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ON GRAPHS CONTAINING MANY SUBGRAPHS
WITH THE SAME NUMBER OF EDGES

JOZEF SIRAN

J. Bosak (oral communication) proposed to study the following question: Given
a graph G with n vertices such that each two induced subgraphs of G with k
vertices have the same number of edges, does it necessarily imply that G or G (the
complement of G) is complete ?

The theorem below shows that the answer to this question is positive for n =4
and each k satisfying 2=k=n-2.

All graphs discussed in this note are finite, undirected, without loops and
multiple edges. When speaking about a subgraph of a graph G we always mean the
subgraph induced by a subset of the set of all vertices of G. All other terms are used
in the usual sense (cf. [1]).

Theorem. Let G be a graph with n vertices, n Z4. If there exists an integer k,
2=k= -2 such that each two subgraphs of G with k vertices have the same
number of edges, then G or G is complete.

Proof. Suppose that each subgraph of G with k vertices has q edges. Choose an
arbitrary subgraph H of G with k + 1 vertices and & edges. Obviously H is regular,
since all its subgraphs with k vertices have the same number of edges. The sum of
the numbers of edges of all £ + 1 such subgraphs of H is equal to (k + 1)q. On the
other hand, each edge of H is contained in exactly kK — 1 point-deleted subgraphs of
H, and we immediately obtain the equality (k + 1)q = (k — 1)k. Thus, we have
proved that each two subgraphs of G with k + 1 vertices have the same number of
edges. Now we may assume (by induction) that each two subgraphs of G withn —1
vertices are regular and have the same number of edges. Then G is regular, too. Let
d denote the degree of each vertex of G. If 1=d =n — 2, there would exist three
vertices u, v, w such that uv is an edge of G and uw is an edge of G. But in this
case the degree of the vertex v in G — u would be d — 1, whereas the degree of w in
G —u is d. This is a contradiction because G — u is regular. Thusd =0ord =n —1
and the proof is finished.

Note that putting in our theorem k=n—1 we can only claim that G is an
arbitrary regular graph. The cases k=1 or k=n are trivial.
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I'PA®BI COOJEPXAIIME
MHOTO ITOAPA®OB C OOUHAKOBBIM YHUCIIOM PEBEP
Hoced lupanb
Pesome
B craTbe foka3zana ciegyrowast Teopema : Ilycts G-rpag ¢ n sepinHamu, n =4. Ecnu cymectsyet

HaTypajibHOE k, 2=k =n —2 Takoe, 4TO Jt06ble ABa k-BEpLIMHHbIX NMoarpada rpadpa G umeror
OIMHaKOBOe YHCNO pebep, 10 G unu G ABISETCS NMOJNHLIM IpacoM.
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