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ON A LOCAL PROPERTY OF THE UNORIENTED
GRAPH OF A MODULAR MULTILATTICE

MARIA TOMKOVA

L. R. Alvarez [1] investigated unoriented graphs of modular lattices of finite
length. In this note an analogous question for modular multilattices will be studied.

A partially ordered set P is said to be of locally finite length if each bounded
chain in P is finite. Throughout this paper P will be a partially ordered set of locally
finite length. For the elements a, b € P we write a >b or b <a (a covers b, or b is
covered by a) if a > b and there does not exist any element ¢ € P witha >c >b. If
two elements a, b € P are noncomparable, we write a|b.

A subset S of a partially ordered set P is called a saturated subsystem of P if for
each x, yeS we have x <y in P, whenever x <y in S.

By a graph G(S) of a subset S = P there is meant the unoriented graph (without
multiple edges and loops) whose vertices are elements of S ; two vertices a, b are
joined by the edge (a, b) iff either a covers b or b covers a. In such a case we also
say that a and b are neighours.

A circuit in the graph G(S) is a sequence {(Xo, X1), (X1, X2), ..., (Xn=1, X»)} Of
distinct edges such that x,=x,.

A graph isomorphic with the graph in Fig. 1a is called a graph of type K'. A
graph isomorphic with the graph in Fig. 1b is said to be a cube.

L. R. Alvarez [1] proved the following result:

(A) Let L be a modular lattice of finite length. Let F — L and let G(F) be of type
K’. Then there exists an element x € L such that G(Fu{x}) is a cube.

In this paper we shall show that for modular multilattices of locally finite length
the analogous assertion fails to be true. We shall investigate the question under
what additional conditions for F the assertion remains valid.

We recall the basic definition concerning multilattices [2].

A multilattice is a poset M in which condition (i) and its dual (ii) are satisfied : (i)
Ifa,b,heM and a=h, b =h, then there exists v € M such that (a) v=h, v =a,
v=b and (b) zeM, z=a, z=b, z=v implies z=v.

The symbol (avb), designates the set of all elements v € M satisfying (i) ; the
symbol (aAb), has a dual meaning. We denote

avb=(@avb),, anb=J(aArb)..

h=a dSa
h=b dsb
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Recall that the sets avb or anb may be empty. If M is directed, then
avb#@+anb for each pair a, b e M.

A multilattice M is said to be modular iff for every a, b, c, d, h € M satisfying
d=a,b,c=h,a=b he(avc),, de(bac)s we have a=b.

We shall describe all nonisomorphic types of partially ordered sets F, card F =7
satisfying the following conditions:

(a) G(F) is of type K';

(b) there exists a directed modular multilattice My of locally finite length such
that F is a saturated subsystem of M.

X
Fig. 1a Fig. 1b

We denote by % the set of all nonisomorphic types of partially ordered sets as
above. Let F € . We shall say that F can be extended to a cube when it fulfils the
following condition: Whenever M is a directed modular multilattice of locally finite
length such that F is a saturated subsystem of M, then there exists an element
x € M, such that G(Fu{x}) is a cube.

We shall determine the set of all partially ordered sets Fe % that can be
extended to a cube (Theorems 3, 4).

Assume that M is a directed modular multilattice of locally finite length and F is
a saturated subsystem of M such that the graph G(F) contains a circuit Ks=
= {(x0, X1), (X1, X3), ..., (x4, Xs), (X5, X0)} and the vertex x¢, which is joined by edges
with three vertices of the circuit K¢ such that there exist no triangles in G(F). Let
us denote K = {x,, x4, ..., Xs}. In what follows the elements of K will be denoted by
x;, where i is an integer taken modulo 6.

In the Lemmas 1—4 we suppose that G(K) is a circuit. (We do not use the
property of the set F.)
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Lemma 1. The partially ordered set K has at most three minimal elements.
Proof. If we assume that K has more than three minimal elements, then some
two of them would be comparable and this is a contradiction.

Lemma 2. Let the saturated subsystem K have the least element. Then K is
isomorphic to the partially ordered set in Fig. 2.

xio!

Xm Xioz
Xios Xin
Xi

Fig. 2

Proof. Assume that x; is the least element of K. Since x; is a neighbour of the
vertices X;.1, Xi+s, W€ have x,.; >x;, x;+s > x;. The element x;., is joined by an edge
with the vertex x;.,, and we shall show that x;., > x;., is valid. Let x;,» <x; .. Since x;
is the least element of K, we have x;,,>x; contradicting x;,,>x;. By the same
reasoning we get x..4> x;,s. Now we will show that x;, (4. Assume that we would
have x;,; <x:.s. Then there exists an element z € M such that x;,; <z <x;.4. This
yields a contradiction, because the multilattice M is modular and hence all maximal
chains from x; to x;., must be of the same length. Similarly we cannot have
Xie1>Xiva thus Xi.|X:.s. Analogously we werify that the relation x;,,|x:.s holds.
This implies that x;..|x:., and hence for the element x;., which is joined by edges
with x;.4, X:+2, We have the following possibility :

a) X;,; covers X4 and x;,.

b) x.,s is covered by x,,, and x;,,.

We shall show that the case b) is impossible. In fact, if x;,3 <X;+4 and X3 <Xi42,
then either x;.s|x; (and hence x; would not be the least element of K), or x,+3>x,,
which would imply that the maximal chains from x; to x;., are not of the same
length. Thus Xx;.3 > X2, Xi+3>Xi+s and the proof is complete.

Lemma 3. Let the subsystem K have two minimal elements. Then it is isomorphic
with some of the partially ordered sets in Figs. 3a, 3b, 3c.
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Xiey

Xieg Xiet

Xis2

Xied
Fig. 3a Fig. 3b

X
Fig. 3¢

Proof. We may suppose that one of the pairs {x;, Xi+2}, {X:, Xi+3} is the pair of
minimal elements of K.

If x;, x;+, are minimal, then x; <X, 1, X; <Xiis, Xizz <Xi+3, Xiv2 <Xis;. We shall
show that in this case x;.3|x;,s. Since the multilattice M is directed and modular,
there exists an element ¥ e M such that u <x;, u <x;.,. If we assume x;,;<x,s,
then the maximal chains from u to x;. s are not of the same length, contradicting the
modularity of M. For the same reason the relation x;,s<x;.; is impossible. This
implies that for the element x;., we have to investigate the following cases:

3a) x;.4 covers the elements x;.3, Xiys;

3a') xi.4 is covered by xi.s, Xiys.

The case 3a’) cannot occur because the element x;,, is not minimal. In the case 3a)
we have obviously X;,1|%;+3, X:+1]%:+s. From the Jordan—Dedekind chain condition
it follows Xis1|Xi+s, Xi|Xiss, Xis2|Xirs. Hence in this case the subsystem K is
isomorphic with the partially ordered set in Fig. 3a.

If x;, x:»3 are minimal elements, then x; <X;.1, Xi <Xi+s, Xi+s <Xirz, Xie3 <Xiss.
Since X;.4, Xi+5 are joined by an edge and so are x;.., X;+2, we have the following
four possibilities :
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3b1) Xiva>Xivs and X4 > Xis2

3b2) xiva>Xips and X2 > Xie1

3b1) Xiva<xXiys and x4 <Xtz

3b5) Xiva<Xirs and Xz <Xit1.

In all these cases we have evidently Xi.z|Xisa, Xis1|Xivs. In the case 3b,) Xi|xi.z,
Xi+s|Xi+3 is valid and we shall show X;.:|Xi.s. The assumption x;+;>x.s would
contradict X;,4> X3 and X,,s <X+, implies X;.s <X..;, which contradicts Xi+s|xi.1.
Analogously we get X;.1|x;+s. Thus in the case 3b,) the subsystem K is isomorphic
with the partially ordered set in Fig. 3b. In the case 3b;) we arrive at the same
conclusion.

In the case 3b,) we have: x|Xi+s, Xi+3|X:.s. From the modularity of the
multilattice M it follows that x;,1|X;+a, Xi+s|X:+2. This implies that the subsystem K is
isomorphic with the partially ordered set in Fig. 3c. The case 3b;) yields the same
conclusion.

The following assertion is obvious.

Lemma 4. Let the subsystem K have three minimal elements. Then K is
isomorphic with the partially ordered set in Fig. 4.

Xie1 Xie3 Xiss
X,; xi'Z Xioy
Fig. 4

The lemmas 1—4 may be summarized as follows.

Theorem 1. Let M be a directed modular multilattice of locally finite length and
let K = {xo, x4, ..., x5} be a saturated subsystem of M such that G(K) is a circuit.
Then K is isomorphic with some of the partially ordered sets in Figures 2, 3a, 3b,
3c, 4.

Now we shall suppose that xs is an element of the multilattice M such that
G(Ku{xs}) is of type K’ (i.e., Ku{xs} =F € ¥).

Lemma 5. The subsystem K cannot be isomorphic with the partially ordered set
in Fig. 3b.

Proof. Assume that the K would be isomorphic with the partially ordered set in
Fig. 3b. Then there exists exactly one minimal element x; of K that is a neighbour
of xs. Thus x, is a neighbour of x;.., and xs is a neighbour of x;... Since x;.,>x;, we
have x; <xs<X.s. From x|x;,, it follows x;,,<xs This implies x;,,<X,+s con-
tradicting X;2|X:+4.
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Lemma 6. Let the subsystem K be isomorphic with the partially ordered set in
Fig. 2. Then the partially ordered sets F and that in Fig. 5 are isomorphic or dually
isomorphic.

Xis3

Xiek
@

Xi.sU

@
Xi
Fig. §

Proof. Assume that x; is a minimal element of K and that x, is joined by edges
with X1, Xit3, Xiss. FTOm x;43>Xi41, Xi43>Xi4s and from the modularity of M it
follows X4y <X6<Xit3, Xiss<Xe<Xis3. We have obviously x4|x;,2, Xs|X:+s. Hence
the subsystem F is isomorphic with the partially ordered set in Fig. 5. If we assume
that x, is joined with the elements x;, x;.,, x4 and that x; is a minimal element of
K, then by a similar argument we arrive at the conclusion that the subsystem F is
dually isomorphic with the partially ordered set in Fig. 5.

Lemma 7. Let the subsystem K be isomorphic with the partially ordered set in
Fig. 3a (3c). Then the subsystem F is isomorphic (dually isomorphic) with the some
of the partially ordered sets in Figs. 6a, 6b, 6c.

Xioy Xe
xios C B X i*3
Xio1
Xi Xis2

Fig. 6a
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Xi X; Xi'z

Fig. 6b Fig. 6¢

Proof. Let x;, x;.» be minimal elements of K. First we suppose that the element
X, is joined by edges with the elements x,,,, x;.s, x,.s. Since Xiet]Xirss Xigs|Xivs,
either xs covers X;.1, Xi+3, Xi+s OF X4 is covered by x,.,, x;.,, X:+s. In the first case we
get x¢|x,... Hence the subsystem F is isomorphic with the partially ordered set in
Fig. 6a. In the second case we have x¢|x;, x4|x;., and hence the subsystem F is
isomorphic with the partially ordered set in Fig. 6b. If we assume that x is joined
by edges with the elements x;, X..2, X;.4, then from x;,, >x;, x;.,4 >x;+2 and from the
modularity of M it follows x; <xs<Xi... Moreover xs|x;.s, xe|X;11, Xs|x.+. Hence
the subsystem F is isomorphic with the partially ordered set in Fig. 6c.

Since the partially ordered sets in Fig. 3c, 3a are dually isomorphic, the assertion
concerning the partially ordered set in Fig. 3c can be proved by the dual way.

Lemma 8. Let the subsystem K be isomorphic with the partially ordered set in
Fig. 4a. Then the subsystem F is isomorphic or dually isomorphic with some of the
partially ordered sets in Figs. 7a, 7b.

Xiot Xies Xie3

X : X..z XM X Xie2 Xe Xiey
Fig. 7a Fig. 7b
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Proof. Let x;, x;.,, X:»s be minimal elements of K. The element x, can be joined
by edges with either xi, X;.2, Xi+s OF With X.\1, Xit3, Xivs. Since x;|xiy2|Xi+4|x: and
Xis1|Xis3|Xiss|Xis1, in the first case the element xs either covers X;, Xi.2, Xivs OT Xg iS
covered by xi, Xi.2, Xira. If X6 is joined with x;,;, Xi+3, X:+s, We obtain an analogous
result. Thus the proof is complete.

The lemmas 5—8 may be summarized as follows.

Theorem 2. Let M be a directed modular multilattice of locally finite length. If
M contains the saturated subsystem Fe %, then F is isomorphic or dually
isomorphic with some of the following partially ordered sets in Figs. 5, 6a, 6b, 6c,
7a, 7b.

A graph which we obtain from the graph in Fig. 5 by adding of one vertex x, and
edges (x7, Xi+2), (X7, Xirs), (X7, X:), (x7, xs) Will be called a cube with a diagonal.

Theorem 3. Let M be a directed modular multilattice of locally finite length. If
the saturated subsystem F € & belonging to M is isomorphic or dually isomorphic
with the partially ordered set in Fig. 5, then F can be extended either to a cube or to
a cube with a diagonal.

Proof. Let us assume that F is isomorphic with the partially ordered set in
Fig. 5. Since X4 <Xi+3, Xiva <Xiys and x; < X2, X; <Xi+4, from the modularity of M
it follows that there exists an element x, € M such that x; € (X; 12 A Xi+4)s,, X7 <Xis2,
Xx7<Xi+s, X; <X7. Moreover x; is not identical with any element of F, because F is
a saturated subsystem of M. If x, > x, then from x; <xs and from x; <x; we obtain
a contradiction. Thus either x, is noncomparable with xs or x, <xs. In the first case
G(Fu{x,}) is a cube and in the second one G(Fu{x,}) is a cube with a diagonal..
In the case when F is dually isomorphic with the set in Fig. 5 the proof is analogous.

A multilattice M is said to be distributive [2] iff for every a, b, b', d, he M’
satisfyingd <a,b,b'<h,h=(avb), = (avb').d=(anb), = (anb'), we have
b=b'.

Coroilary 1. Let M be a directed distributive multilattice of locally finite length.
If the saturated subsystem F € & belonging to M is isomorphic or dually isomorphic
with the partially ordered set in Fig. 5, then F can be extended to a cube.

The proof follows directly from the Theorem 3 because from the distributivity of
M we obtain xs|x,.

Corollary 2. Let M be a directed modular multilattice of locally finite length and
let a saturated subsystem F € & belonging to M be isomorphic or dually isomorphic
with the partially ordered set in Fig. 5. If G(M) does not contain any subgraph
isomorphic to a cube with a diagonal, then F can be extended to a cube.

Theorem 4. Let F € F be a partially ordered set isomorphic or dually isomorphic
to some of the partially ordered sets in Figs. 6a, 6b, 6c, 7a, 7b. Then there exists
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a directed modular multilattice M such that F is a saturated subsystem of M and
F can be extended neither to a cube nor to a cube with a diagonal.

Proof. The multilattices M,, M, and M, in Fig. 8a, 8b, 8c are modular (the
modularity of these multilattices can be proved analogously as in the case of the

Fig. 8c

multilattice M, in [3]). The following saturated subsystems of M, (i =1, 2, 3) can
be extended neither to a cube nor to a cube with a diagonal: :

{x1, X3, Y1, Y2, Y3, 21, 22} =M,
{x1, X2, X3, Y1, Y2, ¥3, 71} =M,
{x1, X2, Y15 Y2, ¥3, Ya» 22} &M,
{yl, Y25 V4,121, 22, 23, i } M,
{)’1, Y2, Y3, Ya, 215 22,5 Za} cM,.
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Ol OTHOM JIOKATbHOM CBOVCTBE HEOPMEHTUPOBAHHOI'O I'PA®A
MOOYIIAPHBIX MYJIIBbTUCTPYKTYP

Mapus TomkoBa
Pe3ome

JI. P. AnBape3 foka3san uto ecau nogrpad G(F) ky6a, KOTOpblil MONYYMTCs U3 Ky6a ynaleHHEM
OJTHOM BEPLUHHBI U pebep C Hell MHUMAEHTHDIX ABIseTCH MoArpacdoM HeopueHTHposaHHoro rpaga G (L)
MOIYJIIPHO¥ CTPYKTYpbI L, KOTOpasi UMEET KOHEYHYIO JUIHHY, IOTOM BeCh Ky6 siBseTcs nmoarpacdom
rpada 3Toil CTPYKTYpbI. B 3TOH cTaThe JOKA3aHO, YTO I MOAY/ISPHBIX HANIPABJIECHHBIX MYJIBTUCTPYK-
TYp aHAJIOrHYECKOE YTBEPXKIEHUE HE MMEET MECTO a M3y4aeTcsi BONMPOC, NPH KOTOPBIX AONOJHHUTENb-
HBIX YCIOBMSIX VISl YACTHYHO YNOPSAOYEHHOTO MHOXeCTBA F yTBEPXKIEHHE MPaBIHBO.
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