_{12}^{r}(A, X), C(\xi)$ is a compact 1-dimensional C^{r} submanifold of $A \times T(X)$.
(2) For a fixed $a \in A$, the set $\{x \in T(X) \mid(a, x) \in C(\xi)\}$ consists of isolated points.
(3) The set $Z_{1}(\xi)$ is finite.
(4) For every $\left(a_{0}, x_{0}\right) \in C(\xi)-Z_{1}(\xi)$ there is a chart (W, h) on $A \times T(X)$ at $\left(a_{0}, x_{0}\right), h(W)=U \times V, h\left(a_{0}, x_{0}\right)=(0,0)$ and a C^{r} mapping $\varphi: U \rightarrow V$ such that $h(C(\xi) \cap W)=\{(\mu, z) \mid z=\varphi(\mu), \mu \in U\}$.
(5) For every $\left(a_{0}, x_{10}\right) \in Z_{1}(\xi)$, there is a chart $\left(U \times V, h_{1} \times h_{2}\right)$ on $A \times T(X)$ at $\left(a_{0}, x_{0}\right), h\left(a_{0}, x_{0}\right)=(0,0)$ such that
(a) $\left(h_{1} \times h_{2}\right)(C(\xi) \cap W)=\left\{\left(\mu, y_{1}, y_{2}, \ldots, y_{n}, 0, \ldots, 0\right) / \mu=\varphi_{0}\left(y_{1}\right), y_{i}=\right.$ $\left.=\varphi_{i}\left(y_{1}\right), i=2,3, \ldots, n, \mu \in J\right\}$, where J is an open interval, $0 \in J$,

$$
\varphi_{1}(0)=0, \quad \frac{d \varphi_{0}(0)}{d y_{1}}=0, \quad \frac{d^{2} \varphi_{0}(0)}{d y_{1}^{2}} \neq 0 .
$$

(b) For μ from one side of 0 there are no critical points of $\xi_{h^{\top}(\mu)}$ in V and for μ from the other side of 0 there are exactly two critical points of $\xi_{h^{\top}(\mu)}$ in V and the following is true: The point $(0,0)$ divides the set $C(\xi) \cap(U \times V)$ into two components K_{1}, K_{2} and the number of eigenvalues of the mapping $\dot{\xi}_{a}(y)\left(a=h_{1}^{-1}(\mu), y=h_{2}^{-1}(x)\right)$ with the real part greater than 0 is constant in the components K_{1}, K_{2} and differs by one.
(6) if $(a, x) \in Z_{1}(\xi)$, then the mapping $\dot{\xi}_{a}(x)$ has exactly one eigenvalue equal to 0 .

Example. Let us consider the following second order orginary differential equation on R :

$$
\begin{aligned}
& \dot{x}=v \\
& \dot{v}=-x^{2}+v+\mu, \quad x \in R, \mu \in R,
\end{aligned}
$$

or in the form of the equation:

$$
\ddot{x}-\dot{x}+x^{2}-\mu=0 .
$$

The set of critical points is a parabola in the (μ, x)-plane. For $\mu<0$, there are no critical points and for $\mu>0$ there are exactly two critical points. The derivative of the right-hand side of the equation at the point $(\mu, x) \in C(\xi)=\left\{(\mu, x, 0) \mid \mu=x^{2}\right\}$ has the form $H(x)=\left[\begin{array}{cc}0 & 1 \\ -2 x & 1\end{array}\right]$. The characteristic polynomial of this matrix is

Fig. 1
$P(\lambda)=\lambda^{2}-\lambda+2 x$, which has the roots $\lambda_{1}=\frac{1+\sqrt{1-8 x}}{2}, \lambda_{2}=\frac{1-\sqrt{1-8 x}}{2}$.
Therefore

$$
\begin{array}{lll}
\lambda_{1}>0, & \lambda_{2}>0 & \text { for } \\
\lambda_{1}>0, & \lambda_{2}=0 & \text { for } \\
x=0 \\
\lambda_{1}>0, & \lambda_{2}<0 & \text { for } \\
x<0 .
\end{array}
$$

We have the following pictures of trajectories:

Fig. 2
3. The case of a pair of pure imaginary eigenvalues. First we shall give an example which describes well the generic situation of the case of 1-parametric dynamical systems (cf. [3], [6]):

$$
\begin{aligned}
& \dot{x}=-\omega y+\mu x+c x\left(x^{2}+y^{2}\right) \\
& \dot{y}=\omega x+\mu y+c y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{u}=-u \\
& \dot{v}=v,
\end{aligned}
$$

$$
\operatorname{dim} x=\operatorname{dim} y=1, \quad \operatorname{dim} u=R^{n_{-}}, \quad \operatorname{dim} v=R^{n_{+}}, \quad n_{-}+n_{+}+2=n
$$

For the study of the topological structure of trajectories of this system in neighbourhoods of invariant manifolds it is enough to consider this system on the submanifold $u=0, v=0$. This system has a stable focus at the point $(0,0)$ which changes to unstable focus if μ cross the zero and there arises a closed orbit in a neighbourhood of 0 . We shall show that this is the same in the case of the second order differential equations, too.

Let $\eta \in \dot{\Gamma}_{\mathrm{n}}(T X)$ and let $x \in T(X)$ be a critical point of η. We say x is a nonelementary critical point of multiplicity k, if the mapping $\dot{\eta}(x)$ has a pure imaginary eigenvalue of multiplicity $k(\dot{\eta}(x)$ denotes the Hessian of the vectorfield η at x, (cf. $[1, \S 22]$) and has no other pure imaginary eigenvalue.

Denote by $H_{11}(A, X)$ the set of all $\xi \in H^{\prime}(A, X)$ such that if for $a \in A$ the vectorfield ξ_{a} has a nonelementary critical point, then it has multiplicity 1 . Denote by $Z_{2}(\xi)$ the set of points $(a, x) \in C(\xi)$ for which x is a nonelementary critical point of ξ_{a}.

Lemma 3. The set $H_{11}(A, X)(r \geqq 1)$ is open and dense in $H^{r}(A, X)$.
Denote by $\hat{A}(2 n, 2 n)$ the set of $C \in A(2 n, 2 n)$ of the form $C=\left[\begin{array}{cc}0_{n} & E_{n} \\ A & B\end{array}\right]$, where $A, B \in A(n, n), 0_{n}$ is the zero in $A(n, n), E_{n}$ is the unit matrix in $A(n, n)$. The set $\hat{A}(2 n, 2 n)$ is a C^{r} manifold of dimension $2 n^{2}$.

Let $A_{1}=\left\{\left(C, \lambda_{1}, \lambda_{2}\right) \in \hat{A}(2 n, 2 n) \times R^{2} \mid \lambda_{1}=0, P_{1}\left(\lambda_{1}, \lambda_{2}\right)=P_{1}^{\prime}\left(\lambda_{1}, \lambda_{2}\right)=P_{2}\left(\lambda_{1}\right.\right.$, $\left.\lambda_{2}\right)=P_{2}^{\prime}\left(\lambda_{1}, \lambda_{2}\right)=0$, where $P(\lambda)=P_{1}(\operatorname{Re} \lambda, \operatorname{Im} \lambda)+i P_{2}(\operatorname{Re} \lambda, \operatorname{Im} \lambda)$ is the characteristic polynomial of C and $P_{1}^{\prime}+i P_{2}^{\prime}=\frac{\partial P}{\partial \lambda}$. It is possible to prove analogously to [4, §2)] that $A_{1}=\bigcup_{j=1}^{r_{1}} A_{1 j}, \quad j=1,2, \ldots, r_{1} \quad$ are disjoint submanifolds of $\hat{A}(2 n, 2 n) \times R^{2}$ of a strictly decreasing dimension and $\bigcup_{j=e_{0}}^{r_{1}} A_{1 j}$ is closed for $0<\varrho_{0} \leqq r_{1}, \operatorname{codim} A_{1 j} \geqq 4$ for $j=1,2, \ldots, r_{1}$.

Proof of Lemma 3. Let $\xi, \eta \in H^{+}(A, X),\left(a_{1}, x_{1}\right),\left(a_{2}, x_{2}\right) \in A \times T(X)$ and let (W, h) be a chart on $T(X)$. Let ξ_{1}, η_{1} be the principal part of the local representative of $\xi_{a_{1}}, \zeta_{a_{2}}$, respectively, with respect to (W, h). We say that (ξ, a_{1}, x_{1}) is k-equivalent to (η, a_{2}, x_{2}) if and only if $a_{1}=a_{2}, x_{1}=x_{2}$ and $\left(\xi_{1}\left(h\left(x_{1}\right)\right)\right.$, $D \xi_{1}\left(h\left(x_{1}\right)\right), \ldots, D^{k} \xi_{1}\left(h\left(x_{1}\right)\right)=\left(\eta_{1}\left(h\left(x_{2}\right)\right), D \eta_{1}\left(h\left(x_{2}\right)\right), \ldots, D^{k} \eta_{1}\left(h\left(x_{2}\right)\right)\right.$. Obviously, the k-equivalence is an equivalence. Let $J^{k} \xi(a, x)$ denote the class of triples equivalent to (ξ, a, x). Denote by $\hat{J}^{k}(A, X)$ the set of all classes $J^{k} \xi(a, x)$. The
mapping $\pi^{\prime}: \hat{J}^{\prime}(A, X) \rightarrow A \times T(X), \pi^{1}\left(J^{\prime} \xi(a, x)\right)=(a, x)$ is a C^{r} ' vector bundle over $A \times T(X)$. For $\xi \in H^{+}(A, X)$ define the mapping $\varrho_{\xi}: A \times T(X) \rightarrow \hat{J}^{\prime}(A, X)$, $\varrho_{\xi}(a, x)=J^{\prime} \xi(a, x)$ for $(a, x) \in A \times T(X)$. Define the mapping ϱ_{ξ} : $A \times T(X) \times R^{2} \rightarrow \hat{J}^{1}(A, X) \times R^{2}, \tilde{\varrho}_{\xi}=\varrho_{\xi} \times i d$, where id is the identical mapping of R^{2} onto R^{2}. The mapping $\varrho: H^{\prime}(A, X) \rightarrow C^{r-1}\left(A \times T(X) \times R^{2}, \hat{J}^{1}(A, X) \times R^{2}\right)$, $\varrho(\xi)=\tilde{\varrho}_{\xi}$ for $\xi \in H^{r}(A, X)$ is a C^{r-1} representation. Let $\left(\alpha, \alpha_{0} \times \beta_{0}, U \times V\right)$ be a natural chart on π^{1} and let $W \subset \hat{J}^{1}(A, X) \times R^{2}$ be the set of $\left(p, \lambda_{1}, \lambda_{2}\right) \in \hat{J}^{\prime}(A, X) \times R^{2}$ such that $\left(\alpha(p), \lambda_{1}, \lambda_{2}\right)=\left(\mu, y, 0,0, C, \lambda_{1}, \lambda_{2}\right), \mu \in R$, $y \in R^{n}, 0$ is the zero in $R^{n},\left(C, \lambda_{1}, \lambda_{2}\right) \in A_{1}$. It is easy to prove that this definition is independent of coordinates. Since $A_{1}=\bigcup_{i=1}^{r_{1}} A_{1 i}$, then $W=\bigcup_{j=1}^{r_{1}} W_{i}$, where W_{i} are disjoint submanifolds of $\hat{J}^{\prime}(A, X) \times R^{2}$ of strictly decreasing dimensions, $\bigcup_{1^{\prime}-\mathrm{e}_{n}}^{\mathrm{r}_{1}} \mathrm{~W}_{\mathrm{i}}$ is closed for $0<\varrho_{0} \leqq r_{1}$ and $\operatorname{codim} W_{i} \geqq 2 n+4$ for every j. Let $e v_{e}: H^{r}(A, X) \times A \times T(X) \times R^{2} \rightarrow C^{r-1}\left(A \times T(X) \times R^{2}, \hat{J}^{1}(A, X) \times R^{2}\right)$, $e v_{e}\left(\xi, a, x, \lambda_{1} \lambda_{2}\right)=\tilde{\varrho}_{\xi}\left(a, x, \lambda_{1}, \lambda_{2}\right)$. It is easy to prove that $e v_{e} \bar{\cap} N$ for every submanifold N of $\hat{J}^{\prime}(A, X) \times R^{2}$ and so $e v_{e} \bar{\cap} W$. Let $\xi \in H_{11}^{\prime}(A, X)$, and let ($\beta, \alpha_{0} \times \beta_{0}, U \times V$) be a natural chart on π^{1} as in the definition of W and $\beta\left(J^{\prime} \xi(a, x)\right)=\left(\alpha_{0}(a), \beta_{0}(x), \xi_{a}^{\prime}(x), D \xi_{a}^{\prime}(x)\right)$. Since $(T X)_{0}$ is a compact subset of $T(X)$, there is a neighbourhood $N(\xi)$ of ξ in $H^{\prime}(A, X)$ and a number $q>0$ such that for every $\eta \in N(\xi),(a, x) \in A \times(T X)_{0}$, every eigenvalue $\lambda(\eta, a, x)$ of $D \eta_{a}^{\prime}(x)$ is such that $|\lambda(\eta, a, x)|<q$, where $\beta\left(J^{\prime} \xi(a, x)=\left(\alpha_{0}(a), \beta_{0}(x), \eta_{a}^{\prime}(x), D \eta_{a}^{\prime}(x)\right)\right.$. Therefore for $\eta \in N(\xi), \varrho(\eta) \bar{\cap} W$ if and olny if $\varrho(\eta) \bar{\cap} W$ on the set $A \times(T X)_{o} \times[-q, \quad q]$. Denote $\Psi_{i}=\left\{\eta \in N(\xi) \mid \varrho(\eta)\right.$ $\bar{\eta} \bigcup_{i=r_{i}-i+1}^{r_{1}} W_{i}$ on $\left.A \times(T X)_{\mathrm{o}} \times[-q, q]\right\}$ for $i=1,2, \ldots, r_{1}$. From [1, Theorem 18.2] it follows that the sets $\Psi_{i}, i=1,2, \ldots, r_{1}$ are open in $N(\xi)$. Science codim $W_{j} \geqq 2 n+4$ for all j, then $\varrho(\eta) \bar{\cap} W$ on $A \times(T X)_{0} \times[-q, q]$ means that $\varrho(\eta)(A \times T(X) \times[-q, q]) \cap$ $W=\emptyset$ and so the set $H_{11}^{r}(A, X)$ is open in $H^{r}(A, X)$. The density follows from [1, Theorem 19.1] analogously to the proof of [6, Lemma 6].

Let $A_{2}=\left\{\left(C, \lambda_{1}, \lambda\right) \in \hat{A}(2 n, 2 n) \times R^{2} \mid P_{1}\left(\lambda_{1}, \lambda_{2}\right)=P_{2}\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}=0\right\}$, where $C=\left[\begin{array}{ll}0_{n} & E_{n} \\ A & B\end{array}\right]$. Similarly to $[4, \S 2]$ it is possible to prove that $A_{2}=\bigcup_{j=1}^{r_{2}} A_{2 i}$, where $A_{2 i}$, $j=1,2, \ldots, r_{2}$ are disjoint submanifolds of $\hat{A}(2 n, 2 n) \times R^{2}$ of strictly decreasing dimensions and the set $\bigcup_{i=\rho_{0}}^{r_{2}} A_{2 j}$ is closed for $0<\varrho_{0} \leqq r_{2}, \operatorname{codim} A_{21}=3$.

Let $\pi^{1}: \hat{J}^{1}(A, X) \rightarrow A \times T(X)$ be the mapping as above and let $\left(\alpha, \alpha_{0} \times \beta_{0}, U \times\right.$ $V)$ be a natural chart on π^{1}. Let $W^{\prime} \subset \hat{J}^{1}(A, X) \times R^{2}$ be the set of $\left(p, \lambda_{1}, \lambda_{2}\right) \in \hat{J}^{1}(A, X) \times R^{2}$ such that $\left(\alpha(p), \lambda_{1}, \lambda_{2}\right)=\left(\mu, y, 0,0, C, \lambda_{1}, \lambda_{2}\right), \mu \in R$, $y \in R^{n}, 0$ is the zero in $R^{n},\left(c, \lambda_{1}, \lambda_{2}\right) \in A_{2}$. Since $A_{2}=\bigcup_{j=1}^{r_{2}} A_{2 i}$, so $W^{\prime}=\bigcup_{j=1}^{r_{2}} W_{i}^{\prime}$, where
W_{j}^{\prime} are disjoint submanifolds of strictly decreasing dimensions, $\bigcup_{i=e_{0}}^{r_{2}} W_{i}^{\prime}$ is closed for ()$<\varrho_{0} \leqq r_{2}$ and codim $W_{j}^{\prime} \geqq 2 n+4$ for $j>1$ and $\operatorname{codim} W_{1}^{\prime}=2 n+3$. Let $\varrho: H^{r}(A, X) \rightarrow C^{r-1}\left(A \times T(X) \times R^{2}, \hat{J}^{\prime}(A, X) \times R^{2}\right)$ be the mapping from the proof of Lemma 3. Let $H_{12}^{\prime}(A, X)=\left\{\xi \in H_{1}^{\prime}(A, X) \mid \varrho(\xi) \cap W^{\prime}\right\}$. Similarly to the proof of Lemma 3, the following lemma can be proved.

Lemma 4. The set $H_{12}^{r}(A, X)$ is open and dense in $H^{+}(A, X)$.
Denote $H_{13}^{r}(A, X)=H_{02}^{\prime}(A, X) \cap H_{12}^{\prime}(A, X)$. Let $\xi \in H_{13}(A, X),\left(a_{0}, x_{0}\right) \in C(\xi)$ and let (V, β) be a chart on $A \times T(X)$ at $\left(a_{0}, x_{0}\right)$. Let ξ_{β} be the principal part of the local representative of ξ. Denote by $F(t)=D_{y} \xi_{\beta}(t)$ for $t \in I=\beta(V \cap C(\xi))$, where $D_{y} \xi_{\beta}$ is the derivative of $\xi_{\beta}(\mu, y)\left(y \in R^{2 n}\right)$ with respect to y. Let $T=$ $\left\{\left(s_{1}, s_{2}\right) \in R^{2} \mid s_{1}=0\right\}$.

If λ_{0} is a simple eigenvalue of $F\left(t_{0}\right)$ for $t_{0} \in I$, then by [4, Lemma 6] there is a neighbourhood N of t_{0} in I and an unique C^{r} function $\lambda: N \rightarrow C$ such that $\lambda\left(t_{0}\right)=\lambda_{0}$ and $\lambda(t)$ is an eigenvalue of $F(t)$ for $t \in N$. Further, there is a nonsingular C^{r} matrix $C(t)$ on N such that $C^{-1}(t) F(t) C(t)=B(t)$ for $t \in N$, where the first column of B is transpose of $(\lambda(t), 0, \ldots, 0)$. Let $\lambda(t)==\lambda_{1}(t)+i \lambda_{2}(t), \hat{\lambda}: N \rightarrow R^{2}, \hat{\lambda}(t)=\left(\lambda_{1}(t)\right.$, $\left.\lambda_{2}(t)\right)$. Similarly to [4, Proposition 3] it is possible to prove that $\hat{\lambda} \bar{\cap} T$ if $\xi \in H_{13}^{r}(A, X)$. Therefore if $\xi \in H_{13}^{r}(A, X)$, then the set $Z_{2}(\xi)$ is finite.

Lemma 5. There is an open and dense set $H_{1}^{\prime}(A, X)(r \geqq 1)$ in $H^{r}(A, X)$, which has the following properties
(1) $H_{1}^{\prime}(A, X) \subset H_{13}^{\prime}(A, X)$
(2) If $(a, x) \in Z_{2}(\xi)$, then the mapping $\xi_{a}(x)$ has exactly one pair of conjugate pure imaginary eigenvalues.
The proof of this lemma is the same as the proof of [6, Lemma 10].
Let $\xi \in H_{1}^{\prime}(A, X),\left(a_{0}, x_{0}\right) \in Z_{2}(\xi)$ and let $\left(U \times V, \alpha^{\prime} \times \beta^{\prime}\right)$ be a natural chart on $A \times T(X)$ at $\left(a_{0}, x_{0}\right)$ such that $\alpha^{\prime}\left(a_{0}\right)=0, \beta^{\prime}\left(x_{0}\right)=0$. Let ξ^{\prime} be the principal part of the local representative of ξ with respect to this chart and let $\left(\alpha^{\prime} \times \beta^{\prime}\right)(a, x)=$ $=(\mu, y, v) \in \in(\alpha \times \beta)(U \times V)=U^{\prime} \times V^{\prime} \times R^{n}$, where A, B are $C^{r} 2 n \times 2 n$ matrices on $U^{\prime}, \omega(\mu, y, v)=o(|y|+|v|)$. We have the following system of differential equations

$$
\begin{aligned}
& \dot{y}=v \\
& \dot{v}=A(\mu) y+B(\mu) v+\omega(\mu, y, v) .
\end{aligned}
$$

Since $\xi \in H_{1}^{\prime}(A, X)$, we can transform this system by a regular transformation $Y=\left(x_{1}, x_{2}, w, z\right)^{T}=C(\mu)(v, y)^{T}\left(C(\mu) \in A(2 n, 2 n)\right.$ is a regular C^{r} matrix on U^{\prime}, u^{T} means the transpose of u) to the form

$$
\dot{Y}=\hat{A}(\mu) Y+\hat{\omega}(\mu, Y)
$$

where $\quad \hat{A}(\mu)=C(\mu)\left[\begin{array}{cc}0_{n} & E_{n} \\ A & B\end{array}\right] C^{-1}(\mu)=\operatorname{diag}\left(A_{1}(\mu), \quad H_{1}(\mu), \quad H_{2}(\mu)\right), \quad A_{1}(\mu)=$
$\left[\begin{array}{cc}\alpha(\mu) & \beta(\mu) \\ -\beta(\mu) & \alpha(\mu)\end{array}\right]$ for all $\mu, \alpha(0)=0, \beta(0) \neq 0$, all eigenvalues of $H_{1}(\mu)$ have negative real parts, all eigenvalues of $H_{2}(\mu)$ have positive real parts, i.e. we have the following system of differential equations

$$
\begin{align*}
\dot{x}_{1} & =\alpha(\mu) x_{1}+\beta(\mu) x_{2}+Y_{1}\left(\mu, x_{1}, x_{2}, w, z\right) \\
\dot{x}_{2} & =-\beta(\mu) x_{1}+\alpha(\mu) x_{2}+Y_{2}\left(\mu, x_{1}, x_{2}, w, z\right) \tag{*}\\
\dot{w} & =H_{1}(\mu) w+Y_{3}\left(\mu, x_{1}, x_{2}, w, z\right) \\
\dot{z} & =H_{2}(\mu) z+Y_{4}\left(\mu, x_{1}, x_{2}, w, z\right)
\end{align*}
$$

$Y=\left(Y_{1}, \quad Y_{2}, \quad Y_{3}, \quad Y_{4}\right)=C(\mu)\left(0, \omega\left(\mu, C^{-1}(\mu)\left(x_{1}, x_{2}, w, z\right)^{T}\right)^{T}\right.$. If $\mathrm{C}(\mu)=$
$\left[\begin{array}{ll}\mathrm{C}_{1}(\mu) & \mathrm{C}_{2}(\mu) \\ \mathrm{C}_{3}(\mu) & \mathrm{C}_{4}(\mu)\end{array}\right]$, where $C_{i}(\mu) \in A(2, n), i=1,2, C_{i}(\mu) \in(2 n-2, n), j=3,4$, then $\left.Y\left(\mu, x_{1}, x_{2}, w, z\right)\right)=\left(C_{2}(\mu) \omega^{*}\left(\mu, x_{1}, x_{2}, w, z\right), C_{4}(\mu) \omega^{*}\left(\mu, x_{1}, x_{2}, w, z\right)\right.$, where $\omega^{*}\left(\mu, x_{1}, x_{2}, w, z\right)=\omega\left(\mu, C^{-1}(\mu)\left(x_{1}, x_{2}, w, z\right)^{T}\right)$.

By [1, Appendix C] there exists a center manifold $M_{\mu}=\left\{\left(x_{1}, x_{2}, w, z\right) \mid w=u(\mu\right.$, $\left.\left.x_{1}, x_{2}\right), z=v\left(\mu, x_{1}, x_{2}\right)\right\}$ for μ sufficiently small, where $u, v \in C^{r} \quad, u(0,0,0)=$ $v(0,0,0)=d u(0,0,0)=d v(0,0,0)=0$. The mappings u and v are given by the following system of equations
(1) $u\left(\mu, x_{1}, x_{2}\right)=\int_{+\infty}^{0} e^{-H_{1}(\mu) \sigma} Y_{3}\left(\mu, \eta_{1}, \eta_{2}, u\left(\mu, \eta_{1}, \eta_{2}, v\left(\mu, \eta_{1}, \eta_{2}\right)\right) d \sigma\right.$
(2) $\dot{\eta}_{1}=\alpha(\mu) \eta_{1}+\beta(\mu) \eta_{2}+Y_{1}\left(\mu, \eta_{1}, \eta_{2}, u\left(\mu, \eta_{1}, \eta_{2}\right), v\left(\mu, \eta_{1}, \eta_{2}\right)\right)$

$$
\dot{\eta}_{2}=-\beta(\mu) \eta_{1}+\alpha(\mu) \eta_{2}+Y_{2}\left(\mu, \eta_{1}, \eta_{2}, u\left(\mu, \eta_{1}, \eta_{2}\right), v\left(\mu, \eta_{1}, \eta_{2}\right)\right)
$$

(3) $v\left(\mu, x_{1} ; x_{2}\right)=\int_{+\infty}^{0} e^{-H_{2}(\mu) c} Y_{4}\left(\mu, \eta_{1}, \eta_{2}, u\left(\mu, \eta_{1}, \eta_{2}, v\left(\mu, \eta_{1}, \eta_{2}\right)\right) d \sigma\right.$,
where $\eta=\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1}\left(t, \mu, x_{1}, x_{2}\right), \eta_{2}\left(t, \mu, x_{1}, x_{2}\right)\right)$ is the solution of the system (2) with the initial condition $\eta\left(0, \mu, x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$.

If we introduce the change of variables

$$
\begin{aligned}
p & =w-u\left(\mu, x_{1}, x_{2}\right) \\
q & =z-v\left(\mu, x_{1}, x_{2}\right)
\end{aligned}
$$

then in these new coordinates the system (*) has the form

$$
\begin{aligned}
x_{1} & =\alpha(\mu) x_{1}+\beta(\mu) x_{2}+Y_{1}\left(\mu, x_{1}, x_{2}, p+u\left(\mu, x_{1}, x_{2}\right), q+v\left(\mu, x_{1}, x_{2}\right)\right) \\
\dot{x}_{2} & =-\beta(\mu) x_{1}+\alpha(\mu) x_{2}+Y_{2}\left(\mu, x_{1}, x_{2}, p+u\left(\mu, x_{1}, x_{2}\right), q+v\left(\mu, x_{1}, x_{2}\right)\right) \\
\dot{p} & =H_{1}(\mu) p+X\left(\mu, x_{1}, x_{2}, p, q\right) \\
\dot{q} & =H_{2}(\mu) q+Z\left(\mu, x_{1}, x_{2}, p, q\right)
\end{aligned}
$$

where $X, Z \in C^{r-1}, X\left(\mu, x_{1}, x_{2}, 0, q\right) \equiv 0, Z\left(\mu, x_{1}, x_{2}, p, 0\right) \equiv 0$.
Let $\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right)$ be the parametrized solution of the system (${ }^{* *}$) in some neighbourhood $V^{\prime \prime}$ of 0 . If $\bar{p} \neq 0, \bar{q} \neq 0$, then $\varphi\left(\mu, \bar{x}_{1}, \bar{x}_{2}, \bar{p}, \bar{q}, t\right) \notin V^{\prime \prime}$ for a sufficiently large t. If $\operatorname{dim} q=0$ and $\bar{p} \neq 0$, then $\varphi\left(\mu, x_{1}, x_{2}, p, t\right) \notin V^{\prime \prime}$ for a
sufficiently large $-t, t<0$. Therefore, if for $\mu \in U^{\prime}$, there is an invariant set of the system $\left({ }^{* *}\right)$ in $V^{\prime \prime}$, then it must be a part of the submanifold $p=0, q=0$. Now it suffices to consider the restriction of this system to the submanifold $p=0, q=0$, i.e. the system

$$
\begin{aligned}
& \dot{x}_{1}=\alpha(\mu) x_{1}+\beta(\mu) x_{2}+\Phi_{1}\left(\mu, x_{1}, x_{2}\right) \\
& \dot{x}_{2}=-\beta(\mu) x_{1}+\alpha(\mu) x_{2}+\Phi_{2}\left(\mu, x_{1}, x_{2}\right)
\end{aligned}
$$

where $\Phi_{k}\left(\mu, y_{1}, x_{2}\right)=\sum_{i=1}^{n} \beta_{k j} \omega_{i}^{*}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right), v\left(\mu, x_{1}, x_{2}\right)\right), \omega^{*}=\left(\omega_{1}^{*}, \omega_{2}^{*}\right.$, $\left.\ldots, \omega_{n}^{*}\right), C_{2}(\mu)=\left(\beta_{k j}(\mu)\right)$.

Proposition 3.

$$
\sum_{k=1}^{2} \sum_{i=1}^{n}\left|\beta_{k j}(\mu)\right| \neq 0 \text { for all } \mu .
$$

Proof. Suppose that $\sum_{k=1}^{2} \sum_{j=1}^{n \cdot}\left|\beta_{k j}(\mu)\right|=0$. Since

$$
C\left[\begin{array}{ll}
0_{n} & E_{n} \\
A & B
\end{array}\right]=\hat{A} C, \quad \text { so }\left[\begin{array}{ll}
C_{2} A & C_{1}+C_{2} B \\
C_{3} A & C_{3}+C_{4} B
\end{array}\right]=\left[\begin{array}{ll}
A_{1} C_{1} & A_{1} C_{2} \\
A_{2} C_{3} & A_{2} C_{4}
\end{array}\right],
$$

where $A_{2}=\operatorname{diag}\left(H_{1}, H_{2}\right)$. Therefore $C_{2} A=A_{1} C_{1}$ and since by the assumption $C_{2}(\mu)=0$, then $A_{1}(\mu) C_{1}(\mu)=0$. The matrix $A_{1}(\mu)$ is regular and so $C_{1}(\mu)=0$. But this is impossible, because the matrix $C(\mu)$ regular and this proves Proposition 3.

The properties of ω_{j}^{*} imply that

$$
\begin{gathered}
\omega_{i}^{*}(\mu, \\
\left.x_{1}, x_{2}, w, z\right)=R_{2 j}\left(\mu, x_{1}, x_{2}\right)+R_{3_{j}}\left(\mu, x_{1}, x_{2}\right)+R_{4 j}\left(\mu, x_{1}, x_{2}, w, z\right)+ \\
+R_{5 j}\left(\mu, x_{1}, x_{2}, w, z\right)+R_{i}\left(\mu, x_{1}, x_{2}, w, z\right), \quad j=1,2, \ldots, n,
\end{gathered}
$$

where

$$
\begin{gathered}
R_{2 j}\left(\mu, x_{1}, x_{2}\right)=r_{20}^{i}(\mu) x_{1}^{2}+r_{11}^{i}(\mu) x_{1} x_{2}+r_{02}^{i}(\mu) x_{2}^{2}, \\
R_{3 i}\left(\mu, x_{1}, x_{2}\right)=r_{30}^{i}(\mu) x_{1}^{3}+r_{12}^{i}(\mu) x_{1}^{2} x_{2}+r_{21}^{j}(\mu) x_{1} x_{2}^{2}+r_{03}^{i}(\mu) x_{2}^{3}, \\
r_{i k}^{i} \in C^{r-3)} \text { on } U^{\prime}, \\
R_{4 j}\left(\mu, x_{1}, x_{2}, w, z\right)=\sum_{i=1}^{p^{*}}\left(c_{20}^{i} w_{i}^{2}+c_{01}^{j} w_{i} x_{1}+c_{02}^{i} w_{1} x_{2}\right)+ \\
+\sum_{i=1}^{q^{*}}\left(d_{20}^{i} z_{i}^{2}+d_{01}^{j} z_{i} x_{1}+d_{02}^{j} z_{i} x_{2}\right), \\
R_{5_{j}}\left(\mu, x_{1}, x_{2}, w, z\right)=\sum_{i=1}^{p^{*}}\left(c_{30}^{j} w_{i}^{3}+c_{21}^{i} w_{i}^{2} x_{1}+c_{22}^{j} w_{i}^{2} x_{2}+c_{12}^{i} w_{i} x_{1}^{2}+\right. \\
\left.+c_{13}^{i} w_{i} x_{2}^{2}\right)+\sum_{i=1}^{a^{*}}\left(d_{30}^{i} z_{i}^{3}+d_{21}^{j} z_{i}^{2} x_{1}+d_{22}^{i} z_{i}^{2} x_{2}+d_{12}^{i} z_{i} x_{1}^{2}+d_{13}^{i} z_{i} x_{2}^{2}\right),
\end{gathered}
$$

where w_{i}, z_{i} are components of w, z respectively, $\operatorname{dim} w=p^{*}, \operatorname{dim} z=q^{*}, c_{i k}=$ $c_{i k}(\mu), d_{i k}=d_{i k}(\mu)$ are C^{r} functions on $U^{\prime}, R_{j}\left(\mu, x_{1}, x_{2}, w, z\right)$ contains only terms of orders higher than 3.

Lemma 6. Let $u\left(\mu, x_{1}, x_{2}\right), v\left(\mu, x_{1}, x_{2}\right)$ be the mappings defined by equations (1), (2), (3) and let $u=\left(u_{1}, u_{2}, \ldots, u_{p} *\right), v=\left(v_{1}, v_{2}, ., v_{q^{*}}\right)$. Then

$$
\begin{aligned}
& u_{i}\left(\mu, x_{1}, x_{2}\right)=u_{21}^{i} x_{1}^{2}+u_{11}^{i} x_{1} x_{2}+u_{12}^{\prime} x_{2}^{2}+u_{i}^{*}\left(\mu, x_{1}, x_{2}\right) \\
& v_{i}\left(\mu, x_{1}, x_{2}\right)=v_{21}^{i} x_{1}^{2}+v_{11}^{i} x_{1} x_{2}+v_{12}^{i} x_{2}^{2}+v_{1}^{*}\left(\mu, x_{1}, x_{2}\right)
\end{aligned}
$$

$$
i=1,2, \ldots, p^{*} ; \quad j=1,2, \ldots, q^{*}, \quad \dot{u_{k l}}=u_{k l}(\mu), \quad v_{k l}=v_{k l}(\mu) \quad \text { are } \quad C^{r-2} \text { on } U^{\prime}
$$

and these coefficients depend only on the elements of $H_{1}, H_{2}, \alpha, \beta$ and on $D^{2} \omega_{i}^{*}(\mu, 0,0), j=1,2, \ldots, n$, but these do not depend on $d^{\prime n} \omega_{i}^{*}(\mu, 0,0), j=$ $1,2, \ldots, n, m>2 ; u_{i}^{*}\left(\mu, x_{1}, x_{2}\right), v_{i}^{*}\left(\mu, x_{1}, x_{2}\right)$ contain only terms of orders higher than 2.

Proof. We shall prove the lemma for u_{20}^{i} only, because for the remaining coefficients the proof is similar.

$$
u_{20}^{i}=\frac{\partial u_{i}}{\partial x_{1}^{2}}(\mu, 0,0)
$$

The formula (1) implies that

$$
\begin{gathered}
\frac{\partial u_{i}\left(\mu, x_{1}, x_{2}\right)}{\partial x_{1}}=\int_{+\infty}^{0} e^{-H_{1} \sigma}\left[\frac{\partial Y_{3}}{\partial x_{1}} \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial Y_{3}}{\partial x_{2}} \frac{\partial \eta_{2}}{\partial x_{1}}+\right. \\
\left.+\frac{\partial Y_{3}}{\partial w}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial \eta}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}} \frac{\partial \eta_{2}}{\partial x_{1}}\right)+\frac{\partial Y_{3}}{\partial z}\left(\frac{\partial v}{\partial x_{1}} \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial v}{\partial x_{2}} \frac{\partial \eta_{1}}{\partial x_{1}}\right)\right] d \sigma .
\end{gathered}
$$

It is obvious that $\frac{\partial u_{i}}{\partial x_{1}}(\mu, 0,0)=0$.

$$
\begin{gathered}
\frac{\partial^{2} u_{i}\left(\mu, x_{1}, x_{2}\right)}{\partial x_{1}^{2}}=\int_{+\infty}^{0} e^{-H_{1}}\left[\frac{\partial}{\partial x_{1}}\left(\frac{\partial Y_{3}}{\partial x_{1}}\right) \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial Y_{3}}{\partial x_{1}} \frac{\partial^{2} \eta_{1}}{\partial x_{1}^{2}}+\right. \\
+\frac{\partial}{\partial x_{1}}\left(\frac{\partial Y_{3}}{\partial x_{2}}\right) \frac{\partial \eta_{2}}{\partial x_{1}}+\frac{\partial Y_{3}}{\partial x_{2}} \frac{\partial^{2} \eta_{2}}{\partial x_{1}^{2}}+\frac{\partial}{\partial x_{1}}\left(\frac{\partial Y_{3}}{\partial w}\right)\left(\frac{\partial u}{\partial x_{1}} \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}} \frac{\partial \eta_{2}}{\partial x_{1}}\right)+ \\
+\frac{\partial Y_{3}}{\partial w} \frac{\partial}{\partial x_{1}}\left(\frac{\partial u}{\partial x_{1}} \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}} \frac{\partial \eta_{2}}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{1}}\left(\frac{\partial Y_{3}}{\partial z}\right)\left(\frac{\partial v}{\partial x_{1}} \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial v}{\partial x_{2}} \frac{\partial \eta_{1}}{\partial x_{1}}\right)+ \\
\left.+\frac{\partial Y_{3}}{\partial z} \frac{\partial}{\partial x_{1}}\left(\frac{\partial v}{\partial x_{1}} \frac{\partial \eta_{1}}{\partial x_{1}}+\frac{\partial v}{\partial x_{2}} \frac{\partial \eta_{1}}{\partial x_{1}}\right)\right] d \sigma .
\end{gathered}
$$

Since $d Y_{3}(\mu, 0,0,0,0)=0$, it is obvious that $\frac{\partial^{2} u_{i}(\mu, 0,0)}{\partial x_{1}^{2}}$ dependes on $\eta_{1}, \eta_{2}, \frac{\partial \eta_{1}}{\partial x_{1}}, \frac{\partial \eta_{2}}{\partial x_{1}}, d^{2} Y_{3}(\mu, 0,0,0,0)$ only and does not depend on derivatives of η_{1}, η_{2} of orders higher than 1. By $[1,22.3] \frac{\partial \eta_{1}}{\partial x_{1}}(\mu, 0,0), \frac{\partial \eta_{2}}{\partial x_{1}}(\mu, 0,0)$ depend on the
elements of $H_{1}, H_{2}, \alpha, \beta$ only and therefore $u_{20}^{\prime}(\mu)=\frac{\partial^{2} u_{i}(\mu, 0,0)}{\partial x_{1}^{2}}$ depends on the elements of. $H_{1}, H_{2}, \alpha, \beta$ and it is a polynomial of the coefficients of $d^{2} \omega_{i}^{*}(\mu, 0,0,0,0)$ and it does not depend on $d^{m} \omega_{i}^{*}(\mu, 0,0,0,0), m>2$. The proof is complete.

For the simplicity of computations, we shall suppose that $\operatorname{dim} w=p=1$, $\operatorname{dim} z=0$. In a general case the procedure is the same. Let $u\left(\mu, x_{1}, x_{2}\right)=$ $u_{21}, x_{1}^{2}+u_{11} x_{1} x_{2}+u_{02} x_{2}^{2}+u^{*}\left(\mu, x_{1}, x_{2}\right)$, where $u_{i k}=u_{i k}(\mu) \in C^{r}, u^{*}\left(\mu, x_{1}, x_{2}\right)$ contains only terms of orders higher than 2 . Then

$$
\begin{gathered}
\omega_{i}^{*}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)=R_{2 i}\left(\mu, x_{1}, x_{2}\right)+R_{3 i}\left(\mu, x_{1}, x_{2}\right)+ \\
+R_{4 i}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)+ \\
+R_{5_{i}}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)+R_{i}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)
\end{gathered}
$$

where

$$
\begin{gathered}
\dot{R_{4 i}}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)=c_{20}^{i} u^{2}\left(\mu, x_{1}, x_{2}\right)+c_{01}^{i} u\left(\mu, x_{1}, x_{2}\right) x_{1}+ \\
+c_{02}^{i} u\left(\mu, x_{1}, x_{2}\right) x_{2}=c_{01}^{i}\left(u_{21} x_{1}^{2}+u_{11} x_{1} x_{2}+u_{02} x_{2}^{2}\right) x_{1}+c_{02}^{i}\left(u_{20} x_{1}^{2}+u_{11} x_{1} x_{2}+u_{02} x_{2}^{2}\right) x_{2}+
\end{gathered}
$$

+ term of orders higher than 3 , i.e.

$$
\begin{gathered}
R_{4 i}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)=c_{01}^{i} u_{21} x_{1}^{3}+\left(c_{01}^{i} u_{11}+c_{122}^{i} u_{20}\right) x_{1}^{2} x_{2}+\left(c_{01}^{i} u_{02} u_{11}\right) x_{1} x_{2}^{2}+ \\
+c_{02}^{i} u_{02} x_{1}^{3}+
\end{gathered}
$$

$$
+ \text { term of orders higher than } 3
$$

$R_{5 i}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)$ contains only terms of orders higher than 4 . Therefore

$$
\omega_{i}^{*}\left(\mu, x_{1}, x_{2}, u\left(\mu, x_{1}, x_{2}\right)\right)=R_{2 i}^{*}\left(\mu, x_{1}, x_{2}\right)+R_{3 i}^{*}\left(\mu, x_{1}, x_{2}\right)+R_{i}^{*}\left(\mu, x_{1}, x_{2}\right),
$$

where $R_{2 j}^{*}\left(\mu, x_{1}, x_{2}\right)=R_{2 j}\left(\mu, x_{1}, x_{2}\right)$,
$R_{3 j}\left(\mu, x_{1}, x_{2}\right)=s_{31}^{j} x_{1}^{3}+s_{21}^{j} x_{1}^{2}+s_{12}^{j} x_{1} x_{2}^{2}+s_{03}^{j} x_{2}^{2}, s_{30}^{j}=r_{30}^{i}+c_{0_{11}}^{j} u_{20}$, $s_{21}^{i}=r_{21}^{j}+c_{01}^{i} u_{11}+c_{02}^{j} u_{20}, s_{12}^{i}=r_{12}^{i}+c_{01}^{i} u_{02}+c_{02}^{j} u_{11}, s_{03}^{i}=r_{03}^{i}+c_{02}^{j} u_{02}$ and $R_{j}^{*}\left(\mu, x_{1}, x_{2}\right)$ contains only terms of orders higher than 5 . Then

$$
\begin{aligned}
& \Phi_{1}\left(\mu, x_{1}, x_{2}\right)=P_{2}\left(\mu, x_{1}, x_{2}\right)+P_{3}\left(\mu, x_{1}, x_{2}\right)+P\left(\mu, x_{1}, x_{2}\right) \\
& \Phi_{2}\left(\mu, x_{1}, x_{2}\right)=Q_{2}\left(\mu, x_{1}, x_{2}\right)+Q_{3}\left(\mu, x_{1}, x_{2}\right)+Q\left(\mu, x_{1}, x_{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& P_{2}\left(\mu, x_{1}, x_{2}\right)=a_{20} x_{1}^{2}+a_{11} x_{1} x_{2}+a_{02} x_{2}^{2}, \\
& P_{3}\left(\mu, x_{1}, x_{2}\right)=a_{30} x_{1}^{3}+a_{21} x_{1}^{2} x_{2}+a_{12} x_{1} x_{2}^{2}+a_{03} x_{2}^{3}, \\
& Q_{2}\left(\mu, x_{1}, x_{2}\right)=b_{21} x_{1}^{2}+b_{11} x_{1} x_{2}+b_{02} x_{2}^{2}, \\
& Q_{3}\left(\mu, x_{1}, x_{2}\right)=b_{30} x_{1}^{3}+b_{21} x_{1}^{2} x_{2}+b_{12} x_{1} x_{2}^{2}+b_{03} x_{2}^{3}, \\
& a_{i k}=a_{i k}(\mu)=\sum_{i=1}^{n} \beta_{1 j} r_{i k}^{i}, b_{i k}=b_{i k}(\mu)=\sum_{i=1}^{n} \beta_{2 i} s_{i k}^{i} \text { for }(i, k)=(2,0),(1,1),(0,2) \text { and } \\
& a_{i k}=a_{i k}(\mu)=\sum_{j=1}^{n} \beta_{1 i} s_{i k}^{i}, b_{i k}=b_{i k}(\mu)=\sum_{i=1}^{n} \beta_{2 i} s_{i k}^{i} \text { for }(i, k)=(3,0),(2,1),(1,2),(0,3)
\end{aligned}
$$

We have proved that only a_{30}, \dot{b}_{30} depend on r_{30} and only a_{03}, b_{03} depend on r_{03}.
If r_{0} is a sufficiently small positive number, we can define the function d : $\left[0, r_{0}\right) \rightarrow R^{1}$ in the following way: For $0 \leqq \bar{x}_{1}<r_{0}, d\left(\bar{x}_{1}\right)=\bar{y}_{1}$, where the point $\left(\bar{y}_{1}, 0\right)$ is the point of the first intersection of the trajectory of the system

$$
\begin{align*}
& \dot{x}_{1}=\Phi_{1}\left(0, x_{1}, x_{2}\right), \\
& \dot{x}_{2}=\Phi_{2}\left(0, x_{1}, x_{2}\right)
\end{align*}
$$

through the point $\left(\bar{x}_{1}, 0\right)$ with the x_{1}-axis. This trajectory intersects the x_{1}-axis at least at one point different from $\left(\bar{x}_{1}, 0\right)$ because the point $(0,0)$ is a focus of the $\operatorname{system}(\Phi)$. By $[2, \mathrm{IX}] d^{\prime \prime \prime}(0)=3!\alpha_{3}$, where

$$
\begin{aligned}
\alpha_{3}=\frac{\pi}{4 \beta}\left[3\left(a_{30}+b_{03}\right)+a_{12}+\right. & \left.b_{21}\right] \\
& -\frac{\pi}{4 \beta^{2}}\left[2\left(a_{20} b_{20}-a_{02} b_{02}\right)-a_{11}\left(a_{02}+a_{20}\right)+b_{11}\left(b_{02}+b_{20}\right)\right]
\end{aligned}
$$

(cf. [2, IX]).
Now we shall prove the following lemma.
Lemma 7. Let $H_{03}^{r}(A, X)$ be the set of $\xi \in H_{1}^{r}(A, X)$ such that if $\left(a_{0}, x_{0}\right) \in Z_{2}(\xi)$, then $\alpha_{3} \neq 0$. Then this set is open and dense in $H_{1}^{\prime}(A, X)$.

Proof. We can consider α_{3} as a polynomial function of the variables $r_{i k}^{i}$ and $c_{i k}^{i}$.

$$
\left.\alpha_{3}=\frac{\pi}{4 \beta^{2}} \sum_{j=1}^{n} 3\left[\beta_{1}^{\prime} ; j_{30}^{j}+\beta_{2 j}^{\prime} s_{03}^{j}\right]-\gamma=\frac{\pi}{4 \beta^{2}} \sum_{j=1}^{n} 3 \beta_{1 j}^{\prime}\left(r_{30}^{j}+c_{01}^{j} u_{20}\right)+\beta_{2 j}^{\prime}\left(r_{03}^{j}+c_{02}^{j} u_{02}\right)\right]-\gamma,
$$

where $\beta_{i j}^{\prime}=\beta_{i j}(0), \gamma$ is a polynomial of the variables $r_{i k}^{i},(i, k)=(2,0),(1,1)$, $(0,2),(2,1),(1,2), c_{i k}^{i},(i, k)=(2,0),(0,1),(0,2)$, but it does not depend on r_{30}^{j}, r_{13}^{j}. Now the opennes is obvious, because α_{3} depends continuously on $r_{i k}^{i}, c_{i k}^{i}$.

Density. Suppose that the set $\mathrm{H}_{03}(\mathrm{~A}, \mathrm{X})$ is not dense. Then there is a $\xi \in H_{1}^{r}(A, X)$ such that $\alpha_{3}=\alpha_{3}\left(r_{30}^{1}, \ldots, r_{\mathfrak{B}}^{n}, \ldots\right) \equiv 0$ on some open set in the corresponding euclidean space. Therefore α_{3} has all coefficients equal to zero. The formula for α_{3} and the above computations show that in the expression of α_{3} there is only one term of the form $K \beta_{i j}^{\prime} r_{03}^{j}, j=1,2, \ldots, n\left(K=\frac{3 \pi}{4 \beta^{2}}\right)$ and only one term of the form $K \beta_{2 j}^{\prime} r_{03}^{j}, j=1,2, \ldots, n$. The other terms do not contain the variables $r_{0,3}^{j}$ and r_{30}^{j}. This implies that $\beta_{1 j}(0)=\beta_{2 j}(0)=0$ for all $j=1,2, \ldots, n$, but this contradicts Proposition 3.

From Lemmas 3-7 and from [2, p. 274] we obtain the following theorem.
Theorem 2. There is an open and dense set $H_{2}^{r}(A, X)$ in $H^{r}(A, X)(r \geqq 3)$ such that for every $\xi \in H_{2}^{\prime}(A, X)$
(A) (1) the set $Z_{2}(\xi)$ is finite.
(2) If $\left(a_{0}, x_{0}\right) \in Z_{2}(\xi)$, then the mapping $\dot{\xi}_{a_{0}}\left(x_{0}\right)$ has exactly one pair of conjugate pure imaginary eigenvalues.
(B) There is a neighbourhood $U \times V$ of $\left(a_{0}, x_{0}\right)$ such that the point $\left(a_{0}, x_{0}\right)$ divides the set $C(\xi) \cap(U \times V)$ into two components K_{1} and K_{2}, where
(1) for $(a, x) \in K_{1}$ there is no closed orbit of ξ_{a} in V,
(2) for $(a, x) \in K_{2}$ there exists exactly one closed orbit of ξ_{a} in V. Moreover, if $\operatorname{din} X=1$ and $\alpha_{3}<0\left(\alpha_{3}>0\right)$, then this orbit is stable (unstable).

Example. Let us consider the following second order ordinary differential equation on R^{\prime} :

$$
\begin{align*}
& \dot{x}=v \\
& \dot{v}=-x+\mu v+v\left(x^{2}+v^{2}\right), \quad \mu \in \mathrm{R}^{\prime}, \tag{S}
\end{align*}
$$

or in the form of the equation

$$
\ddot{x}-\mu \dot{x}+x+\dot{x}\left[x^{2}+(\dot{x})^{2}\right]=0 .
$$

Denote $\varrho=\frac{1}{2}\left(x^{2}+v^{2}\right)$. The form of the system (S) implies that for ϱ we have the following differential equation:

$$
\dot{\varrho}=v^{2}\left(\varrho^{2}+\mu\right) .
$$

This implies that ϱ is constant on the parabola $\varrho^{2}+\mu=0$ and this means that for $\mu<0$ the circle $\gamma: x^{2}+v^{2}=-\mu$ is a closed orbit of the system (S). For $\mu<0$ all eigenvalues of the matrix of the first derivatives of the right-hand side of (S) at $(0,0)$ have negative real parts and therefore the critical point $(0,0)$ of the system (S) is a stable focus and the closed orbit γ is unstable. For $\mu>0$ the system (S) has no closed orbit and the point $(0,0)$ is an unstable focus, because all eigenvalues of the matrix of the first derivatives of the vectorfield (S) have positive real parts. Therefore we have the following pictures of trajectories:

$\mu<0$

$\mu=0$

$\mu>0$

Fig. 3
It is easy to compute that for the equation (S) $\alpha_{3}=\pi$ and therefore this case is generic.

The author is thankful to P . Brunovsky for helpful discussions.

REFERENCES

[1] ABRAHAM, R.-ROBBIN, J.: Transversal mappings and flows. 1. ed. New York 1967
[2] АНДРОНОВ А. А.-ЛЕОНТОВИЧ Е. А.-ГОРДОН Й. Й.-МАЙЕР А. Г.: Теория бифуркации динамических систем на плоскости. Москва 1967.
[3] АРНОЛЬД Б. И.: Лекции о бифуркациях и версальных семействах. УМН 27, 5. 1972, 119-184.
[4] BRUNOVSKÝ P.: On one-parameter families of diffeomorphisms II. Commentationnes mathematicae Universita Carolinae, 12, 1971, 765-784.
[5] GOLUBITSKY M.-GUILLEMIN V.: Stable mappings and their singularities, New York 1973.
[6] MEDVEĎ M.: Generic properties of parametrized vectorfields I. Czechoslovak Math. J., 25., 1975, 376-388.
[7] MEDVEĎ M.: Generic properties of parametrized vectorfields II. Czechoslovak Math. J., 26. 1976, 71-83.
[8] SHAHSHAHANI S.: Second order ordinary differential equations on differentiable manifolds. Global Analysis: Proc. Symp. Pure Math. 14, Amer. Math. Soc. Providence, Rhode Island 1970.
[9] SOTOMAYOR J.: Generic bifurcations of dynamical systems. Dynamical Systems, Proc. Symp. Univ. Bahia. Salvador 1973.
[10] THOM R.-LEVINE H. : Singularities of differentiable mappings. Russian translation. Moscow 1968.
[11] WHITNEY H. : Elementary structure of real algebraic varietes. Ann. Math., 66, 1957, 545-556.
Received April 24, 1975
Matematický ústav SAV
Obrancov mieru 49
88625 Bratislava

ТИПИЧНЫЕ СВОЙСТВА ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВТОРОГО ПОРЯАДКА НА ДИФФЕРЕНЦИРУЕМЫХ МНОГООБРАЗИЯХ

Милан Медведь
Резюме

В этой статье рассматриваются типичные бифуркации траекторий однопараметрических обыкновенных дифференциальных уравнений второго порядка в окрестности критических точек. Доказывается, что возможны два типичных случая: Матрица первых производных векторного поля имеет

1. одно собственное число равно 0
2. пару чисто мнимых собственных чисел.

Изучаются соответственные к случаям 1 и 2 биауркации.

