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Math. Slovaca 36,1986, No. 1, 3—14 

RIGHT COMPOSITIONS OF SEMIGROUPS 

STEFAN SCHWARZ 

Let S be a semigroup containing a minimal left ideal. Then S contains a kernel K 
which is a union of all the minimal left ideals of S. If a is any element of S, then 
K • a is a left ideal of S but not necessarily a minimal left ideal of S. 

In connection with some questions concerning random walks on semigroups 
prof. L. Schmetterer asked me some years ago to characterize those semigroups for 
which K • a is a minimal left ideal of S for all aeS. 

In this paper we first show that such semigroups can be described as right 
compositions of a special type of semigroups (denoted in this paper as [//-semigr
oups). 

The converse problem is the following: Given a family of [//-semigroups we have 
to decide whether they admit at least one right composition (which is then 
a semigroup of the desired type). 

Though there is a general method how to proceed in concrete cases (see [3]), the 
solution of this question in reasonably simple terms seems hopeless. Hence we 
restrict our considerations to some special cases. 

For convenience we define: 
Definition. A semigroup S containing a minimal left ideal (hence a kernel K) is 

called a Wrsemigroup if for any aeSthe product K- a is a minimal left ideal of S. 
Example 1,1. A simple semigroup containing a minimal left ideal is 

a Wi-semigroup. 
Example 1,2. The semigroup S = {a, b, c, d} with the multiplication table 

а b c d 

а а а c c 
b а а c c 
c а а c c 
d а а c d 



contains two minimal left ideals L, = {a}, L2 = {c}. The kernel is K = {a, c}, and S 
is a W/-semigroup. 

E x a m p l e 1,3. If S is a W/-semigroup and E is a right zero semigroup, then the 
direct product S X E is again a W/-semigroup. 

E x a m p l e 1,4. Recall that a left ideal of S is called un ive r sa l ly min imal if it 
is contained in every left ideal of S. A semigroup containing a universally minimal 
left ideal is a W,-semigroup. 

Semigroups of the type mentioned in Example 1,4 will be of decisive importance 
in the whole of this paper. We define therefore: 

Definition. A semigroup containing a universally minimal left ideal will be 
called a U,-semigroup. 

Note that the minimal left ideal L of a I//-semigroup S is the kernel of S and L 
itself is a left simple semigroup. 

We first give some necessary conditions which a W/-semigroup must satisfy. 

Let S be a W/-semigroup and K = [jLv, where {Lv}veMis the set of all minimal 

left ideals of S. For a fixed a eM denote Sa = {x\xeS, Kx = La}, hence KSa = La. 
Clearly S-=UveivfSv and SanSp=0 for a^fi. 

The set Sa is a left ideal of S. For, K(SSa) = (K S)Sa = K Sa = La, hence 
S • S„ cz Sa. In particular, we have SfiSa cz Sa for any pair a, f3. 

Clearly La cz Sa and La is the unique minimal left ideal of S contained in Sa. For 
any aeSa, Laa is a minimal left ideal of S contained in Sa, hence Laa = La. 

We finally show that La is the universally minimal left ideal of Sa. Suppose that 
L a is any left ideal of Sa and a' eLa. We then have: La = Laa' cz LaLacz SaLacz L'a, 
hence any left ideal of S„ contains La. 

We have proved: 
Lemma 1,1. If S is a Wt semigroup, then S can be written as a union of disjoint 

U-semigroups: S= [J Sa, where SaSfi cz Sp for any pair a, P eM. 
a eM 

In Example 1,2 we have S = S,uS2, where S, = {a, b} and S2 = {c, d}. 

Conversely: 

Lemma 1,2. If a semigroup S can be written as a union of disjoint ^-semigr

oups : S = U Ta, and TaTp cz TJ, (for any pair a , (3e M), then S is a Wrsemigroup. 
a e M 

Proof. Denote by La the kernel of Ta. We have TnLa = Ln and SLa = 
\y_}Tv\TaLaczTaLa=La. Therefore La is a left ideal of S, hence a minimal left 

ideal of S (since it is minimal even in Ta). 
The family {Lv}veM is exactly the set of all minimal left ideals of S. For, if L is 

a minimal left ideal of S, there exists some a eMsuch that TanLj=0. Since LnTa 



is a left ideal of S (and the more a left ideal of T„) we have L„ cz LnTa, i.e. La cz L. 
Since both L and La are minimal left ideals of S, we conclude La = L. 

It follows that K= [J Ly (the union of all minimal left ideals of S) is the kernel 
v e M 

of S. For any beS, say b eTp, we have Kb = ({jLy)b=[J (Lyb). Since (for any 
V v e M / v e M 

veM) I^b is a minimal left ideal of S contained in Tfi, we conclude Kb = Lp. 
Hence S is a W/-semigroup. 

Yoshida [4] and Petrich [3] introduced the following notion: 
Definition. Let {Sv}veM be a family of pairwise disjoint semigroups. We shall 

say that the family {Sv} has a right composition if we can define on S= [J Sv an 
v e M 

associative multiplication (denoted by *) such that Sa*Sfi cz Sp for a£(3, while the 
multiplication in each Sa remains unaltered. 

S is then called a right composition of the family {Sv}. Given {Sv} no right 
composition need exist or several right compositions may exist. 

In this terminology Lemma 1,1 and Lemma 1,2 imply: 
Theorem 1,1. A semigroup S is a Wrsemigroup if and only if S is a right 

composition of Ursemigroups. 
Remark. A (.//-semigroup S with the kernel L is right indecomposable, i.e. it 

cannot be written in the form of a union of two subsemigroups S = T,uT2, 
T,nT2 = 0, where T,T2czT2, T2T,czT,. Since ST, = (T,uT2)T, = 71uT2T,cz T„ 
and analogously ST2 cz T2, both T,, T2 are left ideal of S. Since L is the minimal left 
ideal of S we have LczT,, LczT2, contrary to the assumption TxnT2 = 0. 

The following follows directly from the proof of Lemma 1,2. 
Lemma 1,3. Let {SV}VGM be a family of disjoint Ursemigroups andLy the kernel 

of Sv. If {Sv} has a right composition S = U Sv, then each Ly is a minimal left ideal 
v e M 

of S and K=\J Ly is the kernel of S. 
v e M 

Suppose, as a special case, that one of the kernels Ly in Lemma 1,3 contains an 
idempotent, hence Ly is a left group. Then the kernel K of S, contains a minimal 
left ideal and an idempotent, hence it is completely simple. This implies that all Ly, 
v e M, are left groups, and all are isomorphic one to each other. 

We state this explicitly: 
Corollary 1,1. If a family of Ursemigroups {Sv}veMhas a right composition and 

one of the kernels Ly is a left group, then all Ly are left groups and all are isomorphic 
one to the other. 

It follows, e.g., that two left groups which are not isomorphic cannot have a right 
composition. 

The situation is quite different if we replace the words "left groups" by "left 



simple semigroups". It is well known that there exist simple semigroups S 
containing a minimal left ideal in which the minimal left ideals are not isomorphic. 
(The first such example has been given by M. Teissier, see [1].) Any such 
semigroup is, of course, a W/-semigroup. 

The foregoing considerations lead in a natural way to the following problem. 
Suppose that Sa, Sp are two disjoint semigroups (not necessarily {.//-semigroups). 
We have to find all right compositions of Sa and Sp (if such exist). This problem has 
been studied in [4] and in a modified presentation in [3], The procedure roughly 
described is the following. 

Denote by A(Sa) and A(Sfi) the semigroup of left translations of Sa and Sp 
respectively. Find a homomorphic mapping <P of Sa into A(SP) and a homomor-
phic mapping W of Sp into A(Sa) (if such exist). For aeSa, b eSp write explicitly 
<P: a^xpa eA(Sp) and W: b*-*ipb e A(Sa). To obtain a right composition S = 
SauSp put 

a*b=q)a(b), b*a = xpb(a) . 

Unfortunately, owing to the necessary associativity of multiplication, <P and W 
cannot be arbitrary. They have to satisfy two rather complicated conditions 
concerning the (individual) elements (pa, xpb (for any a, b). Any right composition 
is obtained if 0 and W are chosen in accordance with these conditions. 

This is a very complicated procedure. The special case of Sa, Sp being 
Ui-semigroups seems not to have much influence on simplifying the procedure just 
described. 

Hence we do not choose this approach. We prefer to consider some classes of 
semigroups in which a construction in a reasonably simple manner is possible or the 
non-existence of a right composition can be easily verified. Hereby we shall be 
interested primarily in [//-semigroups. 

The following Lemma is known. (See [3], p. 68.) We sketch the proof since the 
notations introduced here will be used in the sequel. 

Lemma 2,1. Let {Sv}veM be a family of pairwise disjoint isomorphic semi
groups. Then the family {Sv} has at least one right composition. 

Proof. Suppose that leM. For every v eM let q)v be a fixed chosen isomorph
ism of S, onto Sv. Define the mapping Sa^>Sp by q)ap = q)a1(Pp, i.e. for a eSa, we 
put aq)ap = aq)~l(pp = [aq)a

l]q)p e Sp. Then q)ap is an isomorphism and for any a e Sa 

we have 

a(pap(ppY=a(pa
l(pp(ppl(py = aq)a

l(pY = a(pay . 

(Hereby (paa is the identity mapping of Sa onto Sa.) The set of mappings {(p^) 
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satisfies q)ap(PpY
 = <P<-v. With this set of functions {<P»-v} we now define for any a e Sa, 

b e Sp, (including the case a =/3) 

a*b=(aq)aP)b . 

It is a routine matter to verify that this multiplication is associative. Hence with this 

multiplication | J Sv is a right composition of the given family {Sv}. 
V G M 

Remark 1. It is easy to see that (J Sv is isomorphic with the direct product 
v e M 

Si x E, where E is a right zero semigroup and card E = card M. 
Remark 2. Suppose that in Lemma 2,1 the semigroups {Sv} are (isomorphic) 

left groups. Then the right composition S = (JSV constructed in Lemma 2,1 is 
V 

a completely simple semigroup. This semigroup has a special property. If ea is an 
idempotent of Sa, then cpaP(ea) is necessarily an idempotent of Sp. If ea=eaeSa, 
ep = ejeSp, then ea*ep = <pap(ea) • ep = q>afi(ea). (We have used the fact that any 
idempotent of a left group L is a right identity of L.) Hence the product of two 
idempotents in S is an idempotent. It is well known that this need not be true for 
every completely simple semigroup. Hence the method used in Lemma 2,1 does 
not give all right compositions (even if (pv run over all possible isomorphisms 
Si-*SV). (This can be, of course, easily understood from the point of view of the 
Rees-matrix description of a completely simple semigroup. We shall not enter into 
a detailed description of this situation.) 

Lemma 2,1 together with Corollary 1,1 implies: 
Lemma 2,2. A family of left groups has at least one right composition if and only 

if the members of the family are pairwise isomorphic. 
Remark 3. It should be once more emphasized that Lemma 2,2 does not hold 

if the words "left groups" are replaced by the words "left simple semigroups". At 
this writing I have no idea how to decide (in reasonably simple terms) under what 
conditions two non-isomorphic left simple semigroups without idempotents have 
a right composition. 

Yoshida [4] has proved that a family of pairwise disjoint semigroups each with 
a right zero has at least one right composition. 

This may lead to the suspicion that two [//-semigroups with isomorphic kernels 
have at least one right composition. Example 2,1 below shows that this is not true. 

We show this in a larger context inspired by a reasoning of Lallement—Petrich in 
[2]-

Suppose that Sa, Sp are two disjoint semigroups containing an identity element ea 

and £p respectively. (Hence Sa, Sfi are monoids.) Suppose that they have a right 
composition S = Sa u Sp. 

If x e Sa, the mapping x*-+xEf> is a homomorphism of Sa into Sp. For, if x e Sa, 



y eSa, then xefty£p = xy£«. [This follows from the fact that yfy e Sp, hence Epy£fi = 

Also if xeSa, the mapping x*-+x£fi£a is a homomorphism of Sa into Sa. As 
a matter of fact if JCGS„, yeSa, we have x£ft£a • y£ft£(l =x£ti(£ay)£ti£a =xt»T*,ea. 
Since yfy eSp, we have y£H = fyyfy, so that x£H£„ • ye^£a = xy£^£a. 

We have 

Sa£fl£a CZ Sp£a cz Sa (D 
and the inclusions here may be proper. 

We now introduce the following class of monoids. 
Definition. (Petrich [3].) A monoid is called right unit-reductive if the identity 

map is the only (inner) right translation which is also a homomorphism. 
(In a monoid all right translations are inner. The kernel of such a semigroup 

cannot be a group.) 
Lemma 2,3- If Sa and Sp are right unit-reductive monoids, then a right composi

tion SauSp exists if and only if S„, SR are isomorphic monoids. 
Proof. With respect to Lemma 2,1, it is sufficient to prove the necessity. For 

a eSa, the mapping a^aE^ is a homomorphism of Sa into Sa. By suppostition 
£ft£a — £«• The relation (1) implies Sft£a = Sa. Analogously we obtain Sa£ft = Sfi. Let 
aeSa, beSfi. The homomorphism Wafi: Sa—>Sfi defined by a^aEp and the 
homomorphism % „ : Sp->Sa defined by by-+b£a are mutually inverse one-to-one 
mappings since 

a i-» aєß i—) aєßєa =aєa=a 

Hence Sa, Sfi are isomorphic semigroups. 
E x a m p l e 2,1. Consider the semigroups S, = {e, a, b} and S2 = {E, A, B, C] 

with the following multiplication tables: 

e a b 

e e a b 
a a a a 
b b b b 

E A B C 

E E A B C 
A A A A A 
B B B B B 
C C B B B 

Both are [//-semigroups with a unit element and a kernel isomorphic to the 
two-element left zero semigroup. S, is right unit-reductive since the right transla
tions Qa, Qb are not homomorphisms. We have, e.g., ea • ba£(eb)a and eb • 
ab^h(ea)b • S2 is right unit-reductive since the right translations QA, QB, QC are not 
homomorphisms. We have EABA£(EB)A, EB • AB + (EA)B and EC 
AC±(EA)C. 



Since Si and S2 are not isomorphic, Si and S2 cannot have a right composition. 
Remark 4. Suppose that S« and Sp are left simple semigroups without idem-

potents. Adjoin an identity element ea, efi to Sa and Sp respectively. Then Sa, Sp are 
right unit-reductive semigroups. The semigroups Sa, SI have a right composition if 
and only if Sa, Ŝ  are isomorphic, hence if Sa, Sp are isomorphic. 

Comparing with Remark 3 we see that a rather trivial modification (adjunction 
of an identity element) substantially changes the situation. 

Remark 5. In the general theory of right compositions as developed in [3] the 
constructions simplify considerably if we suppose that the semigroups Sv, veM, 
are right cancellative. For Ut-semigroups this condition is rather uninteresting since 
the following assertion holds: 

Assertion. A right cancellative [//-semigroup is a left group. 
Proof. Let S be a [//-semigroup with kernel L. The semigroup L is left simple 

and right cancellative. It is well known (see [1]) that this implies that L is a left 
group. Denote by e an idempotent of L. Then L = Se. Suppose for an indirect 
proof that S — LJ=0 and let x e S — L. Then xeeL and since e is a right unit of L 
we have xe • e = xe. By supposition this implies xe = x, hence xeL, a contradic
tion. Therefore S = L. 

Let {Sv}veM be a family of pairwise disjoint [//-semigroups. We denote by L^ the 
kernel of Sv and we suppose that all Ly, veM, are isomorphic left groups. 

In this section we give a "reasonably simple" sufficient condition under which 
the family {Sv} has at least one right composition. (See Theorem 3,1 below.) 

If ea = e2
a e La, then the mapping Sa -> La defined by a »-> aea (a e Sa) is a mapping 

of Sa onto La which leaves the elements of La fixed. 
Let be a eSa, b eSp, a=£/3, ea = e2

aeLa, efi = e\eL$. The following is a natural 
way how to try to define a product a *b. We first project a into La, b into L$ (i.e. 
we consider aeaeLa, bepeLfi). Next we introduce for the family of isomorphic 
semigroups {Lv}veM the set of isomorphisms {qv} defined in Lemma 2,1. Hereaf
ter we define 

a*b =(aea)q)ap • befi . 

Since (aea)q)afi is contained in Lp, further Lp • b=Lfi, and ep is a right unit of Lp, 
this is equivalent to define 

a*b=(aea)(pae' b (2) 

We have to check the associativity. 



If ceSY and a^/3, ]3^y, we have 

(a *b)*c = [(aea)(fap ' b]*c = [(aea)(pafi • b](pPy • c = 
= (aea)(paY'(bep)(ppY' c; 

a*(b*c) = a*[(bep)(ppY • c] = (aea)(pay • (bep)(ppY • c . 

Hence (a*fo)*c = a*(fo*c). 
The same is true if 0 = y. In this case (with b'eSp) we have 

a*(b*b') = (aea)(paP • bb' , 

(a*b)*b' =[(aea)(papbep]*b' =(aea)(papbepb' . (3) 

Since (aea)(pap • beLpV/e have (aea)(papbep = (aea)(pap • b, and the term on the right 
hand of (3) is (aea)(papbbf. 

Unfortunately if a = 0 and a, a'eSa, we have (a*a')*b =(aa'ea)yap' b, 
a*(a'*b) = a*[(a'ea)(pap - b] = (aea)(pap • (a'ea)(pap • b = (aeaa'ea)(pap • b 
= (aeaa')(pap • b. (The equality aeaa'ea=aeaa' holds since aeaa' eLa.) 

Hence the associativity law for the multiplication holds if for any a, /3eM 

(aa'ea)(pap • b =(aeaa')(paP • b 

(a,a'eSa, beSp). 
In particular putting b = epwe must have (aa'ea)cpap = (aeaa')(pap. Since (pafi is an 

isomorphism of La onto Lp this implies aa'ea =aeaa' for any a, a' eSa, eaeLa. 
Conversely, if aa'ea=aeaa' holds, then (a*a')*b =a*(a'*b). 
Clearly the mapping x •->xev(x e Sv, ev e Ly,) leaves the elements of L>, fixed and it 

is an endomorphism of Sv if and only if xyev = xevyev = xevy tor any x, y eSv. 
We have proved: 
Lemma 3,1. Under the suppositions introduced above the multiplication on 

| J Sv defined by (2) is associative if and only if for each veM, the mapping 
v e M 

jCH-»jtcv(jt eSv, ev = eleLv) is an endomorphism of Sv onto L^. 
Lemma 3,2. If for some idempotent eel^ the mapping x*->xe is an endomor

phism, then the same is true for any idempotent e' el^. 
Proof. Let be x, ye Sv. The equality xye = xey implies (putting y = e') xe'e = 

xee'. Since e, e' are right units of Lv,we have xe — xe' for any j teSv . Hence 
(xe')y = (xe)y =(xy)e = (xy)e'. 

Definition. Let S be a Ursemigroup with the kernel L. An endomorphism h of 
S onto L is called an L-endomorphism if h leaves the elements of L fixed. 

Lemma 3,3. Let Sbe a Ursemigroup the kernel of which is a left group L. Any 
L-endomorphism of S is of the form x*-*xe, JCGS, e = e2eL. 

Proof. Let there be xeS, e = e2eL, and h an L-endomorphism. Then jteeL, 
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hence h(xe) = xe. This implies h(x)h(e) = xe and since h(e) = e and h(x)eL, we 
have h(x)h(e) = h(x), hence h(x) = xe. 

Example 3,1. The mapping jet—>xe need not be an endomorphism. Consider, 
e.g., the [//-semigroup S = {e, a, b} with the multiplication table 

e a b 

e e a b 
a a a a 
b b b b 

None of the right translations Qa, Qb is an endomorphism. We have, e.g., 
Qa(eb) = Qa(b) = ba = b, while Qa(e)Qa(b) = ea • ba = a. 

Lemma 3,1 may be formulated as follows: 

Lemma 3,4. The multiplication on (J Sv defined by (2) is associative if and only 
V € M 

if each Sv has an Ly-endomorphism. 
This implies: 
Theorem 3,1. Let {Sv} V€M be a family of Ursemigroups, whereby the kernels of 

all Sv are isomorphic left groups. Suppose that each Sv has an Ly-endomorphism. 
Then there exists at least one right composition of this family. 

As a special case consider the case of each JU being a group with the identity 
element ev. Then (for jteSv) the mapping x*-+xev is an Lv.-homomorphism since 
(for any x,yeSv) we have yev = evyev, whence xyev = x(evyev) = (xev)(yev). This 
implies: 

Theorem 3,2. Let {Sv}veM be a family of ^semigroups. Suppose that the 
kernel of each Sv is a group. Then there exists at least one right composition of this 
family if and only if all the kernels are isomorphic groups. 

Remark 1. The semigroups Sv in Theorem 3,1 are exactly those semigroups 
which are ideal extensions of a left group L determined by a partial 
homomorphism. 

The usefulness of Theorem 3,1 is underlined by the fact that there is a very 
simple method to decide whether a Ut-semigroup with a completely simple kernel 
has an L-endomorphism. 

Theorem 3,3. Let S be a Ursemigroup the kernel of which is a left group L 
Denote by E the set of all idempotents of L. Then S has an L-endomorphism iff for 
every xeS we have card (xE) = 1. 

Proof. L can be written as a union of disjoint groups: L = (J Ta. Denote by ea 
a € A 

the identity element of Ta, so that E = {ea\aeA}. 
a) Necessity. By the proof of Lemma 3,2 if x •-> x£y(v e A) is an L-endomorphi-
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sm, and xeS, we have xea = xev for all ea9aeA. Hence xE is a one-point set 
(depending, of course, on x). 

b) Sufficiency. Suppose that the condition is satisfied. Let JC, y eS and eR any 
element of E. Consider the product xeRyeR. The element yeR is contained in 
a subgroup of L, say, yep e TY. Hence eYyeR = yeB. By supposition xeR =xeY. Hence 
xeRyeR = xeYyeR = xyeR. This shows that X>-*XER is an L-endomorphism of S. 
Theorem 3,3 is proved. 

E x a m p l e 3,2. Consider the following two [//-semigroups Si and S2: 

a b c 

a a a a 
b b b b 
c a a c 

a b c 

a a a a 
b b b b 
c a b c 

Here (in both cases) L = E = {a, b} • Si has an L-endomorphism since card (cE) = 
1, S2 has not an L-endomorphism since card (cE) = 2. 

R e m a r k 2. If a [//-semigroup S contains a left (or two-sided) identity element, 
then S does not have an L-endomorphism unless L is a group. 

R e m a r k 3. If S is, e.g., a regular semigroup to find card (xS) it is not necessary 
to consider all x e S — L. It is sufficient to check only the idempotents contained in 
S — L. For, any xeS has an idempotent right identity: x = xex, and xE = x • (exE). 
If card (exL) = 1, then card (xE) = 1. If card (exL)> 1, an L-endomorphism does 
not exist. 
We conclude with one example using Theorem 3,1 and the multiplication (2). 

E x a m p l e 3,3. Consider the semigroups Si and S2 given by the multiplication 
tables: 

a b c d 

a a a a a 
b b b b b 
c a a c c 
d a a d d 

A B C 

A A A A 
B B B B 
C A A C 

Here Li = {a, b}, L2 = {A, B}. Both semigroups have an L-endomorphism. 
Choose the isomorphisms cp\2 and q>2U as <pi2 = {an->A, b*-*B} and qp21 = {A»-»a, 
B^>b}. Next put in (2) ei = a, e2 = A. We then have, e.g., 

d*C = (d • a)q>12- C = a<pl2- C = AC = A , 
C*d = (C • A)qp2i • d = Acp2l - d = a • d = a . 
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In this manner we obtain a right composition S = SiuS2 described by the 
multiplication table: 

a b c d A B C 

a a a a a A A A 
b b Ь b b B B B 
c a a c c A A A 
d a a d d A A A 
A a a a a A A A 
B b b b b B B B 
C a a a a A A C 
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ПРАВЫЕ КОМПОЗИЦИИ ПОЛУГРУПП 

8теГап 5сп\уаг2 

Резюме 

Пусть 5 — полугруппа, содержащая минимальный левый идеал, следовательно — ядро К. 
Изучается строение 5 в случае, когда для каждого а е 5 левый идеал К • а — минимальный левый 
идеал 5. В этом случае 5 — объединение непересекающихся полугрупп: 

5 = Ь|5У, уеМ . 

При этом 5 а5эс:5э гля всяких а, /ЗеМ и ядро полугруппы 5У есть простая слева полугруппа. 
Рассматриваются тоже частные случаи довольно сложной обратной задачи. Задана система 

полугрупп {Я}, УбМ, с некоторыми естественными ограничениями. В множестве 

11 5. = 5 
У б М 

требуется определить умножение (не меняя умножение в 5У) так, чтобы 5 являлась полугруппой, 
в которой имеет место 5а5э <= 5Э для всяких а, /3 еМ. 
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