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DIRECT DECOMPOSABILITY OF CONGRUENCES 
IN CONGRUENCE-PERMUTABLE VARIETIES 

IVAN CHAJDA 

The set of all congruences on an algebra A is denoted by Con (A ). A variety Yof 
algebras has directly decomposable congruences if for all A, B e Y and each 
0 e Con (A x B) there exist 6X e Con (A) and 02 e Con(B) such that 0 = 6X x 02. 
G.A. Fraser and A.Horn [1] gave a Mal'cev type characterization of such 
varieties. This condition is, however, rather impractical. It can be simplified in the 
case of congruence-permutable varieties by putting n = 2 in [1, Theorem 5] 
because of [1, Lemma 2]. However, we can use tolerances in the way similar as in 
[2] to obtain more simple Mal'cev condition which is the aim of this note. 

Theorem. Let Y be a congruence-permuatable variety. The following conditions 
are equivalent: 
(1) Y has directly decomposable congruences 
(2) There exist a (2 + n)-ary polynomial p, binary polynomials qu ..., qn and 

ternary polynomials ru ..., r„ such that 

x=p(x, y, q,(x, y), ..., qn(x, y)) 
y=P(y, x, qx(x, y), ..., qn(x, y)) 
z=p(x,y, rx(x,y,z\ ..., rn(x,y, z)) = 

= P(y, x, rx(x, y, z), ..., rn(x, y, z)). 

Let A be an algebra and a, b be elements of A. Denote by 6(a, b) the least 
congruence an A containing the pair (a, b). 

Lemma 1. Let Y be a variety of algebras. The follov/ing conditions are 
equivalent: 

(a) Y has directly decomposable congruences 
(b) For each A, B e Y and arbitrary au a2eA and bu b2, beB 

<[a 1 ,H[f l2 ,b])6 0([a1,b1],[«2,fc2]) 

is true on A xB. 

For the proof, see [1, Theorem 4]. 
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By a tolerance on an algebra A we mean a reflexive and symmetric binary 
relation T on the support of A which has the Substitution Property, i.e. T is 
a subalgebra of the direct product A x A (see e.g. [3]). Thus each congruence on A 
is a tolerance on A but not vice versa in a general case. For varieties, the situation is 
the following: 

Lemma 2. Let Y be a variety of algebras. The following conditions are 
equivalent: 

(a) Every tolerance on each A e Y is a congruence on A 
(b) Y is congruence-permutable. 

For the proof, see [4]. 
The set of all tolerances on an algebra A forms a complete lattice with respect to 

the set-inclusion, [3]. Hence, for each JC, y e A there exists the least tolerance on A 
containing the pair (JC, y). Denote it by T(x, y). Clearly T(x, y) cz 0(.x, y). 

Lemma 3. Let A be an algebra and a, b, x, y its elements. The following 
conditions are equivalent: 
(a) (a,b)eT(x,y) 
(b) There exist a (2 + n)-ary polynomial p and elements cu ..., cn of A such that 

a=p(x,y,cu ..., cn), b=p(y,x, cu •••, c„). 

Proof. Let R be a set of all pairs (a, b) such that a = p(x, y, cx, ..., cn), 
b~p(y, x, cu ..., cn) for some (2 + n)-ary polynomial p over A and some 
elements cu ..., cn of A. Reflexivity, symmetry and the Substitution Property 
of T(JC, y) clearly imply R c T ( x , y ) . Evidently, R is also reflexive and 
symmetric. The Substitution Property of R can be easily shown by induction 
over the rank of polynomial p, thus R is a tolerance on A. Since (x, y) e R, 
we conclude R = T(*, y). 

Proof of the Theorem: (1) -=> (2). Let Y have directly decomposable congru
ences and A = F2(x, y), &=F3(x, y, z) be free algebras of Y. By Lemma 1, 
we have 

([x,zl[y,z])ed([x,x],[y,y]). 

Since Y is congruence-permutable, Lemma 2 implies 

0([x,x],[y,y]) = T([x,x],[y,y]). 

however, by Lemma 3, 

([x, z],[y, z]) eT([x, x],[y, y]) 

implies the existence of (2 + n)-ary polynomial p and elements cu ..., cn of A x B 
with 
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[x, z] = p([x, x], [y, y], cu ..., cn) 
[y, z]=p([y, y], [*, x], cu ..., cn). 

Since A, B are free algebras, c, e A x B implies 

C = [*(*, y), rk(x, y, z)] 

for some polynomials qu r, over T* whence (2) is evident. 
(2) :-> (1). Let A, B e T , au a2eA, bu b2, beB. Put 

Ct = [qt(au a2), n(bu b2, b)]-

By (2) and Lemma 3 we obtain 
([aub],[a2,b]) = 

= ([pfai, a2, qx(au a2),..., qn(au a2)), p(bu b2, rx(bu b2, b), ,.., 
rn(bu b2, b))], [p(a2, au qi(au a2), ..., qn(au a2)), 

p(b2, bu rx(bu b2, b),..., rn(bi, b2, b))]) = 
= (p([<*u bi], [a2, b2], cu ..., cn), p([a2, b2], [au b j , cu . . , c„)) 6 

e T([au bJ, [a2, bj) = d([au b j , [a2, bj) . 

By Lemma 1, (1) is proved. 

Exapmle. Let f be a variety of all rings with unit element. Thus Y is 
congruence-permutable and we can put n = 2, p(x^ %u x2, x3) = x0• x2 + x3 

and î = l, f̂2 = 0 = ri, r2 = z. Clearly 

P(x,y,quq2) = x l + 0 = x 
P(y,x,q1,q2) = y l + 0i = y 
p(x,y,rur2) =x -Q + z = z = y 0 + z = p(y,*, ru r2). 

Remark. h\ [1, Corollary 1] it is shown that the congruence-distributivity of Y 
is a sufficient condition for direct decomposability of congruences. Our 
Theorem implies that congruence-permutability is not sufficient for this 
property. Since congruence-permutability yields the congruence-modularity, 
also congruence-modularity is not sufficient for direct decqmposability of 
congruences. 
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ПРЯМОЕ РОЗЛОЖЕНИЕ КОНГРУЭНЦИИ В МНОГООБРАЗИЯХ 
С ПЕРЕСТАНОВОЧНЫМИ КОНГРУЭНЦИЯМИ 

Иван Хайда 

Резюме 

Дается несложное условие Мальцева для многообразие с перестановочными конгруэнциями У 
чтобы для любых алгебер А,ВеУ и любой конгруэнции 0еСоп(АхВ) существовали 
0, е Соп(А) и 02 е Соп(В) вьшолняюгцие 0 = 0! х 02. 
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