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GENERIC BIFURCATIONS OF SECOND 
ORDER ORDINARY DIFFERENTIAL EQUATIONS 

ON DIFFERENTIABLE MANIFOLDS 

MILAN MEDVED 

1. Introduction. This paper describes generic properties of parametrized second 
order ordinary differential equations on differentiable manifolds. Generic proper
ties of such equations without parameters have been considered by 
S. Shahshahani [8]. The problem of generic properties of 1-parametric dynami
cal systems is studied e.g. in [3], [6], [7], [9]. 

Let A be a compact Cr manifold and let X be a compact Cr+1 manifold. Let 
T(X) denotes the tangent bundle of X. Let Kk (/ = 1, 2, ...) be compact subsets of 

T(X) such that K, c __",+ , for all / and \JK( = T(X). Denote by H(TX) the set of 
» • = i 

Cr vectorfields on T(X). Since T(X) is not compact, we endow the set rx(TX) with 
the Whitney Cr topology. A basis for this topology is given by the sets of the form 

H(f, 6)={r]erl(TX)\dr(C/KrmtKi.l, t]/Kr'mt K,_,)<<5, fol all/} , 

where f er\(TX), 8: T(X)-+R is a continuous positive-valued function with 
8i =min 8 on K,—K,-.. The set T\(TX) has the Baire property, i.e. a countable 
intersection of open and dense sets is dense. 

Let TX: T(X)^>X be the natural projection. A vectorfield f eT\(TX) is called 
a second order ordinary differential equation on X if DTXO£= lr(X), where DTX 

denotes the differential of the mapping TX and lr(X) is the identical mapping of 
T(X) onto T(X). Denote the set of second order ordinary differential equations on 
X by ru(TX). 

Denote by H\(A, TX) the set of parametrized Cr vectorfields on T(X) with the 
parameter set A (cf. [1, §21]). Similarly to the case of the set rx(TX), we can 
endow the set H\(A, TX) with the Whitney Cr topology. Then the set H\(A, TX) 
has the Baire property. 

A parametrized vectorfield %eH[(A, TX) is called a Cr parametrized second 
order ordinary differential equation on X if £„ eFii(TX) for all a e A, where 
%a(x)-%(a,x) for xeT(X). Denote the set of Cr parametrized second order 
ordinary differential equations by Hr(A,X). This set is a closed subspace of 



H\(A, TX) and we can endow it with the topology induced by the topology on 
H[(A, TX). Then the set IT (A, X) has the Baire property. 

A property P of a parametrized second order ordinary differential equation is 
called generic in IT (A, X) if the set {£e IT (A, X) \ P} contairis a residual set, i.e. 
a set which is a countable intersection of open and dense sets in Hr(A, X). 

We shall suppose that dim A = 1 and d\mX = n. Let ^e!T(A,X) and let 
(U, a), (V, P) be charts on A and X, respectively. Then from the property 
DTxo^a = idT(X) for every a e A it follows that the local representative £' of £ with 
respect to these charts has the form 

(1) ?'(/*, *, v) = (x, v, v, ^nfi(fi,x, v)) , 

where 

fiea(U), (x,v)e/3(V)xRn, ^ : a(U) x fi(V) x Rn-*Rn is C . 

2. The case of a zero eigenvalue. Let (TX)0 denote the image of the zero section 
in T(X), i.e. (TX)0={Ox e T(X)\xeX}, where 0X denotes the zero of TXX. The 
set (TX)0 is a closed submanifold of T(X), which is diffeomorphic to X. Let 
T(TX)0 be the tangent bundle of (TX)0 and let (TZX)0 = 
= {0[x]eT(TX)o\xe(TX)o}, whee 0[x] denotes the zero of TX(TX)0. Since 
(TX)0 is a closed submanifold of T(X) of dimension «, (F2X)0 is a closed subma
nifold of T2(X) = T(T(X)) of dimension n. Since AT is compact, (TX)0 and (F2X)0 

are compact too. 
Let TX: T(X)-+X, TT(X): T2(X)-> T(X) be the natural projections. Denote by 

Y(T2X) the set of ze T2(X) with the following properties 

(1) . TT(X)(z)e(TX)0 

(2) DTx(z)e(TX)0 

This set is well defined and the definition is independent of coordinates. It is easy to 
see that if (U, a) is a chart on X and (T2

a, Tn, TX\U)) is a natural Cr vector bundle 
chart on T2(X) associated with the chart (U, a), then for ZET~X(U), 

Tl(z) = (x, 0, 0, y), where x e Rn, y e Rn. Now, it is clear that the set Y(T2X) is 
a Cr submanifold of T2(X) isomorphic to T(X). Therefore we can identify them. 
Since (TX)0 is isomorphic to X, we can identify them too. Therefore if 
£ e FT (A, X), we can consider the mapping r(%) = £/ A x (TX)0: 
A X (TX)0-> Y(T2X) as a mapping r(%): AxX-* T(X). 

Now, define the set ITo(A, X) = {%eIT(A, X) \ r(£)n(TX)0}, where 
r(£) n (TX)0 means that the mapping r(£) transversally intersects the submanifold 
(T^Ooin T(X) (cf . [ l ,§17]) . 
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Lemma 1. The set IT0(A, X) is open and dense in IT (A, X). 

Proof. Define the mapping g: IT (A, X)-+Cr(AxX, T(X)), £>(§) = r(?) for 
%eHr(A, X). This mapping is a Cr representation (For the definition of Cr 

representation see [1, §18]). Since A xX is a compact manifold and (TX){) is 
a closed submanifold of T(X), then by [1, Theorem 18.2], the set IT0(A,X) is 
open in IT(A, X). The density follows from [1, Theorem 19.1]. The assumptions 
of this theorem can be verified similarly to the proof of [6, Lemma 1]. 

Denote C ( | ) = {(a, x)e A x T(X) \ %(a, x)e(T2X)0. From (1) it follows that 
C(%)czAx(TX)0. 

Proposition 1. If ^eIT{)(A, X), then C(%) is a compact 1-dimensional Cr 

submanifold of Ax T(X). 

Proof. If ZeIT0(A,X), then r(%)n(TX)0 and by [1, Corollary 17.2] 
C(£) = [r(%)Y\TX)0 is a closed 1-dimensional C submanifold of A x (TX)0 and 
since A x(TX)0 is compact, the set C(£) is compact too. 

Let lh: X—> T(X) be the zero section. This mapping is a diffeomorphism of X 
onto (TX)0. Denote K(g) = R(C(%)), where R = idAxh0\ idA is the identical 
mapping of A onto A. By Proposition 1, the set K(%) is a compact 1-dimensional 
submanifold of AxX (We have identified (TX)0 and X). 

Since the mapping r(£): AxX->T(X) for £eIT(A, X) is a parametrized 
vectorfield, then if (a, x)eK(^), we can define the Hessian f(S)a(x): TXX—> TXX 
at x of the vectorfield r(|)a, where r(%)a(y) = r(%) (a, y) for y e X (cf. [1, § 22]). 

Denote Xx(^) = {(a, x)eK(%)\ f(x)a(x) is not surjective}. Let 
Z,(£) = R'\ Xx (§)) c A x T(X). By almost the same procedure used in [6], it is 
possible to prove the following proposition. 

Proposition 2. There exists an open, dense subset IT0X(A, X) in IT0(A, X) such 
that for every %eir0l(A, X) 
(1) Z . ( | ) is finite 
(2) If (a0, jr„)eZ,(£), then there exists a chart (W,h) on Ax T(X) at (a0, x0) 

such that 
h(C(^))={(ii,yx,...,yn,0,...,0)eR2n^\^ = (po(yn),yi = (pi(yn),i=\,2 
n-\,yneJ), 
where (pteCr on J for i = 0, 1, ..., / i - l , / is an open interval, OeJ, 
d2 yo(0) 
dy2

n 

(3) The principal part %h of the local representative of £ has the form 
(*) &.(ii9xl9y9 v) = (v, afi + /5x2 + (o(fi,xx,y, v), By + x(n, xx, y, v)), 
where B is a regular (n-l)x(n — 1) matrix, y = (x29 x3, ..., xn), co, x e Cr, 
^(0, 0, ..., 0) = 0,co(fi,xx,0, 0) contains only ii2, iixx and terms of higher order 
than 2, a±0. 
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Lemma 2. Let C, DeA(n, n), C=(cif), D = (dti). Let c,x = 0 for i = V 2, ..., n 
and 

det Ф0. 

Then the matríx 

C\2, ..., cXn, d 

_Cn2, ..., Cnn, unl _ 

H°c .] 
has one eigenvalue A = 0 of multiplicite 1. (0„ is the zero matrix in A(n, n) and En is 
the unit matrix in A(n, n), A(i, j) denotes the set of all i x / matrices). 

Proof. From the form of the matrix H it follows that A = 0 is the eigenvalue of 
H. Denote by P0(A) the characteristic polynomial of a matrix Q. Then 
P„(A) = AP„,(A), where 

я,= 
()„.„-, E„_ 

C, D 
C,= 

C|2, ..., c,„ 

C„2, •••, C„„. 

0..n_, is the zero matrix in A (n,n — X). Since 

C\2, ..., C\n, d\\ 

r„,(0) = det Ф0, 

-Cn2, ..., Cnn, dn\A 

then P„,(A) has no eigenvalue equal to zero and therefore A = 0 is an eigenvalue of 
H of multiplicity 1. 

Let %eHr

m(A, X), (a„, jr„)eZ,(£) and let (Vx V, h\ x h2) be a chart at (a„, JC„) 
such that %h(<Po(x\), xx, qp2(x{), ., q)n(xx), 0, ..., 0) = 0 for JC, eJ, <T, e Cr on J, where 
<_7.Gu,*.,y, v) has the form (*). Then H(xx) = D2§n((p()(x\), X\, q?2(x\), ..., (pn(x{), 0, 

•••' ^ ) = r / " \ n / " \ h where D£h denotes the derivative in (xx, y, v) and LC(.r,j D(X\)\ 

C(дr,) = 
2ßx, + r>(x,), 0, . . . ,0 

0 
0 B . 

D(jr,) = | | ( < p ( , ( * 0) 

Denote by H02(A,X) the set of all £e/ / 0 1(A,_Y) such that d,,(0)^0, where 
D(xi)= (du(xx)). It is easy to prove that this set is open and dense in H[n(A, X). If 
^eHr

02(A, X), then by Lemma 2 the matrix H(0) has the eigenvalue A = 0 of 
multiplicity!. From the form of H(xx) it follows that detH(xx) = 
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(2(3xx +r>(x,)) det B. From this and from the continuous dependence of eigen
values of H(xx) on xx it follows that the eigenvalues of H(xx) do not change the sign 
of its real parts in J for J sufficiently small except of one eigenvalue. 

We have proved the following theorem. 

Theorem 1. Assume r i=3. Then there is an open, dense subset FT()2(A, X) in 
Hr(A, X) with the following properties: 
(1) For £je H()2(A, X), C(£) is a compact I-dimensional Cr submanifold of 

A x T(X). 
(2) For a fixed a e A, theset {x e T(X)\(a, x)e C(£)} consists of isolated points. 
(3) The set Z,(£) is finite. 
(4) For every (a(), x())e C ( £ ) - Z , ( £ ) there is a chart (W, h) on Ax T(X) at 

(a(), x()), h(W)=UxV, h(a(), x()) = (0, 0) and a C mapping cp: U-+ V such 
that h(C(£)nW) = {(fi,z)\z = (p(ii), pie U). 

(5) For every (a(), x())eZx(§), there is a chart (Ux V, hxx h2) on A x T(X) 
at(a(),x()), h(a(), x()) = (0,0) such that 
(a) (hx x h2) (C(£)n W) = {(fi, yx, y2, ..., yn, 0, ..., 0)1[i = cp()(yx), y = 

= (Pi(y\), i = 2, 3, ..., n, fie J}, where J is an open interval, OeJ, 

cp()(0) = 0, « } = 0, ^ ^ * 0 . 
dyx dyx 

(b) For pi from one side of 0 there are no critical points of%hl\^ in Vandforfi 
from the other side of 0 there are exactly two critical points of ^T '(M) in 
V and the following is true: The point (0,0) divides the set 
C(£) n(UxV) into two components Kx, K2 and the number of eigenva
lues of the mapping ^a(y) (a = h~^\ii), y = h2\x)) with the real part 
greater than 0 is constant in the components Kx, K2 and differs by one. 

(6) // (a, x) e Z,(£), then the mapping £a(x) has exactfy one eigenvalue equal 
to 0. 

Examp l e . Let us consider the following second order orginary differential 
equation on R: 

x = v 
v= — x2 + v + pi, xeR, /ueR, 

or in the form of the equation: 

x — x + x2 — pL=0 . 

The set of critical points is a parabola in the (fi, .r)-plane. For \i < 0 , there are no 
critical points and for {i > 0 there are exactly two critical points. The derivative of 
the right-hand side of the equation at the point (pi, x) e C(£) = {(//, x, 0) \ lu=x2} 

has the form H(x)= _ . The characteristic polynomial of this matrix is 
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Fig. 

o / ^ .2 ____-, , - __ u , u , _ 1 + V 1 - 8 . T _ 1 - V 1 - 8 . T 
P(/) = A — X +2jf, which has the roots A, = , A2 = . 

-- __. 
Therefore 

A,>0, / l 2 >0 for x > 0 , 
/ . ,>0 , A2 = 0 for x = 0 and 
/ l ,>0 , A2<0 for * < 0 . 

We have the following pictures of trajectories : 

v_ iv 

yü>0 

Fig. 2 

/7- -0 / K Ø 

3. The case of a pair of pure imaginary eigenvalues. First we shall give an 
example which describes well the generic situation of the case of 1-parametric 
dynamical systems (cf. [3], [6]) : 

x = — coy + fix + cx(x2 + y2) 
y = cox + fiy + cy(x2 + y2) 
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u = — u 
V = V , 

dim x = dim >>= 1, dim u = Rn , dim v = Rn+, n. + n+ + 2 = n . 

For the study of the topological structure of trajectories of this system in 
neighbourhoods of invariant manifolds it is enough to consider this system on the 
submanifold u = 0, v = 0. This system has a stable focus at the point (0, 0) which 
changes to unstable focus if '\i cross the zero and there arises a closed orbit in 
a neighbourhood of 0. We shall show that this is the same in the case of the second 
order differential equations, too. 

Let r\erxx(TX) and let xeT(X) be a critical point of r\. We say x is 
a nonelementary critical point of multiplicity k, if the mapping f\(x) has a pure 
imaginary eigenvalue of multiplicity k(f\(x) denotes the Hessian of the vectorfield 
r] at x, (cf. [1, §22]) and has no other pure imaginary eigenvalue. 

Denote by HXi(A,X) the set of all §e^(A,X) such that if for aeA the 
vectorfield £fl has a nonelementary critical point, then it has multiplicity 1. Denote 
by Z2(£) the set of points (a, x) e C(£) for which x is a nonelementary critical point 
of £ . 

Lemma 3. The set HIX(A, X) (r=^l) is open and dense in H"(A, X). 

Denote by A (2n, 2n) the set of C e A (2n, In) of the form C = \ " n\, where 

A, B eA(n, n), 0„ is the zero in A(n, n), En is the unit matrix in A(n, n). The set 
A(2n, 2n) is a Cr manifold of dimension 2n2. 

Let AX = {(C, A„ k2)eA(2n, 2n)xR2\Xx = Q, Px(kx, A2) = P;(A„ A2)= P2(A„ 
A2) = P2(A,, A2) = 0, where P(A) = P,(ReA, ImA) + /P2(ReA, ImA) is the characte-

3P 
ristic polynomial of C and P\ + iP2 = -ry. It is possible to prove analogously to 

r\ 
[4, §2)] that AX = [JAX}, / = 1 , 2 , ..., r, are disjoint submanifolds of 

/ = • 

r\ 
A(2n,2n)x R2 of a strictly decreasing dimension and U^iy is closed for 

/=*?o 

0 < ^ o S r , , codim - 4 „ § 4 for /'= 1, 2, ..., rx. 

Proof of L e m m a 3. Let £, rjeHr(A, X), (ax, xx), (a2, x2)eA x T(X) and let 
(W, h) be a chart on T(X). Let £,, r\x be the principal part of the local 
representative of £ , , C2, respectively, with respect to (W, h). We say that 
(£, ax, xx) is k-equivalent to (rj, a2, x2) if and only if ax = a2, xx =x2 and (t;x(h(xx)), 
D%x(h(xx)), ..., Dk^(h(xx)) = (r]x(h(x2)), Dr]x(h(x2)), ..., D%(h(x2)). Obviously, 
the k-equivalence is an equivalence. Let Jkg(a, x) denote the class of triples 
equivalent to (£, a, x). Denote by Jk(A, X) the set of all classes Jk£(a, x). The 
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mappings 1 : J'(A, X)—>A x F(AT), Jix(Jx%(a, x)) = (a, x) is a C ' vector bundle 
over A x T(X). For ? € I T ( A , X) define the mapping &: A x T(X)^JX(A, X), 
Q,(a,x) = Jx%(a,x) for (a, x)eAxT(X). Define the mapping Q,: 
A x T(X) x R2-*j\A, X) x R2, QS = Q^X id, where id is the identical mapping of 
R2 onto I?2. The mapping Q: JT(A, X)-^C~X(AX T(X)X R2, Jx(A,X)xR2), 
Q(%) = Q1= for § e / K ( A , X) is a C~x representation. Let (a, a«x/?n, UxV) be 
a natural chart on itx and let Wcz JX(A, X)x R2 be the set of 
( /? ,A„A 2 )eJ ' (A,X)x J R 2 such that (a(p), A„ A2) = (//, y, 0, 0, C, A„ A2), A-6.R, 
y e / ? " , 0 is the zero in Rn, (C, kx,?i2)eAx. It is easy to prove that this definition is 

r\ r\ 
independent of coordinates. Since A, = U A , , , then V V = U ^ > where Wi are 

i=\ • / = i 
r i 

disjoint submanifolds of JX(A, X) x R2 of strictly decreasing dimensions, U Wj is 
i-t>o 

closed for 0<p ( ) = r, and codim W,^2n +4 for every /. Let 
efe: Hr (A, X ) x / 4 x r ( X ) x i ? 2 -> Cr~' (AxT(X)xR2, Jl(A, X)xR2), 
evQ(t;, a, x, A, A2) = ^ ( a , *, A„ A2). It is easy to prove that evQnN for every 
submanifold ;V of j'(A,X)xI?2 and so evQnW. Let £e/_T,(A, X), and let 
(/5, a() x/?„, (7xV0 be a natural chart on JTX as in the definition of W and 
(3(Jx%(a,x)) = (a0(a), fi0(x), %u(x), D%'a(x)). Since (TX)0 is a compact subset of 
T(X), there is a neighbourhood /V(£) of £ in Hr(A, X) and a number q > 0 such 
that for every r/ e1V(£), (a, x)e A x (TX)0, every eigenvalue A(r/, a, *) of Dt]'a(x) 
is such that |A(ry, a, x)\<q, where /3(Jx^(a, x) = (a0(a), /30(x), r]a(x), Drja(x)). 
Therefore for r\ e N(%), Q(TJ) n W if and olny if civ) n VV on the set 
Ax(TX)0x[-q, q]. Denote Wi = {r\ e N(£)\Q(TI) n (J W. on 

v = r t - . + t 

A x ( 7 X ) 0 x [ - a , q]} for / = 1 , 2, ..., rx. From [1, Theorem 18.2] it follows that 
the sets WtJ i= 1, 2, ...,rx are open in IV(|). Science codim Wi^2n-\-4 for all /, 
then g(n)n Won A x(TX)0x[-q, q] means that Q(TJ)(A X T(X)x[-q, q]) n 
W= 0 and so the set Hr

xx(A, X) is open in Hr(A, X). The density follows from [1, 
Theorem 19.1]'analogously to the proof of [6, Lemma 6]. 

Let A2 = {(C,XX, A)eA(2/z, 2AZ)X R2\ Px(kx, A2) = P2(A,, A2) = A, = 0 } , where 

c = \ A D I- Similarly to [4, §2] it is possible to prove that A2 = U A2j, where A2/, 

/' = 1, 2, ..., r2 are disjoint submanifolds of A(2AZ, 2n)xR2 of strictly decreasing 

dimensions and the set U A2/ is closed for 0<Qo^r2, codim A21 = 3. 
/=<?o 

Let jr1: J\A, X)—> A x T(X) be the mapping as above and let (a, a0 x fi0, Ux 
V) be a natural chart on K\ Let W a JX(A, X)xR2 be the set of 
(p, A„ A2) G J\A, X) x R2 such that (a(p), A„ A2) = (ft, y, 0, 0, C, A„ A2), /i e /?, 

y e Rn, 0 is the zero in /T , (c, A„ A2) e A2. Since A2 = U A2„ so W" = U W/- where 
/ = ! /= • 
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W'j are disjoint submanifolds of strictly decreasing dimensions, Q) W) is closed for 

0<go=\r2 and codim W, =\2n + 4 for I>1 and codim W\ = 2n + 3 . Let 
g:Hr(A,X)^Cr~l(AxT(X)xR2, J\A,X)xR2) be the mapping from the 
proof of Lemma 3. Let / /;2(-4, X) = {£eH\(A9 X) \ g(%) nW'}. Similarly to the 
proof of Lemma 3, the following lemma can be proved. 

Lemma 4. The set //^2(-4, X) is open and dense in FT (A, X). 
Denote H\,(A, X) = m2(A, X)nFTi2(A, X).Let | G / ^ 3 ( A , X),(a0, x0)eC(%) 

and let (V, /?) be a chart o n A x T(X) at (a0, x0). Let §, be the principal part of the 
local representative of §. Denote by F(t) = Dy^(t) for teI = 0(Vn C(%)), where 
Dy^ is the derivative of §,({i, y) (y eR2n) with respect to y. Let F = 
{(sl9s2)eR2\sl=0). 

If A« is a simple eigenvalue of F(t0) for t0 e I, then by [4, Lemma 6] there is a 
neighbourhood IV of t0 in / and an unique Cr function A: IV—> C such that A(t0) = A„ 
and A(/) is an eigenvalue of F(t) for / e IV. Further, there is a nonsingular Cr matrix 
C(t) on IV such that C~l(t)F(t)C(t) = B(t) for t e N, where the first column of B is 
transpose of (k(t), 0, . . . ,0) . Let k(t)= =Ht) +ik2(t), X: N-+R2, X(0 = (A.(/), 
A2(0). Similarly to [4, Proposition 3] it is possible to prove that XnT if 
£ e / / n ( A , X). Therefore if £e / / ; 3 ( -4 , AT), then the set Z2(£) is finite. 

Lemma 5. 77?ere /s an open and dense setH\(A, X) (r=\l) in FT(A, X), which 
has the following properties 
(1) / ^ ( A , X ) c z / ^ 3 ( A , X ) 
(2) / / (a, x)eZ2(%), then the mapping %a(x) has exactly one pair of conjugate 

pure imaginary eigenvalues. 
The proof of this lemma is the same as the proof of [6, Lemma 10]. 
Let %eH\(A, X), (a0, x0)eZ2(^) and let (Ux V, a' x /?') be a natural chart on 

A x T(X) at (a0, x0) such that a'(a0) = 0, /?'(*<>) = 0. Let £' be the principal part of 
the local representative of £ with respect to this chart and let (a'xfi') (a, x) = 
= ([i,y, v)ee(axp)(Ux V)=U'x V x Rn, where A, B are Cr 2n x2n matri
ces on U', co(fi, y, v) = o(\y\ + \v\). We have the following system of differential 
equations 

y = v 
v = A(ti)y + B(fi)v + co((i,y,v). 

Since ^eH\(A, X), we can transform this system by a regular transformation 
Y= (xu x2, w, z)T = C(fi) (v, y)T(C(fi) eA(2n, 2n) is a regular Cr matrix on U', 
uT means the transpose of u) to the form 

Y=A(n)Y+d)(ti, Y), 

where A(fi) = C(fi)\°^ E^\ C-,(jt/) = diag (Ax(ix), Hx(ii), H2((i)), A>(fi) = 
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[" a(fi) P(IA)~\ f o r a U a ( Q ) = ^ ^ ( ) ) + () a U e i g e n v a i u e s o f Hi(^) h a v e negative 
I -P(ii) a(fi)\ 
real parts, all eigenvalues of H2(^i) have positive real parts, i.e. we have the 
following system of differential equations 

i , = a(fi)xx + p(fi)x2 + Yx(fi, xx, x2, w, z) 
/*x x2= -P(^i)xx + a(n)x2+ Y2(fi,xx,x2, w, z) 

w = Hx(ii)w + Yi([i, xx, x2, w, z) 
z = H2(fi)z + y4(li, xx, x2, w, z) , 

Y=(YX, Y2, y3, Y4) = C(fi) (0, co()i, Cr\pL) (xx, x2, w, z)T)T. If C(u) = 

r^l r^W w h e r e C^)eA(2,n), i=\,2, Cl(fi)e(2n -2, n), j = 3, 4, then 

Y(ii, xx, x2, w, z)) = (C2(li)co*(ti, xx, x2, w, z), C4(fi)co*(fi, xx, x2, w, z), where " 
a)*(ii, xx, x2, w, z) = co(fi, C'l(fi) (xx, x2, w, z)T). 

By [1, Appendix C] there exists a center manifold M„ = {(xx, x2, w, z)\w = u(fi, 
xx, x2), z = v(fi, xx, x2)} for \i sufficiently small, where u,veCr ', u(0, (),()) = 
t>(0,0,0) = du(0,0,0) = df (0,0,0) = 0. The mappings u and v are given by the 
following system of equations 

(1) u(\i,xx,x2)= e'Hii")aY3(n, .*/,, r]2, «(/1, *?., r]2, v(ii, r]x, r]2))do 
J+oo 

(2) f]x = a(^)r]x+(3(^)r]2+ Yx(fi,r]x, r]2, u(v, rjx,r]2), v(v, r]x, r]2)) 
r)2= -f5(ii)r)x + a(ii)r]2+ Y2(fi, r]x, r]2, u([i, r]x, r]2), v(fi, r]x, r]2)) 

(3) v([i,xx,x2)= e'H^)aYA(ii, r]x, r]2, u({i, r]x, r]2, v({i, r]x, r]2))do, 
j+00 

where r] = (r]x, r]2) = (r]x(t, lz, xx, x2), rj2(t, //, xx, x2)) is the solution of the system 
(2) with the initial condition r/(0,11, xx, x2)^(xx, x2). 

If we introduce the change of variables 

p = w-u(ii,xx,x2) 
q = z-v(ii,xx,x2) , 

then in these new coordinates the system (*) has the form 

xx = a(ii)xx + fi(ii)x2 + Yx(fi, xx, x2, p + u(ti, xx, x2), q + v(fi, xx, x2)) 
/**>, *2= -P(v)xx + a(n)x2+ Y2(fi,xx,x2, p + u(ii,xx,x2), q + v(/i, xx, x2)) 

p = Hx(ii)p + X(ii,xx,x2,p,q) 
q = H2(ii)q + Z(\i, xx, x2, p, q), 

where X, ZeCrX, X(\i, xx, x2, 0, q) = 0, Z(\i, xx, x2, p, 0) = 0. 

Let cp = (cpx, cp2, cp3, cp4) be the parametrized solution of the system (**) in some 
neighbourhood V of 0. If p±0, q + 0, then cp(pL, xx, x2, p, q, t)£V" for a 
sufficiently large t. If dim q = 0 and pi^O, then cp(fi, xx, x2, p, t)£ V" for a 
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sufficiently large -t,t<Q. Therefore, if for pieU', there is an invariant set of the 
system (**) in V", then it must be a part of the submanifold p = 0, q = 0. Now it 
suffices to consider the restriction of this system to the submanifold p = 0, q = 0, 
i.e. the system 

xx = a(fi)xx + P(fi)x2 + <Pi(fi, xx, x2) , 
x2= -(5(ii)xx + a(v)x2 + ®2(ti, xx, x2) , 

where <Pk(ii, yi, x2) = ^pkjco*(fi, xx, x2, u(ii,xx,x2), v([i, xx, x2)), co* = (co*, co*, 

..., co*n), C2(ii) = (Pki(ii)). 

Proposition 3. 

S i |A,G0I ^ for all ix. 
A: = 1 ; = 1 

2 n-

Proof. Suppose that ^ X IA/(^)I = 0 - Since 
k = l j = l 

r0„ En]_Ar \C2A CX + C2B]\AXCX A , a ] 
C U -9-1 ' S° [C3A C3 + C4B\ [A2C3 A2C4\' 

where A2 = diag (Hx, H2). Therefore C2A=AXCX and since by the assumption 
C2(n) = 0, then Ax(ii)Cx(n) = 0. The matrix Ai(l*) is regular and so C,(//) = 0. But 
this is impossible, because the matrix C(fi) regular and this proves Proposition 3. 

The properties of co* imply that 

(o*j(ii, xx, x2, w, z) = R2i(n, xx, x2) + R3j(n, xx, x2) + R4j((i, xx, x2, w, z) + 
+ R5j(li,xx,x2, w, z) + Rj(n,xx,x2, w,z), I"=l,2, ..., n, 

where 
R2j(li, xx, x2) = rJ

20(ii)x
2
x + rJ

xx(fi)xxx2 + ri)2(ii)x
2
2 , 

R3i(li, xx, x2) = rio(//)*i + ri2(^)-r?jr2 + r2i0<0*.*2 + r{)3(fz)x3
2, 

d e C ^ o n U', 
p* 

R4j(li, xx, x2, w, z) = ^J(c
J

20w
2 + c{nwixx + cJ

02wxx2) + 
i= 1 

Q* 

+ 2 (dJ
20z

2 + dJ
0XZiXx + dJ

02ZiX2), 
» = i 

P* 

R5j(fi, xx, x2, w, z) = 2(c™w3i + cJ
2X w2xx + cJ

22w
2x2 + CJ

X2WiX2
x + 

1 = 1 

+ cJ
X3WiX2

2) + 2 ^ , (dioZ3 + dJ
2Xz2xx + dJ

22z
2x2 + dJ

X2ZiX2
x + dJ

X3ZiX2
2), 

where w{, z, are components of w, z respectively, dim w=p*, dim z = q*, cik = 
cik(\i), dik = dik(ii) are Cr functions on U', Rj([t9 xx, x2, w, z) contains only terms 
of orders higher than 3. 
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Lemma 6. Let u(/i, JC,, JC2), ?l(/i, JC,, x2) he the mappings defined by equations 
(1), (2), (3) and let u=(uu u2, ..., up*), ?; = (?;„ u2, ., vl{*). Then 

u,(/A JC,, jc2) = u2(,x
2 + u',,x,x2 + u(')2x2 + u*(\i, x,, x2) , 

^ ( l i , JC,, JC2) = 7>2()JC
2 + V\ ,x ,x 2 + v[)2x\ + V*(fA, x,, x2) , 

/ = 1,2, , . . . , F * ; / = 1, 2 _/*, ukl = ukl(ii), vkl = vk/(iu) are C " 2 o n ( / ' 

and r17ese coefficients depend only on the elements of H,, F12, «,/8 ancI o/7 
D2(Q*(ii, 0, 0), y = l , 2 , . . . , « , bi/1 f/zese c/o not depend on d'n(o*(fi, 0, 0), /' = 
1, 2, ..., AI, m > 2 ; u*(l/, JC,, x2), f *(l^ *,, JC2) contain only terms of orders higher 
than 2. 

Proof. We shall prove the lemma for u'2() only, because for the remaining 
coefficients the proof is similar. 

, _ a _ ( / i , 0 , 0) 
9JC, 

The formula (1) implies that 

3_,(//, JC,, JC2 )_ f° _H i <J9y3 9T/, 9 Y3 3/I2 
9x, J+OC I 9JC, 9JC, 9JC2 3JC, 

9 y 3 / 9u 977 9M 97/2\ 9 y 3 / dv 9/7, 97j 97l,\ 
dw \9JC, 9x, 3x 2 9x , / 9Z \9x, 9x, 9x 2 9x , / +- da. 

T_ • i_ • • i duXu, 0 , 0 ) ~ It is obvious that ^ - = 0 . 
9JC, 

d\(ti,xl,x2)= f° c-H\ 9 tdYAdrit . 9y3927/, | 

9x2 J+_ 19JC, V 9JC, / 9JC, 9JC, 9x2 

. 9 /9y3\977219y3a2y/2. a / a ^ / ^ ^ + 1 ^ 3 _ _ \ + 

9JC, V 9JC 2 /9JC, 9JC2 9x2 9JC, \ 9 H > / \9JC, 9JC, 9JC 29JC,/ 

t 9 y 3 9 /3u 977, ( du dn2\ ^ 9 / 9 Y - \ /dv dnx | 9?J 9yy, \ | 

3 H > 9JC, \ 9 J C , 9JC, 9JC2 9 J C , / 9JC, \ 9 z / \ 9 x , 9 x , 9x 2 9 x J 

+ 9 _ _ _ _ _ / 9 T J 977, | dv d*1*\]da 

dz 9JC, \9x, 9JC, 9x2 9 * , / I 

Since dy3(/i, 0 , 0 , 0 , 0 ) = 0, it is obvious that ^~i ' dependes on 
ox, 

9 77 9 77 
•*7i, 7̂2, ^p1 , T-^ , d2Y3(fi, 0, 0, 0, 0) only and does not depend on derivatives of 77,, 

ox, ox, 

fh of orders higher than 1. By [1,22.31 f ^ ' ° ' 0)> § ^ ' ° ' 0 ) depend on the 
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elements of // , , H2, a, ft only and therefore u'2()(^) = ^~i ' ' depends on the 
ox i 

elements of. / / , , H2, a, ft and it is a polynomial of the coefficients of 
d2«)*(ii, (),(), (),()) and it does not depend on dm(o*(ii, 0, 0, 0, 0), m>2. The 
proof is complete. 

For the simplicity of computations, we shall suppose that dim w = p = 1, 
d imz = 0. In a general case the procedure is the same. Let U(/J, xx, x2) = 
u2()x

2 + uxxxxx2 + u()2x
2

2 + u*(fi, xx, x2), where uik = uik(n)e Cr, u*(fi,xx,x2) con
tains only terms of orders higher than 2. Then 

(o*(fi, xx, x2, u(fi, xx, x2)) = R2i(fi, xx, x2) + R^(fi, xx, x2) + 

+ R4i(pi, xx, x2, u(fi, xx, x2)) + 

+ Rtidi, xx, x2, «(//, xx, x2)) + Rj(ii, xx, x2, u(fi, xx, x2)), 
where 

%R4i(/d, xx,x2, u(fi, xx, x2)) = c'2()u
2(fi,xx, x2) + d)Xu([i,xx,x2)xx + 

+ c'()2u([i, xx, x2)x2 = c'()X(u2()x
2 + uxxxxx2 + u()2x

2
2)xx + ci)2(u2()x

2 + uxxxxx2 + u()2x
2

2)x2 + 
+ term of orders higher than 3, i.e. 

R4i(/u, xx, x2, u(fi, xx, x2)) = ci)Xu2()x] + (d)Xuxx + cJ
()2u2())x

2x2 + (d)Xu()2uxx)xxxl + 
+ c()2u()2xx + 

+ term of orders higher than 3. 
R5i([i, xx, x2, u([i, xx, x2)) contains only terms of orders higher than 4. Therefore 

a)*(fi, xx, x2, u(fi, xx, x2)) = Rfi(fi,xx, x2) + R*i(fi, xx,x2) + R*(fi,xx,x2), 

where /?!,(//, xx, x2) = R2j(n, xx, x2), 
RM\1*"> X\I X2) = s3o-£| + S2XXx + SX2XXX2 + S()$X2, s3o = r3o + C()X W20? 

5*21 ~r2X + c()Xuxx + c()2u2(), sX2 = rx2 + c()Xu()2 + c()2uxx, s()$ = r()3 + c()2u()2 

and R*(fi, xx, x2) contains only terms of orders higher than 5. Then 

<£.(]U, xx, x2) = P2(ii, xx, x2) + Pi(fl, xx, x2) + P(fi, xx, x2), 
02(li, xx, x2) = Q2(/u, xx, x2) + Q>(ii, xx, x2) + Q(JA, x{, x2), 

where 

P2(i", xx, x2) = a2()x
2 + axxxxx2 + a()2xl, 

P3(/t/, xx, x2) = aM)x] + a2Xx2x2 + aX2xxx
2
2 + a()?,x\, 

Q2(li, xx, x2) = b2()x
2

x + bxxxxx2 + b()2x
2

2, 
Q>(ti, xx, x2) = bM)x

3
x + b2Xx2x2 + bX2xxx

2
2 + Lw2\ 

alk^<**(v) = 1?ftiirL b*=bik([i) = j?jft2iS
i
ik for (/, k) = (2, 0), (1 ,1) , (0,2) and 

/ = • j=\ 

aik =- alk(ii) = "Zft^sL bik = bik(v)= j^ft^ for (/, k) = (3, 0), (2, 1), (1, 2), (0, 3). 
/ = • / • = . 
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We have proved that only aM), bM) depend on r30 and only a03, b03 depend on r()3. 
If r„ is a sufficiently small positive number, we can define the function d: 

[0, r„)—>Rl in the following way: For 0=^xx <r0, d(xx) = yx, where the point (yx, 0) 
is the point of the first intersection of the trajectory of the system 

( . xx = 0x(O,xx,x2), 
1 ) x2=02(O,xx,x2) 

through the point (xx, 0) with the x,-axis. This trajectory intersects the jc,-axis at 
least at one point different from (xx, 0) because the point (0, 0) is a focus of the 
system ( 0 ) . By [2, IX] a""(0) = 3!a3, where 

a? = 4L? ^aM) + *<»)+ a'2 + ^ 2 , 1 

- —2 [2(a20b20- a02b02) - axx(a02 + a2()) + bxx(b02 + b20)] 

(cf. [2, IX]). 

Now we shall prove the following lemma. 

Lemma 7. Let H03(A,X) be the set of %eHr
x(A,X) such that if 

(a0, x0)eZ2(t;), then a 3 ^ 0 . Then this set is open and dense in H\(A, X). 

Proof. We can consider a3 as a polynomial function of the variables r\k and c'ik. 

a> = Z £ 5 S 3 [ ^ ! / ^ o + 02y-4] - y = ^ 5 2 Wuir*™ + c[nu20) + £2 /(ro3 + C02K02)] - 7> 

where /?.7 = # / v0), y is a polynomial of the variables r,*, (/, £) = (2, 0), (1, 1), 
(0, 2), (2, 1), (1, 2), cL (/, k) = (2, 0), (0, 1), (0, 2), but it does not depend on 
rio, rf)3 • Now the opennes is obvious, because a3 depends continuously on r{*, c'ik. 

Dens i ty . Suppose that the set H„3(A, X) is not dense. Then there is a 
£ e H[(A, X) such that a3 = a3(r1

30,..., rm, ...) = 0 on some open set in the corres
ponding euclidean space. Therefore a3 has all coefficients equal to zero. The 
formula for a3 and the above computations show that in the expression of a3 there 

is only one term of the form K/?;,r„3,/= 1, 2, ..., n \K = -rfi2) and only one term of 

the form K/32rW)3, 1 = 1,2, ..., n. The other terms do not contain the variables r()3 

and r30. This implies that /81/(0) = j82y(0) = 0 for all 1 = 1, 2, ..., n, but this con
tradicts Proposition 3. 

From Lemmas 3—7 and from [2, p. 274] we obtain the following theorem. 

Theorem 2. There is an open and dense set Hr
2(A, X) in fT(A, X) (r ^ 3) such 

that for every £ e TT2(A, X) 

(A) (1) the set Z2(£) is finite. 
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(2) If (a0, x{)) e Z2(§), then the mapping £a()(
x") has exactly one pair of 

conjugate pure imaginary eigenvalues. 

(B) There is a neighbourhood Ux V of (an, Jt«) such that the point (a(„ JC„) divides 
the set C(£)n(Ux V) into two components Kx and K2, where 
(1) for (a, x) e K, there is no closed orbit of §„ in V, 
(2) for (a, x) e K2 there exists exactly one closed orbit of^a in V. Moreover, if 

din X- 1 and « 3 < 0 ( a 3 > 0 ) , then this orbit is stable (unstable). 

E x a m p l e . Let us consider the following second order ordinary differential 
equation on R1: 

(S) * = v 

y } v= -x + iiv + v(x2 + v2), [ieRl , 

or in the form of the equation 

x — pd + x + x[x2 + (x)2] = 0 . 

Denote Q = -(X2 + v2). The form of the system (S) implies that for o we have the 

following differential equation: 

Q = v2(Q2 + fi). 

This implies that o is constant on the parabola o2 + \i = 0 and this means that for 
/ i < 0 the circle y: x2 + v2 = — [i is a closed orbit of the system (S). For \x<0 all 
eigenvalues of the matrix of the first derivatives of the right-hand side of (S) at 
(0, 0) have negative real parts and therefore the critical point (0, 0) of the system 
(S) is a stable focus and the closed orbit y is unstable. For {i > 0 the system (S) has 
no closed orbit and the point (0, 0) is an unstable focus, because all eigenvalues of 
the matrix of the first derivatives of the vectorfield (S) have positive real parts. 
Therefore we have the following pictures of trajectories: 

yü<0 /л = 0 p>0 

It is easy to compute that for the equation (S) a 3 = it and therefore this case is 
generic. 

The author is thankful to P. Brunovsky for helpful discussions. 
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ТИПИЧНЫЕ СВОЙСТВА ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ 
УРАВНЕНИЙ ВТОРОГО ПОРЯАДКА НА ДИФФЕРЕНЦИРУЕМЫХ МНОГООБРАЗИЯХ 

Милан М е д в е д ь 

Резюме 

В этой статье рассматриваются типичные бифуркации траекторий однопараметрических 
обыкновенных дифференциальных уравнений второго порядка в окрестности критических 
точек. Доказывается, что возможны два типичных случая: Матрица первых производных 
векторного поля имеет 

1. одно собственное число равно 0 
2. пару чисто мнимых собственных чисел. 
Изучаются соответственные к случаям 1 и 2 биауркации. 
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