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GOODWYN'S THEOREM FOR SEQUENTIAL 
ENTROPY ON PSEUDOCOMPACT SPACES 

MAGDA KOMORNIKOVA, JOZEF KOMORNIK 

The notion of measure theoretic sequential entropy was introduced by 
Kushn irenko (cf. [7]), who showed that this invariant can be more sensitive than 
the Kolmogorov—Sinai entropy. 

The new invariant was studied by Newton in [9]. He introduced a function 
K(A) as a measure of asymptotic expansion of a subsequence A of the sequence 
Z+ of nonnegative integers. 

He proved that for the sequential entropy hAtfi(T) and the standard entropy 
/^(T) of an automorphism Tof probability measure space (X, 3d, pi) the equality 

(1) ҺA,,(T) = K(A)Һ,(T) 

holds except for the case 

ř (0, - ) 
(2) (K(A),Һ(T)) = \ or 

l («>, 0) 

Moreover he proved that 

(3) K(A) = 0 implies hA^(T) = 0. 

In a other words, the sequential entropy can be more sensitive only if K(A) = oo 
and /z^(T) = 0. 

The topological sequence entropy hA(T) of a continuous transformation T of 
a compact X was introduced by Godman in [4]. He obtained the following 
analogy of Newton's result. The inequality 

(4) hA(T)^K(A)h(T) 

holds except for the case 

r (o, °°) 
or 

l (°°, 0) 
Moreover he proved that if X has a finite covering dimension 
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(2') (K(A),Һ(T)) = . 



(5) M T > = sup {hA,^T):neJtT(X)} 

except for the case 

(2") (K(A),h(T)) = (co,0) 

where MT(X) is the system of all regular invariant probability measures on X. 
We recall that a topological space X is pseudo-compact (cf. [2]) if any real 

continuous function on X is bounded. 
We say that a probability measure \i on the a-algebra ffl(X) generated by open 

sets is regular if for any B e 3ft(X) 

(6) n(B) = M {fi(U):BczU, L/open}. 

Let us consider the topological entropy defined by means of open coverings in 
[1]. The following generalization of Goodwyn's theorem was presented in [6]. 

Let T be a continuous transformation of a Hausdorff normal pseudo-compact 
space X. Then 

(7) h(T) = sup{h,(T):^ieMT(X)}. 

The aim of this paper is to complete the above results. 

Theorem 1. Let T be any measure preserving transformation of a probability 
space (X, 3ft, //). Then the equality 

(1) hA,,(T) = K(A)h,(T) 

holds except for the case (2). 

Proof. We only need to prove the inequality 

(3') hA,,(T)^K(A)h,(T). 

This can be done by the methods used in the proof of the inequality (4) given in [4]. 

Theorem 2. Let X be a Hausdorff normal and pseudo-compact topological 
space and Ta continuous transformation ofX. Then the following equalities hold: 

(8) hA(T) = sup {hA, v(T): /i e MT(X)} 

except for the case (2") and 

(8') hA(T) = K(A)h(T) 

except for the case (2'). 
Proof. The inequality (4) can be obtained by the same way as for compact X 

(cf. [4]). Suppose that (2') holds. Combining the relations (4), (7) and (1) we get 

hA(T)^K(A) h(T)^K(A) sup {h,(T): / ie MT(X)} = 
= sup {hA,,(T):iieMT(X)}. 
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If K(A) = 0 then we have 

hA(T) = sup {hA.„(T):fteMT(X)} = 0 

(cf- [4], [7]). 

By the same argumente as in [5] or [6] we can show that 

hA,„(T) = sup{HA(T,P):Pe0>l} 

where 0° is the system of all finite partition of X consisting of closed Gs sets having 
intersections of /i-measure zero. The function HA(T, P) is defined as in [8] or [7]. 

Let P={d, ..., Cm}. We construct a compact metrizable space 
oo 

Y=Y\Y„ 
where 

Y„ = <0, l)m 

and the continuous mapping 0: X—> Y defined by 

[<*>(*)]„,,= <?,• T(x), n = 0, 1, ..., i = l, ..., m 

where <p, are real continuous functions on X such that 

0^<p,^l and G = <^r1(0) for / = 1 , ..., m. 
The subspace K— <P(X) is metrizable and compact (cf. [6]). We have 0 • T = T • <P 
where the shift T: K—• K is defined by 

[<y)]«,i=[y]*+i,«, / i=0 , 1, ..., i = l, ..., m. 

Put 

BI = {y6K [y ]o , , = 0} for / = 1 , ..., m 

and 

Q = { B i , ..., B m } . 

Then we have 

G=4>"1(fi), / = 1 , ..., m 

hence (cf. [6]) 

HA,^(T, P) = HA,„ * - I (T , Q ) ^ A A . „ »*(T)^hA(T). 

The last inequality follows from the compactness of IC. The mapping <£ is a flow 
homomorphism from (X, T) onto 1C, hence (cf. [4], [6]) 

hA(T)^hA(T)^HA^(T, P). 
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ТЕОРЕМА ГУДВИНА ДЛЯ ЭНТРОПИИ ПОСЛЕДОВАТЕЛЬНОСТЕЙ 

НА ПСЕВДО-КОМПАКТНЫХ ПРОСТРАНСТВАХ 

Ма§с!а К о т о г т ' к о у а — 1 о г е 1 К о т о г т к 

Р е з ю м е 

Доказывается теорема о сравнении для топологической и вероятностной энтропии пос

ледовательностей на нормальных псевдо-компактных пространствах Гаусдорффа. 
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