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AN ENUMERATION THEOREM FOR 
ROOTED GRAPHS 

JOZEF SlRAfi 

1. Introduction and notation 

This paper presents a method for obtaining generating functions for some classes 
of rooted graphs, especially of those with a simple cyclic structure. Our method is 
based on the idea of an "$f-centre" of a graph. (A comprehensive survey of other 
methods of enumeration of rooted graphs can be found in [2].) In Section 2 we 
prove some results related to $f-centres. Section 3 contains an application of these 
results to the enumeration of rooted graphs. 

All graphs discussed in this paper are finite, undirected, without loops and 
multiple edges (cf. [1]). The graph Ki will be considered as a disconnected graph. 
When speaking about a set Sf of graphs, we always mean that graphs in Sf are 
pairwise non-isomorphic. 

For any graph G and any vertex ve V(G), the set of vertices of G, the pair 
(G, v) is called a rooted graph. Two rooted graphs (Gu Vi), (G2, v2) are 
isomorphic if there is a graph isomorphism / : Gi—>G2 such that f(vi) = v2. 

Consider two graphs G, H and their vertices ue V(G), ve V(H). Suppose G 
and H have m and n vertices, respectively. A 1-amalgamation of graphs G, His 
the graph K = (G, u, v, H) defined in the following way: 

(i) K has m + n — 1 vertices, partitioned into two groups A, B such that 
AnB = {w}; 

(ii) if KA and KB are the subgraphs of K induced by the sets A and B respectively, 
then the rooted graphs (KA, w) and (G, u) are isomorphic, and the same 
holds for (KB, W) and (H, v); 

(iii) the number of edges of K is equal to the sum of numbers of edges of G and H. 

In what follows we simply identify vertices of (G, u) and (H, v) with those of 
(KA, W) and (KB, w), respectively, i.e. we put V(G)v V(H) = V(K), etc. The set 
of all pairwise non-isomorphic 1-amalgamations of graphs G and H will be 
denoted by [G, H]. 
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2. ^-decompositions and ^-centres of graphs 

Let $f be a set of graphs. A graph G is said to be ^-decomposable if there exist 
graphs Gi and Hx such that Hxe W and Ge[Gu Hi]. We say that G is ^-indecom
posable if G is not ^-decomposable. 

Any maximal (in the sense of inclusion) subset B c V(G) such that B induces in 
G a connected ^f-indecomposable subgraph is said to be an ^-centre of G. 

E x a m p l e 1. Let Pn denote the path of length n. Put W={P2}, G = P3. Then G 
is ^-decomposable and has exactly 3 ^f-centres, each of which induces the 
subgraph K2 in G. 

We see that, in general, a graph G can contain an arbitrary number of ^-centres. 
However, we are interested in cases when G has a unique ^-centre. 

For any set 5if of graphs let [$f| denote the smallest set Sf of graphs which 
satisfies the following conditions: 

(a) l c ? ; 
(b) [ f t , H2] c y for any Hi, H2 € Sf. 

Furthermore, a set $f of graphs will be called a c-set of graphs if $f is a non-empty 
set of connected graphs such that for any He'X and any connected induced 
subgraph Hi of H we have Hi e $f. 

E x a m p l e 2. Put $f = {P„ ; n IS 1}. It is easy to show that $f is a c-set of graphs 
and that [$f] consists of all trees of order at least 2. 

Lemma 1. Let 3€ be a c-set of graphs. Suppose that Ge[2f]. Then G has no 
^-centre. 

Proof. Let B e V(G) such that the subgraph GB of G induced by the set B is 
connected. One can easily see that if dft is a c-set of graphs, then [dfC] has the same 
property. Thus, Ge[%C] implies GBe[^]. But clearly any graph in [$f] is 
^-decomposable. Lemma 1 follows. 

Lemma 2. Let fflbe a c-set of graphs. Suppose that G is a connected graph and 
G^[W]. Then G has a unique W-centre. 

Proof. Let n0 be the minimum number such that there is a connected graph 
G^[ffl] with n0 vertices. Consider such a graph G0 with n0 vertices. If G0 is 
^f-indecomposable, then V(G0) is the unique ^f-centre of G. Now, let G0 be 
^-decomposable, i.e. Go e [Gu Hi] where Hi € $f. Clearly G\ is connected, has less 
than n0 vertices and Gi^[ffl], which contradicts the choice of n0. 

We shall continue by induction. Assume that n>n0 and that any connected 
graph H^[3^] with less than n vertices has a unique ^f-centre. Take a graph 
G^[W] which is connected and of order n (our assumptions guarantee that such 
a graph exists). Again, if G is ^f-indecomposable, then V(G) is the unique 
$f-centre of G. Let G be ^-decomposable. Then there are two connected graphs 
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Gi, Hi such that &$[%], HieW and Ge[Gu Hi]. Clearly Gi has less than n 
vertices. By the induction hypothesis, Gi has aunique $f-centre B. 

Suppose that a set D^V(G) is an ^f-centre of G. Consider the set S = 
Dn V(Hi). If 5 has at least two elements, then there exist connected graphs G2, H2 

such that H2 is an induced subgraph of Hi and the subgraph GD of G induced by 
the set D belongs to [G2, H2]. Since $f is a c-set, we deduce that H2e^ft, i.e. D 
cannot be an ^f-centre of G. Therefore \S\ = 1 and D c V(Gi). But then D c 5 
since B is a maximal $f-indecomposable subgraph inducing set in V(Gi). We see 
that B is the unique ^-centre of G, q.e.d. 

Lemma 3. Let fflbe a c-set of graphs. Suppose that a connected graph G has an 
^-centre B=V(G). Then any connected induced subgraph H^G such that 
\BnV(H)\ = l belongs to [X\. 

Proof. Let n0 be the minimum number such that there is a connected graph 
G^[!%] with n0 vertices. Any such graph must be ^-indecomposable, i.e. B = 
V(G). Now assume that n > n0 and the claim of lemma 3 holds for any connected 
graph H^ [2?] of order less than n. Take a connected graph G ^ [dfC] of order n. We 
may suppose that G is ^-decomposable and Ge[Gu Hi], where Gi^[^€] and 
Hi e <3t. Lemma 2 implies that G and Gi have the same unique centre B. Let / / b e 
a connected subgraph of G such that \BnV(H)\=^l. Then either f / c f t or 
He [G2, H2], where G2 c Gu H2 c Hi and H2 is connected. In the first case He [%?] 
by the induction hypothesis. In the second case H2e[<2€]. If G2 = Ku then H= H2, 
whence He[%\. Finally, if G2-hKu then G2 is connected and G2e[W] by the 
induction hypothesis, whence again He[ffl]. The proof is finished. 

We shall summarize the above results in the following: 

Theorem 1. Let W be a c-set of graphs and Gbe a connected graph. Then G has 
no ^-centre iff Ge[W] and G has a unique ^-centre iff G$[W]. If B is the 
^-centre of G, then any connected induced subgraph H=G with \Bn V(H)\ ^ 1 
belongs to [W\. 

3. ^-centres and enumeration 

There is a natural connection between $?-centres and enumeration of certain 
classes of rooted graphs. Several enumeration theorems can be derived. We 
consider only one example. 

Let ^ be the set of all connected graphs and $? be a c-set of graphs such that 
3C = [%!] £ CS. Let 3 f c CS- $? be a non-empty set of connected graphs. It follows 
from Theorem 1 that any graph in ffl has a unique $?-centre. 

Denote by $f*, or 3K* the set of all rooted graphs (/ / , v) such that He $?, or 
He ffl, respectively. Consider a rooted graph (G, u)e 9£*. The root u will be called 

31 



simple if there is at most one path P in G joining u with a vertex of the $?-centre of 
G such that P contains exactly one vertex of the ^f-centre of G. Let 

00 

(1) H(x) = x+^hnx"; 
n=2 

(2) B(x)=j±b„x"; 
n-2 

(3) K(x) = J,knx" 

f* . 

be generating functions such that 
(1) hn is the number of graphs of order n in $?* 
(2) bn is the number of graphs G e JC* of order n such that their root belongs to 

the ^f-centre of G; 
(3) kn is the number of graphs of order n of 9%* such that their root is simple. 

Theorem 2. K{x) = {\-H{x))1B{x). 
Proof. We prove by induction that the number of graphs GejK* with a simple 

root such that the distance between the root and the ^f-centre of G is equal to n is 
determined by the generating function Kn{x) = B{x)Hn{x). The case n=0 is 
trivial because K0{x) = B{x). 

Denote by SO"*, the set of graphs G e l * such that G has a simple root and the 
distance between this root and the $f-centre of G is equal to n. Let K2 be a fixed 
graph with V{K2) = {uu Vi}. Put $?* = $?*u{(Ki, w)}, where {Ku w) is the trivial 
rooted graph. Consider a mapping /: U x %€*—>9V*+i defined as follows: 

f{{G, u), {H, v)) = {{{G, u, uu K2), vu v, H), v). 

We shall show that / is a bijection. 
Let {K, z) G SVt+i and B denote the ^f-centre of K. Since z is a simple root, there 

is exactly one path zz\...zn+\ in K such that z, e V{K) - B for 1 ^ i^ n and z„+i G B. 
It follows that the graph K0 obtained from K by removing the edge zz\ has exactly 
two connected components, namely K{z) and K{z\), containing z or z\, respec
tively. Theorem 1 implies that K{z)e 3€ except the case when K{z) = Kx. Hence 
{K{z), z)eX1 and {K{Zi), Zi)e3f{*. Moreover f{{K{Zl), zi), {K{z), z)) = {K, z). 
It follows from the uniqueness of the path zz\...zn+\ that there is exactly one pair 
{{G, u), {H, v)) e%*xm such that f{{G, u), {H, v)) = {K, z), i.e. / is a bijec
tion. 

The last result immediately implies the relation Kn^{x) = B{x) • Hn+1{x). Conse
quently, 

K{x)="ZKn{x) = B{x)fJH
n{x) = {\-H{x))1B{x). 

n=0 n=0 

The proof of Theorem 2 is finished. 
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According to Theorem 2, to compute the generating function for simple-rooted 
graphs in %* it suffices to know the generating function for graphs in $?* and the 
symmetry groups of graphs in JC* having the root in their ffl-centre. To show how 
Theorem 2 applies, consider the simplest case — enumeration of rooted unicyclic 
graphs. 

Let $? be the set of all trees with at least two vertices. Obviously $f is a c-set of 
graphs and $f =[$?]. Let jfC denote the set of all connected unicyclic graphs. It is 
easily seen that the $f-centre of any unicyclic graph is exactly the set of all vertices 
of the unique cycle of G. Further, the root of any graph in 3fc* is simple. Thus, the 
generating function K(x) enumerates all rooted unicyclic graphs, B(x) enumerates 
rooted unicyclic graphs such that their root is contained in the cycle, and H(x) 
enumerates rooted trees (cf. [2]): 

H(x) = x + x2 + 2x3 + 4x4 + 9x5 + ... 

The generating function B(x) is easily computable using Polya's theorem. The 
symmetry group of a rooted cycle C*n of order n S 3 is isomorphic to the group Zn. 
and for its cycle index Z(Ct) we obtain: 

o >7(r*\ -^s"+ s^s2n~2)/2 for n even, 2^C„j-<^ + ^ „ _ 1 ) / 2 f o r n o d d 

The Polya's enumeration theorem implies 

B(x)='ZZ(C*,H(x)). 
n=3 

The right-hand side of the last equation can be easily modified as follows: 

/l J i ( l - 2 s 2 ) + s2 
в^i*шm-ч 

Using Theorem 2 we immediately obtain the desired generating function K(x). 

Theorem 3. The number of rooted connected unicyclic graphs is given by the 
generating function K(x), where 

вд-ë-fâ^-H-
H(x) is the generating function for rooted trees and s{ = H(x') for i = 1, 2. 

After a short computation we obtain 

K(x) = x3 + Ax4 + \5x5 + 50x6 + 164x7 + 520*8 + 1632JC9 + ... 
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ОДНА ТЕОРЕМА ПЕРЕЧИСЛЕНИЯ КОРНЕВЫХ ГРАФОВ 

10261" §1гап 

Резюме 

В статье описаны разбирения графов при помощи амалгамации. Полученные результаты 
применены для нахождения перечисляющих рядов для многих классов корневых графов. 
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