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REMARK ON STURM—LIOUVILLE FUNCTIONS 

MILAN OSLEJ 

Consider a differential equation 

f + q{x)y = 0 (q) 

where q(x)eC0(a, o°), a^O. 
Denote 

Mk(W,X)= \'M W(x)\y(x)\>dx (1) 
Jxk 

A > - 1 , fc = 1, 2,. . . , where y(x) is an arbitrary non-trivial solution of (q), xu x2, ... 
is any finite or infinite sequence of consecutive zeros of any non-trivial solution 
z(x) of (q), which may or may not be independent of y(x) and the function 
W(x)>0 fullfils certain conditions concerning higher monotonicity. 

L. Lorch, M. E. Muldoon and P. Szego derived in [2] simple sufficient 
conditions for the sequence (1) to be monotonic of the higher order on (a, <»). In 
this paper there will be given an extension of the above mentioned result from [2]. 

1. Definitions and notations 

A function q>(x) is said to be monotonic of order n or n -times monotonic on an 
interval J, if 

(-1)V'>(*)>0, i = 0 , l , 2 , . . . , » , xel (2) 

For such a function we write q>(x) e Mn(I) or q>(x) € M„(a> b) in case that I is an 
interval (a, b). In case the strict inequality holds throughout (2) we write 
q>(x) 6 M*(l). 

We say that q>(x) is completely monotonic on I, if (2) holds for n = °°. 
A sequence {[ik}k=i denoted simply {fik} is said to be /i-times monotonic, if 

(-lYA'iik^O, 1 = 0,1 , ...,/!, fc = 0 , l , , . . (3) 

Here A\ik = f*k+i — fa, A2[ik = A(A/ik) etc. For such a sequence we write {jU*} € M,. 
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In case the strict inequality holds throught (3) we write {fik}eM*. {/uk} is called 
completely mono tonic, if (3) holds for rz = oo. 

As usual, q?(x)eCn(I) means that cp(x) has continuous derivatives including to 

the n-th order. A[<K£)] denotes the first derivative y*' and Dn^[qp(^)] denotes 

the n-th derivative ?w, • 

2. New result 

Theorem. Let differential equation (q) be oscillatory on an interval (a, oo)5 j e t 
n^O be an integer and let there exists the function ^p(x)>0, ^p(x)eC2(a, oo) 
satisfying 

0 < lim (i/r"i//3 + q^|>4) ^ » 
X—»o° 

Let il?(x)eMn(a,<») and O^Dx(^p"^p3 + q^^J4)eMn(a, oo). Let W(*) be 
a function satisfying 

W(x)>0, (-l)nW(n)(x)^0. 

Let >>(*) be an arbitrary non-trivial solution of (q) and xu *2, ... any sequence of 
consecutive zeros of any non-trivial solution z(x) of (q) which may or may not be 
linearly independent of y(x). Then for A>—1 

and in special case for X=0 

(-lYAi+1xk>0, k = l,2,..., 1 = 0 , 1 , . . . , / , (5) 

R e m a r k . Hence, under the hypotheses of the theorem 

{[y(x)\^)HeMt «> 
because (4) is still valid when W(x) is replaced by W(x) • ^^>2(x), since this last 
function belongs to Mn(a, oo). 

If ^p2+k(x)eMn(a, oo) holds, then we can write 

{[^w(x)\y(x)\Xdx}em (7) 
because (4) is still valid when W(x) is replaced by W(x)-ip2+x(x). 

42 



Proof of theorem. Let us have the differential equation (q). The change of 
variable 

н <m (8) 

J
* 0 0 r\ 

—27-T is assumed divergent, transforms 
(q) into 

-Dfo(§) + ? ( f ) * = 0 (9) 

where rj(%)=y(x)/il>(x) and q(^) = \l>"(x)"il>\x) + q(x)%l>\x). 
Hence, the mapping (8) takes the ^-interval (a, 00) into the ^-interval (0, 00). 

Using the change of variable (8) we get 

where §1, §2, ... are the zeros of solution £(!) of (9) corresponding, respectively, to 
the zeros xi, x2, ... of z(x) (here £(§) = z(x)). 

In case rc ̂ 2 and Xi > a the present theorem will follow from theorem 3.3 of [2] 
as applied to the equation (9), provided we show that 

A[<Kf)]>0, A[<Kf)]eM„(0,oo) (10) 

and that 
W[x(%)]>0, W[*(S)]6M,,(0,oo). (11) 

Now, 

A [ ?(§)] = - W V3 + qV>4] • A Wl) ] = rl>2Dx[il>"V3 + q*/'4] > 0. 

But V2(*) belongs to Mn(a, 00) so that a slight modification of ([2], lemma 2.2) in 
which p'(x)^0 replaces p(x)<0 and ^ replaces > in (2.7), implies that 
AWI)]eA4(0,oo). 

Hence, in wiew of ([2], lemma 2.1), our hypotheses on W(x) show that 
W[*(§)] € Mn(0, 00), and (11) holds. Since Dx[q>(f=)], considered as a function of x, 
belongs to Mn(a, 00) and DM[x(%)] belongs M„(0, oo), ([2], lemma 2.1) shows that 
Ds[q>(£)]eMn(0, 00). Hence, (10) holds and the proof of theorem is complete, in 
case n ^ 2 and xi > a. The case n = 0 is obvious. The case n = 1, xi = a (for all n) we 
get analogously as in proof of theorem 3.1 of [3]. (5) we get from (4), if A =0, 
W(x) = xl>2(x). 

Example. Let us have a differential equation 

y" + (e2x-v2)y = 0 (12) 

which has solutions in the form y = Cv(e
x), where Cv is Bessel function of order v. 
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It is obvious that the sufficient conditions from [2] give no result on higher 
monotonicity of sequence {Mk} from (1) for differential equation (12). 

If we take ^|>(x) = e~x/2
y then ^|>2(x) e Mo(0, oo) and we get 

(t/;V + q^i>4) = [1 - (v2 -1 /4 ) • e~2x] e Mo(0, oo) 

for |v|>l/2. 

Result. If |v|>l/2, then 

and 

í P V - W(x)\y(x)-e"2\k dxleM* 

{ f ' w(x)\y(x)• e"2\k áx)e m-
holds for A > - 1 . 

Hence , in wiew of [e('x/2) A]€Moo(0, oo) for A^O and if W(x) = e(~x/2)\ then 

[£+l\y(x)\kdx}eM* 
holds for |v |> l /2 , A^O. 

Concluding this paper I should like to express my gratitude to Doc. Dr. 
M. Háčik, CSc, for his valuable remarks. 
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3AMETKA O OYHKIJHHX IIITyPMA-JIHyBHJIJIH 

Milan Oslej 

Pe3K>Mě 

B 3TOH cTaTbe HccjiejjyioTCJi nocTaTOHHbie VCJIOBHA HJIJI TOTO, HTO6I>I nocjieflOBaTejibHocTH, 
KOTopwe 3aBMc»T OT HvjíeH peineHiw flH^epemniajifeHoro ypaBHeHH* (q)> 6MJIH MOHOTOHHfcie 
BbicHiero nopHflKa B npoMexynce (a, °°). 
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