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INTEGRATION 
IN PARTIALLY ORDERED LINEAR 

SPACES 

JAN SIPOS 

The purpose of this paper is to develop the integration theory for functions 
f\Q-^X on an arbitrary abstract measure space {Q, 5 ,̂ /i) with values in 
a partially ordered linear space X. 

When an integration method is to be built up, it is essential to assume that the 
range space X of a vector valued function has some kind of completeness property. 
For example, X may be taken a Banach space. Since we will have no metric or 
uniform structure on X, we will assume some kind of completeness depending on 
order. 

When we are introducing a weak or Gelfand—Pettis type integral, we necessarily 
need the notion of a dual space. It is also natural to assume that the dual of X 
separates points of X. In general X is not a topological space, thus our dual space 
will also be based on order, and we shall assume that it separates points of X. 

If one has a topological linear space, it is known that there are cases in which the 
original space cannot be embedded into its second dual. However, if, for example, 
the original space happens to be a Banach space, then it can be embedded into its 
second dual. We shall have a condition with respect to a partial ordering which will 
imply that this good property of the second dual will be preserved. 

Applications of these concepts to the construction of expected value and vector 
valued martingales will appear in subsequent papers. 

Similar problems were studied in [2], [5], [6], [9], [10] and [11]. 

1. Definitions and preliminary results 

A partially ordered linear space is a set X endowed with a structure of a partially 
ordered space and a structure of a real linear space satisfying the following 
compatibility conditions: 

(i) If JC, y and z are in X and x = y, then x + z = y + z. 
(ii) If x and y are in X and c is a non-negative real number, then x ^ y implies 

c • x = c - y. 0 will denote the neutral element of X. By X+ we denote the set of all 
non-negative elements from X. 
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By X < we denote the set of all order continuous linear functional on X, which 
can be represented as a difference of two monotone linear functionals. (Recall that 
a linear functional x<\X->R — reals is order continuous iff xn\0 implies 
j^OO-^O.) 

We shall say that X < is the order dual of X. As we pointed out, we want to build 
up the weak integral at first, and so for our considerations it is natural to assume 
that X < separates points of X, i.e. for x e X with x+ 0 there exists an x< e X < with 
x<(jc) + 0. If this is the case, we shall say that X is separative. It is easy to see that 
X < separates points of X if and only if the set of all monotone elements from X < 

(denoted by X+) separates the points of X. The ordering on X< is the following: 
x^y iff y ' - J t ' e X : . 

We say that the partially ordered linear space X is upward filtering iff to any x 
and y in X there exists z in X with x ^ z and y ^ z. 

1. Lemma. (Proposition 3.3.2 [7]) x is upward filtering iff X+ spans X (this 
means that every element of X can be written as a difference of two elements of 
X+). 

Let now X be a separative upward filtering linear space. Let x be in X ; then we 
define a map £x: X

<—>R as follows 

^x(x
<) = x<(x). 

Clearly £x is a linear functional on X < which is a difference of two linear monotone 
functionals on X< . (Let x = y — z with y, z = @; then ^ = | y — §7, where §v and £7 

are monotone linear functionals on X*".) 
Let now x<

n/x
<. Let xeX+; then x<

n(x)/x<(x) and so I fxOO/^OO Since 
every element from X is a difference of two non-negative elements we get that %x 

or order continuous for every x in X and so that £- is in X < < (the dual of X^). The 
map X H ^ embeds the space X into its second dual. We note that in this case the 
space X< is separative. 

Now, what is the type of completeness we have mentioned above ? We say that 
a partially ordered linear space is monotone o-complete iff every monotone 
increasing bounded sequence {xn} has a limit in X, i.e. the limn xr = \ln xn exists in 
X. 

In his book [1] G. Choquet said the following: 
"It is a general philosophical principle among mathematicians that in order to 

obtain interesting or deep theorems on topological vector spaces, one should 
assume that the space is locally convex." (pp 333) 

By reading these lines the author wondered whether a separative linear space has 
not to be a locally convex Hausdorff topological space with respect to some 
topology. Clearly it is so, with respect to the X < topology (the coarsest topology on 
X in which every x<eX< is continuous). This follows from the fact that if Y is 
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a linear space and F is a family of linear functional on X, which separates points of 
X, then with the F topology X becomes a locally convex Hausdorff topological 
space. 

We say that a sequence {xn} of elements of a partially ordered linear space X 

converges in order to x (in symbol xn->x ox xn-+x) iff there exist sequences {un} 

and {vn} in X with un^xn^vn and un/x\vn. 

We say that a sequence {xn} converges weakly to x (in symbol xn-^x) iff it 

converges in the X< topology. Clearly the order convergence implies the weak 
convergence. The consequence of this fact is the following: 

2. Theorem. If X is a separative linear space, then there exists a Hausdorff 
topology (namely the X< topology) on X such that X is a locally convex linear 
topological space and every continuous linear functional on X is order continuous. 

If X is a partially ordered linear space, we may say something about the order 
convergence in X. 

3. Lemma. Let X be a partially ordered linear space. Let xn/x(xn\x) and 
yn\y(yn\y)\ then 

(i) xn + yn/x + y (xn+ yn\x + y) 
(ii) c • xn/c - x, c - xn\c - x (c - xn\c • x, c • xn/c • x) 

according as c is non-negative resp. negative real. 
An easy consequence of the last lemma and the definition of the order 

convergence is the following: 

4.Theorem. Let X be a partially ordered linear space. Then X is a convergence 
group with respect to the order convergence (i.e. the map (x, y)»-»x - y is order 
dontinous). If Xis a monotone o-complete, separative, upward filtering space, then 
Xis a linear convergence space with respect to the order convergence (i.e. the map 
(c, x)*-+c • x is also order continuous). 

Since we shall deal with spaces of functions on a set with a partially ordered 
range space X, the following notes about the convergence in such spaces seem to be 
useful. 

Let / , g be functions on Q with values in X. We say that / ^ g if f(co) ^g(co) for 
all a) in Q. If &czXa, then / „ / / (in &) means that /„ S/„ + 1 for n = 1, 2, .. and 
feZF is a least upper bound of the family of functions {/„} in &% 

If fn((o)/f(co) in Xfor every co in Q, then we say that / , converges pointwise tof 
p 

on Q, and we shall write / „ /* / . 

p 

It is clear that / „ / / does not imply fn/f in general. (Let fneC (<0, 1)), 
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/„(JC) = 1 - J C \ Then / „ / / = l but 0 = / „ ( l ) / / ( l ) - 1, and so fn does not converge 
p 

to / pointwise. It is also obvious that / „ / / does not imply generally / „ / / in $% 

since / need not be even the element of SF. However, we are able to prove the 
following: 

5. Theorem. Let X be a monotone o-complete poset; LetSFcz Xa be closed with 
respect to the convergence p/, then the convergence / in 2F is equivalent to the 

p 

convergence / . 

Proof. Let fn/f in &\ then fn(co)^fn + l(co) ^ f(co) for every co in Q. X is 
monotone cr-complete, hence there exists an element g(co) in X with fn(co)/g(co) 
= f(co). By the definition of g we have g^/ and fn=g. Since / is a least upper 
bound of the functions {/„}, we have f"=g and so f=g. The other implication 
being similar, the theorem is proved. 

2. Examples 

We give examples to present objects we are interested in. 
6. E x a m p l e . Let f b e a linear space of real valued functions on an abstract 

space E. The ordering on £Fis pointwise, i . e . / ^ g means f(x)^g(x) for all JC in E. 
p 

Let / „ / / in & imply / „ / / . Let %x(f) = f(x). Obviously the map %x is a linear, 

monotone, order continuous functional on ZF. Hence 3% separates points of 3F. 

7. E x a m p l e . Let Pm be the set of all polynomials of the form 

a0 + ai* + ... + am-iJcm-1 + amXm 

(m — fixed) with the pointwise ordering. Let 

fn(x) = a0,n + al,mx + ... + am-Unx
m~l + am,nX

m 

and let / n ^ / n + i ^ / 0 . Then fn(x)'=fn+i(x)'=fo(x) for every real JC. Put 

f(x) = \\mnfn(x). 

Then / is in Pm (See [8] pp 153), and so Pm is monotone a-complete. 
p 

By the above argumentation it is also clear that / „ / / in Pm implies / „ / / and so 
(see Example 6) Pm is separative. 

If m is even, then Pm is upward filtering; if m is odd, Pm is not upward filtering. 
8. E x a m p l e . Let £F be the set of all Baire functions on ( 0 , 1 ) with the 

pointwise ordering. It is easy to see that & is a separative, monotone a-complete 
linear space. It is a known fact that & with the order convergence (this is the same 
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as the pointwise convergence on 2F) is a linear convergence space. The sequential 
closure of the set need not be closed (via Baire classification), hence this 
convergence is not a topological one. 

9. Example. Let Sft be the set of all finite signed measures (finitely additive at 
empty set vanishing set function) defined on all subsets of a space F. The ordering 
on Ti is pointwise, i.e. ji^v means ii(A)^v(A) for all AczF. Wl is clearly 
a separative, monotone a-complete linear space. $R is not a lattice. 

For the terminology and the proofs in the following examples see [3], [4] and [5]. 
10. Example. If Y is a locally convex topological space with a lattice ordering 

given by a closed cone such that every linear continuous functional on Y is order 
continuous, then Y is separative. 

11. Example. If Z is a vector lattice, regularly ordered by a cone such that 
every order bounded linear functional is order continuous, then Z is separative. 

3. The weak integral 

The realization that the totality of linear continuous functionals on a Banach 
space transfers the convergence and related properties from the original space to 
the space of real numbers has inspired Gelfand with new ideas. Pettis has 
generalized his suggestions and discusses the properties of the integral and its 
relation to other integral definitions. We will follow now their ideas. The main 
difference is in the notion of a dual space. In our next considerations X will be 
a separative linear space. 

Let (Q, &*, \x) be a measure space. A function / : Q-*X is called weakly 
measurable iff a real function x<(f) is measurable for every x< in X<. / is said to be 
a simple integrable function iff it has a form 

f=^?XiXAi, whereif x,^©, then A,65^ and /i(A,)<oo. 
i = l 

Let / be a non-negative weakly measurable function. If x<(f) is integrable for all 
x< in X<, then this expression defines a linear monotone transformation on the 
space X< to the space of the Lebesgue integrable real functions !£X(Q, tf, \i, R). 

The map JC<H-» J x<(f) d/x is a linear monotone, order continuous functional on X< 

for every E in 5̂ , and so it is an element of X<<, denoted by x^Th hence 

xГЛ**) = £ **(/") Ф . 

It is obvious that xtTr need not be an element of X. It seems natural that we should 
like our integral values in the space X with which we started. Thus we define the 
integral in the following way: 
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A weakly measurable function / on Q is weakly integrable iff for every 
measurable set E in <? there exists an element fE of X such that 

x<(fE) = jEX*(f)dn 

for every x< in X < . Then we define 

h = H> - JE / Ail. 

fE is the weak integral of / on the set E. 

4. The properties of the weak integral 

1°. The integral is well defined. 
This is a consequence of the fact that X is separative. 
2°. A weakly measurable function f is weakly integrable iff for any EeiP there 

exists an fEeX with 

x<(fE) = jEX<(f)dv 

for every x< in X+. 
n 

3°. If f is a simple integrable function with f— ^X,XA,, then 
i = i 

fE = w-\ fd[i = ^xl[i(AinE). 
JE . = I 

Proof. Let x" eX<\ then 

x<(^x,ii(A,nE)) = 2}jt<(jt,)ju(A lnE) = 
Vr=l / i = l 

= S X<MXA, dfi = ^X<(X1)XA1 d/i = x<(f) Aii. 
i-\JE JE . = I JE 

The assertion is now a consequence of the fact that X is separative. 
4°. The integral on a set E is a linear operator. 

w w 

If x, y are in X, x^y means x<(x)^x<(y) for every x< in X+. / = # means 

f((x))^g((jt)) for every CD in Q. 

5°. The integral on a set E is a weakly monotone operator, i.e. if f = g, then 
w 
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6°. Let fn, /, g and h be weakly integrable functions. Let g=fn = h and let fn -» /; 

then 

w >-j^fndii-+w-J fdii. 

Proof. Let x<eX+. By assumption 

x ^ i x ^ i x ^ h ) , x*(fn)^>x*(f) 

and the real functions x<(/„), x<(f)y x<(g) and x<(h) are Lebesgue integrable. So 
by the Lebesgue dominated convergence theorem 

lвx*(fя)dџ->jвx
<(f)dß. 

By 20weget/„,E-*/E . 

7°. Let f„ and f be weakly integrable functions and let fn/f(fn\f); then 

W -J /„ d]U->w-J / d / i . 

w w 

Proof. Since fn/f implies /„—>/ and / i^ /„ S / by 6°, we have 

IV 

fn,E-^>fE-

Since we shall be interested in the construction of expected values, we give 
another result of a weak integration. 

We say that a set function v: Q—>X is weakly o-additive iff the real set function 
x<(v): Q-+R is a-additive for every x< in X<. We say that v is absolute 
continuous with respect to [i (in symbol v<t\i) iff v(E) = 0 for every E in <f for 
which ii(E)= G. 

8°. / / / J S a weakly integrable function, then v: E*-±fE is a weakly o-additive set 
function and is absolute continuous with respect to jU. 

9°. / / Y is a separative linear space and T: X—> Y is a linear, order continuous 
transformation, then iff: Q-*Xis a weakly integrable function, Tf is also weakly 
integrable and 

w-i Tfdii = Tiw-[ fdfij. 
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15. Lemma. If mlkn then 

16. Lemma. JJ>„ is a continuous operator on SPn with resprect to the convergence 
p p 

/ and \ . 
p 

Proof. Let fk e % with fK\0 Xn- Take x<eXl; then x<(fk)\(). Denote by z 

the limit of the decreasing bounded sequence 30fk. Then 

x^(z) hmk x<(J\fk) = hmk ix<(fk) df.i = 0 

for all x< in X+ , and so z = O. The proof of the continuity of $n with respect to the 
p 

convergence / is similar. 

p 

17. Lemma. Let fk/f^g, /*, g e X and feJn+\\ then 

J,g^hmk 3>nfk. 

p 

Proof. Let n - 0. Let us assume first that X be a lattice. Since fkr\g/f Ag = g 

(this is true in any vector lattice), by the continuity of $0 on «Sr?0 we get 

J>Qg = hmk ^0( /k Ag)^l im k ^ 0 / k . 

Let now X+ determine the order in X. Let x<eX+; then 

x<(fig) = fx (q)dfi^limk J x < ( / k ) d / i ^ 

^limk x^ffk) d/i) = x<(limk ^ 0 / k ) . 

Since X+ determines the order in X ; we get 

^og=limk $()fk. 

The proof for n ^ 1 is similar. 

18. Lemma. (/) $n is a monotone operator. 

(//) If / , ge£n9 then f+ge£n and 

#n{f+g) = *nf+*ng. 

(Hi) If fe^n and c is a real number, then c • feJ£n+l and 

<?n+i(cf) = c $nf. 
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Proof. (/) follows by Lemma 17. (/'/) Let n = 1. Let fk and gk be in Z£Q such that 
p P p 

fk/f, gk/g, {3ofk} and {30gk} are bounded. By Lemma 3 fk + gk/f+g. 

$o(fk + gk) is bounded, hence / + g is in SEX. Take now x< e Xt; then by Lemma 14 
00 

*%*.(/ + 0)) = Sx< (/+ fl) d/i = /*<(/) dp + Jx<(fl) d/i = 

= *<(.*,/) + Jt%?.<7) = x^Jj+^g) 

and so 

The proof for a general n and the proof of (///) are similar. 
We can formulate the results of this section as follows: 

19. Theorem ££ is a partially ordered linear space and $\ !£-*X is a linear, 
P

 p 

monotone and continuous operator on 5£ with respect to the convergence /(\). 

20. Theorem. Let {fk} be an increasing sequence of functions from <£. Let {3>fk} 
be bounded and let there exist a function geX° with fk^g. Then there exists 

p 

a function f in <£ such that fk/f and $fk/$f. 

Proof. fk((o)^g((o) for every OJ and fk((o) is an increasing sequence. Denote 
p 

by f((o) its limit. This has to exists, since X is monotone a-complete. Then fk/f. 

Take an odd ordinal n such that fk e!£n-x for k = 1, 2, ... Then since the sequence 
{$fk} = {$n-\fk} is bounded, fe!£na!£ by definition of !£n and again by the 
definition of 3>n and J> 

*f = *J = Km* fn-ifk = Hnu ffk.. 

We define for E in if and / in if 

Lf d{i=I XE f d/x * 
(It is easy to see that XE / is in 5£ if fe<£.) 

21. Proposition. Let f be in SB; then for every E in if 

x<(Lfdix)=Lx<(f)d^ 
and so f is weakly integrable and 
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w - jE f &li = J^ / d / i . 

Let /, g be in A. We say that / is equivalent to g(f~ g) iff / dju = g dji for 

all JE in &. 

22. Theorem, (i) J£ = Se(Q, &>, \i, X) is a monotone o-complete linear space, 
(ii) Iff+g, then there exists a linear order continous monotone functional § on 

Se such that 

(iii) J is a linear, monotone, order contidnuous operator on SE. 
Proof, (i) Let fk,geSe with fk^fk+l^g. Then fk(o) S fk+l(co) ^ g((o). 

Denote f(co) = \\mk fk(co). Then fk/f. By Theorem 20 feSe. It is obvious that 

fk/f in #. 

(ii) Let /-A # ; then there exists a set E e Sf with 

y = J£/djU^J^ g dju = z. 

Let **" be in X+ with x<(y — z)=£0. Then the functional £ defined as 

§(ft) = W [ /id/i) 

has the desirable property. 

(Hi) Let /* / / in S£. Then by Theorem 5 /* / / and so by Theorem 20 $fk/$f. 

We define the linear space L in the usual way by putting L=S£I ~. As 
a consequence of this definition and the last theorem we get: 

23. Theorem. L = L(Q, &*, \x, X) is a monotone o-complete, separative linear 
space and J is a linear, monotone, order continuous operator on L. 

The following example shows that the family S£ of integrable functions may be 
very "small" in some pathological cases. 

24. Example . Let X be an infinite dimensional partially ordered linear space 
with a discrete order. Then Se = SeQ. 
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ИНТЕГРИРОВАНИЕ В ЧАСТИЧНО УПОРЯДОЧЕННОМ ПРОСТРАНСТВЕ 

Ян Шипош 

Резюме 

В статье излагается теория слабого и сильного интеграла для функции со значениями 
в некотором частично упорядоченном линейном пространстве. 
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