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DIRECT DECOMPOSABILITY OF CONGRUENCES
IN CONGRUENCE-PERMUTABLE VARIETIES

IVAN CHAJDA

The set of all congruences on an algebra A is denoted by Con(A). A variety ¥ of
algebras has directly decomposable congruences if for all A, B€ ¥ and each
6 € Con(A X B) there exist 6,€ Con(A) and 6,e Con(B) such that 6 =6, X 6,.
G.A. Fraser and A.Horn [1] gave a Mal’cev type characterization of such
varieties. This condition is, however, rather impractical. It can be simplified in the
case of congruence-permutable varieties by putting n=2 in [1, Theorem 5]
because of [1, Lemma 2]. However, we can use tolerances in the way similar as in
[2] to obtain more simple Mal’cev condition which is the aim of this note.

Theorem. Let ¥ be a congruence-permuatable variety. The following conditions
are equivalent:
(1) V has directly decomposable congruences )
(2) There exist a (2+ n)-ary ponnomxal p, binary polynomxals qs ..., q. and
ternary polynomials ri, ..., r, such that

x =p(x, Yy, (11()‘, Y)’ (A qn(X, y))

y =p(Y’ X, (h(x, Y)a cety qn(x’ y))

Z =p(xa y, rl(xa y, Z)) ceey r,.(x, y, Z))=
=p(y, x, n(x, y,2), ..., (%, ¥, 2)).

Let A be an algebra and a, b be elements of A. Denote by 6(a, b) the least
congruence an A containing the pair (a, b).

Lemma l. Let ¥ be a variety of algebras. The following conditions are
equivalent:

(a) ¥V has directly decomposable congruences
(b) For each A, B e ¥V and arbitrary a,, a,€ A and b,, b,, be B

([as, b], [a2, b]) € 6([as, b], [as, b2])
is true on A X B.
For the proof, see [1, Theorem 4].
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By a tolerance on an algebra A we mean a reflexive and symmetric binary
relation T on the support of A which has the Substitution Property, i.e. T is
a subalgebra of the direct product A X A (see e.g. [3]). Thus each congruence on A

is a tolerance on A but not vice versa in a general case. For varieties, the situation is
the following:

Lemma 2. Let ¥ be a variety of algebras. The following conditions are
equivalent:

(a) Every tolerance on each A € V' is a congruence on A
(b) ¥V is congruence-permutable.

For the proof, see [4].

The set of all tolerances on an algebra A forms a complete lattice with respect to
the set-inclusion, [3]. Hence, for each x, y € A there exists the least tolerance on A
containing the pair (x, y). Denote it by T(x, y). Clearly T(x, y) < 0(x, y).

Lemma 3. Let A be an algebra and a, b, x, y its elements. The following
conditions are equivalent:

(a) (a,b)eT(x,y)
(b) There exist a (2 + n)-ary polynomial p and elements c,, ..., c, of A such that

a :=p('x’ Y, cl’ ey Cn), b =p(y, x, C], ceey Cn).

Proof. Let R be a set of all pairs (a, b) such that a=p(x, y, ¢, ..., ),
b=p(y, x, ¢y, ..., ¢.) for some (2 + n)-ary polynomial p over A and some
elements c,, ..., ¢, of A. Reflexivity, symmetry and the Substitution Property

of T(x,y) clearly imply RcT(x, y). Evidently, R is also reflexive and
symmetric. The Substitution Property of R can be easily shown by induction
over the rank of polynomial p, thus R is a tolerance on A. Since (x, y)€R,
we conclude R = T(x, y).

Proof of the Theorem: (1) = (2). Let ¥ have directly decomposable congru-

ences and A = F»>(x, y), B=F,(x, y, z) be free algebras of ¥'. By Lemma 1,
we have

([x, 2, [y, 2]) € 6([x, x], [y, y])-

Since ¥ is congruence-permutable, Lemma 2 implies

0([x, x], [y, y) = T([x, x], [y, y])-
however, by Lemma 3,

([x, z], [y, z]) e T([x, x], [y, y])

implies the existence of (2 + n)-ary polynomial p and elements c,, ..., ¢, of A X B
with
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[x, z1=p([x, x], [y, y), 1, ..., €a)
[Ya Z]=p([y, Y]’ [x’ X], Cla “eey Cn)'

Since A, B are free algebras, ¢;€ A X B implies

a=[aq(x,y), r(x,y, )]

for some polynomials g;, r; over V' whence (2) is evident.
(2) $ (1). Let A, BEO‘/, a, azeA, b1, bz, bEB. Put

¢ =[ai(ay, az), ri(by, bz, b)].

By (2) and Lemma 3 we obtain

([as, b], [as, b]) = :
= <[p(al, a, ql(ah az), ceey qn(alr a2))1 p(bl, bz, ri(bl’ b23 b)’ teey
rn(bl’ bZ, b))]’ [p(al, ai, ql(ah az), seey qn(al’ aZ)),
p(bs, by, ri(by, by, b), ..., r.(by, b,, b))]) =
=(p([a, bi], [az, b2], cs, ..., €), P([a2, b2), [a1, Bi), €4, - €0)) €
€ T([as, bil, [az, b2])=060([a, by], [a2, b,)]).

By Leinma 1, (1) is proved.

Exapmle. Let ¥ be a variety of all rings with unit element. Thus ¥ is
congruence-permutable and we can put n =2, p(xo, Xy, X2, X3) = Xo’ X2+ X3
and ¢,=1, q.=0=nr, r,=2z. Clearly

p(x,y,q1,q:)=x-1+0=x
p(y;x,q1, g)=y-1+0=y
p(x,y,r,1r) =x-0+z=z=y-0+z=p(y, x, r, ra).

Remark. In[1, Corollary 1] it is shown that the congruence-distributivity of ¥
is a sufficient condition for direct decomposability of congruences. Our
Theorem implies that congruence-permutability is not sufficient for this
property. Since congruence-permutability yields the congruence-modularity,
also congruence-modularity 'is not sufficient for direct decamposability of
congruences.
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MPSIMOE PO3JIOXEHUE KOHIPY3HLUN B MHOTOOBPA3USIX
C NEPECTAHOBOYHBIMU KOHI'PYSHUUSMUA

WBan Xanna

Peswome

JlaeTcs HecNoXHOe ycnoBUe Manslesa it MHOrooGpasue C epecTaHOBOYHBIMH KOHIPYIHIMAMH V'
y1oOBl IS NMOGbIX anreGep A, Be ¥V u nwobGoi koHrpyssmuuud 6 € Con(A X B) cyuecTsoBaiu
0, e Con(A) u 0, € Con(B) semonusirouye 6 =0, X 6.
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