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Math. Slovaca 28,1978, No. 3, 311—316 

A REMARK ON THE CEBYSEV PROPERTY 

BOHDAN ZELINKA 

At the Fifth Hungarian Colloquium on Combinatorics in Keszthely in 1976 B. 
Uhrin has proposed the following problem [1]: 

Let AaRn be a set of finite cardinality \A \ = m ^n + 1. The set A is said to 
have the Cebysev (T-) property if the points of A can be indexed (i.e. if A can be 
written in the form A = {ae}r=i) so that the condition 

sgn det [a,., ai29 ..., ain] = const =£ 0 

for all {4},:=,, l.S;1.^/2 = ... = in--Sm holds. 
Problem: Find some (fairly simple) sufficient (and, or) necessary conditions for 

A to have the T-property. 
He we shall solve this problem for the particular case of n =2. We shall always 

use the term the Cebysev property, not the T-property. 
If [a,, a2], [bu b2] are two elements of R x R (where R denotes the set of all real 

numbers), we write [au a2] > [bu b2] if and only if 

ai a2 
bl b2 

> 0 

The relation > is evidently irreflexive and antisymmetric; it is not transitive on 
RxR. 

Suppose that A is a subset of RxR with the property described in the text of the 
problem. We put [au a2] >[bu b2] if and only if [au a2] and [bu b2] are elements of 
A and the element [au a2] has a greater index than [bu b2] in the described 
indexing. The relation > is a linear ordering and must coincide with the restriction 
of > onto A. Therefore the restriction of > onto A must be transitive. On the 
other hand, if the restriction of f> onto A is transitive, it is a linear ordering and A 
can be indexed according to that ordering and this indexing has the required 
property. Thus we need to find all subsets A oi RxR with the property that the 
restriction of t> onto A is transitive. 

The set R of all real numbers can be partitioned into three sets P, N, {0}, where 
P is th$ set of all positive real numbers and N is the set of all negative real numbers. 
On the set R x R we have a partition 

^ = { P x P , P x N , P x { 0 } , N x P , N x N , N x { 0 } , { 0 } x P , { 0 } x N , { 0 } x { 0 } } 
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The sets from &> correspond to the rows and the columns of Table 1. If SxeS?, 
S2 e Sf9 then at the intersection of the row corresponding to Si and the column 
corresponding to S2 it is written, when for an element [aua2]eSx and for an 
element [bub2]eS2 we have [aua2] t> [bub2]. The reader may verify the 
correctness of these data himself. 

Evidently A cannot contain any pair of linearly dependent elements; in this case 
the determinant of this pair would be equal to zero. In Table 1 and in the following 
text we shall tacitly suppose that A does not contain such pairs. 

Now if A contains some elements from PxP and some elements of NxNsuch 
that either aja2<bjb2 for each [au a2]eAnN x N and each [bu b2] e AnP x P, 
or aja2 > bjb2 for each [au a2] e AnNxN and each [bu b2] e AnPxP, then 
the restriction of fc> onto A n(P x PuN x N) is transitive. If A contains elements 
[au a2]ePx P, [bu b2]e Nx N, [c„ c2]e PxP such that aja2 < bjb2 < cjc29 

then [au a2]>[bx, b2]9 [bu b2] > [cu c2], [cu c2] > [au a2] and the restriction of t> 
onto A is not transitive. Analogously in the case when A contains [aua2]e NxN, 
[bub2] e PxP, [cuc2] e NxN and aJa2 < bjb2 < cjc2. 

Similarly if A contains some elements from PxJV and some elements from 
NxP, then the restriction of > onto An(Px N u N x P) is transitive if and only if 
either aja2 < bjb2 for each [au a2] e A nP x N and each [bu b2] e A nN x P, or 
aja2 > bjb2 for each [au a2] e AnPxN and each [bu b2] e AnNxP. 

PxP PXN 

Í0}xN 

{ O J x P 

Px{0} 

Nx|oj 

NxN 

F ig . l 

Now for two elements Su S2 from Sf we write Si-»S2 if and only if [au a2] > 
[bu b2] for each [a,, a2] e S2 and each [bl9 b2] e Su We construct a mixed graph G 
whose vertex set is Ŝ— {{0} x {0}} and in which there is a directed edge from Si 
into S2 if and only if Si—>S2 and there are undirected edges joining PxP with 
NxN and PxN with NxP. The graph G is in Fig. 1; the undirected edges are 
drawn by dashed lines. 
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We omit the set {0} x {0}, because every determinant containing its element as 
a row is equal to zero. 

The pairs Px{0} , N x {0} and {0} x P , {0} x N are not joined by an edge, 
because the determinants from elements of sets of any of these pairs are equal to 
zero. 

Now let A c= jR x R. By G(A) denote the subgraph of G induced by the set of all 
vertices corresponding to the sets with which A has non-empty intersections. 

L e t r J = { { P x P , P x N , N x { 0 } } , { P x P , { 0 } x N , N x { 0 } } , { P x P , { 0 } x N , 
NxP}, {PxN, Nx{0} , {0}xP}, {PxN, {0}xN, NxN}, {Px{0}, NxN, 
{0} xP}}. This is the set of all triples of vertices of G which induce directed 
circuits. Evidently A must have the property that in each triple from T there exists 
at least one set disjoint with A ; otherwise the restriction of r> onto A would not be 
transitive. 

Now consider the undirected edge of G joining PxP with NxN. There are 
three directed paths of the length 2 from NxN to PxP; they go through the 
vertices NxPyNx {0}, {0} x P. Further there are two directed paths of the length 
2 from PxP to NxN; they go through the vertices Px{0} , {0} x N. Therefore if 
A has non-empty intersections with PxP, NxN and at least one of the sets 
N x P, N x {0}, {0} x P, then A must be disjoint with P x {0} and {0} x N and 
aja2 > bjb2 for each [au a2] e AnPxP and each [bu b2] e AnNxN. If A has 
non-empty intersections with PxP, NxN and at least one of the sets P x {0}, 
{0} x N, then A must be disjoint with N x P, N x {0} and {0} x P and aja2 < 
bjb2 for each [au a2] e AnPxP and each [bu b2] e AnNxN. 

Similarly, if A has non-empty intersections with PxN,NxP and at least one of 
the sets PxP,Px {0}, {0} x P, then it must be disjoint with N x {0} and {0} x N 
and a Ja2 < bjb2 for each [au a2] e AnPxN and each [bu b2] e AnNxP; if A 
has non-empty intersections with PxN,NxP and at least one of the sets N x {0}, 
{0} x N, then it must be disjoint with P x P, P x {0} and {0} x P and a/a2 > bjb2 

for each [au a2] e AnPxN and each [bu b2] e AnNxP. 
We have listed some necessary conditions for A to have the Cebysev property. 

Now suppose that A fulfills these conditions. Then the graph G(A) contains no 
directed circuit. If G(A) contains PxP and N x IV and we have aja2 > bjb2 (or 
aja2 < bjb2) for each [au a2] e AnPxP and each [bub2] e AnNxN, we 
direct the edge joining PxP with NxN towards PxP (or NxN respectively). If 
G(A) contains PxNandNxP and we have aja2 < bjb2 (or aja2 > bjb2) for 
each [au a2] e A nP x N and each [bu b2] e A nN x P, we direct the edge joining 
PxN with NxP towards PxN (or NxP respectively). Evidently we obtain an 
acyclic digraph. As O is transitive on each set from S, it is evidently transitive an 
A. Therefore our conditions are also sufficient. 

Thus we have proved a theorem. 
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Theorem. Let AaRxR be a set of finite cardinality \A\=m^3. The set 
A has the Cebysev property if and only if the following conditions are fulfilled: 

(i) A contains no pair of linearly dependent pairs. 
(ii) A does not contain [0, 0]. 
(iii) If 3- = {{PxP, PxN, Nx{0}}, {PxP, {0}xN, Nx{0}}, {PXP, 

{0}xN, NxP}, {PxN, Nx{0}, {0}xP}, {PxN, {0}xN, NxP}, {PxN, 
Nx{0}, {0}xP},{PxN, {0}xN,NxN}, {Px{0},NxN, {0} x P}}, then in 
any element of ST there is at least one set disjoint with A. 

(iv) If AnP x Pi=0, AnN x N ^ 0 , then either aja2 > bjb2 for each [aua2] e 
eAnPxP and each [bub2] e AnNxN, or aja2 < bjb2 for each [aua2]e 
eAnPxP and each [bub2] e AnNxN. 

(v) IfAnPxN±®,AnNxP£®, then either a Ja2 < bjb2 for each [aua2] e 
e AnPxN and each [bub2] e AnNxP, or aja2 > bjb2 for each [aua2] e 
e AnP xN and each [bu b2] e AnNxP. 

(vi) If A has non-empty intersections with PxP, NxN and at least one of 
the sets NxP,Nx{0}, {0} x P, then A is disjoint with P x {0} and {0} x Nand 
aja2 > bjb2 for each [aua2] e AnPxP and each [bub2] e AnNxN. 

(vii) / / A has non-empty intersections with PxP, NxN and at least one of 
the sets Px{0}, {0}xN, then A is disjoint with NxP, N x {0}, {0} xP and 
aja2 < bjb2 for each [aua2] e AnP xP and each [bub2] e AnNxN. 

(viii) / / A his non-empty intersections with PxN, NxP and at least one of the 
sets PxP,Px {0}, {0} x P, then A is disjoint with N x {0} and {0} xNand aja2 

< bjb2 for each [au a2] e AnP xN and each [bu b2] e AnNxP. 
(ix) If A has non-empty intersections with PxN, NxP and at least one of the 

sets N x {0}, {0} x N, then A is disjoint with PxP,Px{0} and {0} x P and aja2 

> bjb2 for each [au a2] e AnP xN and each [bub2] e AnNxP. 
This theorem is very complicated. But most of the troubles are caused by the 

pairs of numbers which contain zero. If we exclude them, we obtain a corollary. 

Corollary. Let A c (R - {0}) x (R - {0}) be a set of finite cardinality 
\A\ = m^3. The set A has the Cebysev property if and only if the following 
conditions are fulfilled: 

(a) A contains no pair of linearly dependent pairs. 
(p) If AnP x P=£0, AnN x N=£0, then either a Ja2 > bjb2 for each [au a2] e 

eAnPxP and each [bub2] e AnNxN, or a J a2 < bjb2 for each [aua2] e 
e AnP xP and each [bub2] e AnNxN. 

(y) If AnP x N=£0, then either a Ja2 > bjb2 for each [aua2] e AnP xN and 
each [bu b2] e AnNxP, or aja2 < bjb2 for each [au a2] e AnP xN and each 
[bub2] e AnPxN. 

(6) IfAnPxP£0,AnNxN±®,AnNxP=f=<d,thenaJa2 > bjb2 for each 
[au a2] e AnPxP and each [bu b2] e A nN x N. 
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(e) If AnPxP^O, AnPxN±®, AnNxP^Q, then aja2 < bjb2 for each 
[aua2] e AnPxN and each [bub2] e AnNxP. 

The subgraph of G induced by the vertex set{PxP,PxN,NxP,Nx N} is in 
Fig. 2. 

PxP PxN 

NxP NxN 

Fig.̂ 2 
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ЗАМЕТКА О СВОЙСТВЕ ЧЕБЫШЕВА 

Богдан Зелинка 

Резюме 

Пусть АсКп есть множество конечной мощости |А| = га^л + 1. Мы говорим, что А 
обладает свойством Чебышева, если Л может быть написано как А ={а |}7-1 так, что условие 

выполнено для всех 

sgn det [a,,, alv ..., a j = const -£ 0 

{Uï-i> l ^ i , < / 2 < . . . < i я ^ m 

Приведены необходимые и достаточные условия для того, чтобы множество обладало 
свойством Чебышева в случае п = 2. Это является частичным решением проблемы Б. Урина. 
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