Balmohan Vishnu Limaye; M. N. N. Namboodiri Weak approximation by positive maps on C^* -algebras

Mathematica Slovaca, Vol. 36 (1986), No. 1, 91--99

Persistent URL: http://dml.cz/dmlcz/136416

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

WEAK APPROXIMATION BY POSITIVE MAPS ON C*-ALGEBRAS

B. V. LIMAYE-M. N. N. NAMBOODIRI

1. Introduction

Let A and B denote C*-algebras with identities 1_A and 1_B respectively. A *linear map $\phi: A \rightarrow B$ is said to be positive if for every $a \in A$, there is some $b \in B$ such that $\phi(a^*a) = b^*b$. For a_1 and a_2 in A, we write $a_1 \leq a_2$ if there is some $a \in A$ such that $a_2 - a_1 = a^*a$. Let

 $\mathbf{P}(A, B)_1 = \{\phi: A \rightarrow B: \phi \text{ positive}, \phi(1_A) \leq 1_B\}$.

If $\phi \in \mathbf{P}(A, B)$ in fact satisfies

$$\phi(a)^*\phi(a) \leq \phi(a^*a)$$

for all $a \in A$, then ϕ is called a Schwarz map. A J*-subalgebra (resp., C*-subalgebra) of A is a *subspace A that is closed under the Jordan product $a_{1\circ}$ $a_2 = (a_1a_2 + a_2a_1)/2$ (resp., the usual product a_1a_2).

The main Korovkin-type result for weak convergence (which we denote by \rightarrow)

given in [8], Theorem 2 can be improved by a minor modification of its proof as follows:

Theorem. Let ϕ_0 , ϕ_1 , ϕ_2 , ... be a sequence in $\mathbf{P}(A, B)_1$. Then

$$C = \{a \in A : \phi_n(a) \xrightarrow{w} \phi_0(a), \phi_n(a^* \circ a) \xrightarrow{w} \phi_0(a^* \circ a) = \phi_0(a)^* \circ \phi_0(a)\}$$

is a J*-subalgebra of A. If each ϕ_n is a Schwarz map, then C is, in fact, a C*-subalgebra of A.

It is of interest to know when C actually equals A, so that the approximation method (ϕ_n) would work on the entire algebra A. This question is closely related to the uniqueness of the extension of $\phi_0|_C$ to A as a positive map. We give sufficient conditions for this to happen in terms of extreme points of $\mathbf{P}(A, B)_1$ (Theorems 2.2 and 2.5).

As a particular case we consider A = C(X), the set of all complex-valued

continuous functions on a compact Hausdorff space X and $B = \mathcal{M}_k$, the set of all $k \times k$ matrices with complex entries (Corollary 2.3). The special case k = 1 gives the well-known Korovkin-type result for positive functionals on C(X). Also, by taking $A = \beta(H)$, the set of all bounded operators on a complex Hilbert space H, and $B = \mathbb{C}$, the set of all complex numbers, we improve a previous result of the authors about the approximations of a simple eigenvalue of a normal operator on H. It would be interesting to obtain Korovkin-type results for the case $A = \beta(H)$ and $B = \mathcal{M}_k$.

2. Korovkin-type results for weak convergence

If J is a J*-subalgebra of A, then a C*-homomorphism $\phi_0: J \rightarrow B$ is a *linear map satisfying

$$\phi_0(a^2) = \phi_0(a)^2$$

for all $a \in J$. Clearly, a C*-homomorphism ϕ_0 on A is positive and satisfies $\phi_0(1_A) \leq 1_B$, i.e., it belongs to $\mathbf{P}(A, B)_1$.

If $\phi \in \mathbf{P}(A, B)_1$, Kadison has proved in [5] that

$$\phi(a)^2 \leq \phi(a^2)$$

for all $a \in A$ with $a^* = a$. We begin with a lemma on extreme points of $\mathbf{P}(A, B)_1$.

Lemma 2.1. Let J be a J*-subalgebra of A, and $\phi_0: J \rightarrow B$ be a C*-homomorphism. Let

$$Q_0 = \{ \phi \in \mathbf{P}(A, B)_1 \colon \phi \mid_J = \phi_0 \}$$

Then Q_0 is a convex extremal subset (i.e., a face) of $\mathbf{P}(A, B)_1$, so that the extreme points of Q_0 are precisely those extreme points of $\mathbf{P}(A, B)_1$ which lie in Q_0 .

Proof. The set Q_0 is clearly convex. Let $\phi_1, \phi_2 \in P(A, B)_1$, and $\phi = (\phi_1 + \phi_2)/2$ belong to Q_0 . We show that $\phi_1, \phi_2 \in Q_0$.

Let $a \in J$ with $a^* = a$. By Kadison's inequality, we have

$$\phi_1(a)^2 \leq \phi_1(a^2)$$
 and $\phi_2(a)^2 \leq \phi_2(a^2)$.

Since J is a J*-subalgebra, we see that $a^2 \in J$. Also, $\phi|_J = \phi_0$, which is a C*-homomorphism. Hence

$$\phi(a^2) = \phi_0(a^2) = \phi_0(a)^2 = \phi(a)^2$$
.

Now,

$$[\phi_1(a) - \phi_2(a)]^2 = \phi_1(a)^2 + \phi_2(a)^2 - 2\phi_1(a) \circ \phi_2(a) =$$

= $2\phi_1(a)^2 + 2\phi_2(a)^2 - [\phi_1(a)^2 + \phi_2(a)^2 + 2\phi_1(a) \circ \phi_2(a)] \leq$

$$\leq 4 \left[\frac{\phi_1(a^2) + \phi_2(a^2)}{2} \right] - 4 \left[\frac{\phi_1(a) + \phi_2(a)}{2} \right]^2 = 4 \left[\phi(a)^2 - \phi(a)^2 \right] = 0 \; .$$

Thus, $\phi_1(a) = \phi_2(a)$ for all $a \in J$ with $a^* = a$. Since J is *-closed, we have $\phi_1|_J = \phi_2|_J$. Hence $\phi|_J = \phi_1|_J = \phi_0|_J$, i.e., $\phi \in Q_0$. We have thus shown that the set Q_0 is extremal. The final statement about extreme points now follows immediately.

Theorem 2.2. Let $\phi_0: A \to \beta(H)$ be a C*-homomorphism, and let (ϕ_n) , n = 1, 2, ..., be a sequence in $\mathbf{P}(A, \beta(H))_1$.

Assume that if ϕ is an extreme point of $\mathbf{P}(A, \beta(H))_1$ and $\phi \neq \phi_0$, then there is some $a_0 \in A$ such that $\phi(a_0) \neq \phi_0(a_0)$,

$$\phi_n(a_0) \xrightarrow{w} \phi_0(a_0)$$
 and $\phi_n(a_0^* \circ a_0) \xrightarrow{w} \phi_0(a_0^* \circ a_0)$.

Then $\phi_n(a) \xrightarrow{w} \phi_0(a)$ for all $a \in A$.

Proof. Let

$$C = \{a \in A \colon \phi_n(a) \xrightarrow{w} \phi_0(a), \phi_n(a^* \circ a) \xrightarrow{w} \phi_0(a^* \circ a)\}$$

By the theorem quoted in the Introduction (Cf. Theorem 2 of [8]), C is a J*-subalgebra of A. We claim that $\phi_0|_C$ extends to a unique element of $\mathbf{P}(A, \beta(H))_1$, namely ϕ_0 itself.

Let

$$Q_0 = \{ \phi \in \mathbf{P}(A, \beta(H))_1 \colon \phi \mid_C = \phi_0 \mid_C \}.$$

Since $\mathbf{P}(A, \beta(H))_1$ is compact in the weak operator topology (p. 974 of [4]), we see that the closed convex subset Q_0 is also compact. If Q_0 contains more than one element, then by the Krein—Millman theorem it must contain an extreme point ϕ which does not equal ϕ_0 . However, by Lemma 1.1 ϕ is an extreme point of $\mathbf{P}(A, \beta(H))_1$, and by our hypothesis there is a_0 in C such that $\phi(a_0) \neq \phi_0(a_0)$. But $\phi \in Q_0$, so that $\phi|_C = \phi_0|_C$. This contradiction shows that Q_0 is a singleton set, and our claim is justified.

Now, let ψ be any cluster point of the sequence (ϕ_n) in $\mathbb{P}(A, \beta(H))_1$, and let (ϕ_a) be a subnet of (ϕ_n) which converges to ψ . Since $\lim \phi_n(a)$ exists for all $a \in C$, we have

$$\psi(a) = \lim \phi_a(a) = \lim \phi_n(a) = \phi_0(a) ,$$

i.e., $\psi|_C = \phi_0|_C$. But $\phi_0|_C$ extends to a unique element of $\mathbf{P}(A, \beta(H))_1$ so that $\psi = \phi_0$. Thus, every cluster point of (ϕ_n) in $\mathbf{P}(A, \beta(H))_1$ concides with ϕ_0 . This shows that $\phi_n \to \phi_0$ in the weak operator topology, or $\phi_n(a) \xrightarrow{\sim} \phi_0(a)$ for all $a \in A$.

The usefulness of the above result depends on the specific knowledge of the extreme points of $P(A, \beta(H))_1$. We now consider such a situation.

Corollary 2.3. Let $x_1, ..., x_m$ be distinct points in a compact Hausdorff space X and let $P_1, ..., P_m$ be mutually orthogonal non-zero self-adjoint projections in \mathcal{M}_k , the set of all $k \times k$ complex matrices. For $f \in C(X)$, let

$$\phi_0(t) = f(x_1)P_1 + \ldots + f(x_m)P_m$$

For a sequence (ϕ_n) in $\mathbf{P}(C(X), \mathcal{M}_k)_1$, let

$$C = \{f \in C(X) : \varphi_n(f) \to \phi_0(f), \phi_n(|f|^2) \to \phi_0(|f|^2)\}.$$

If C contains the constant function 1 and separates each x_j $(1 \le j \le m)$ from every other point of X, then $\phi_n(f) \rightarrow \phi_0(f)$ for all $f \in C(X)$.

Note. Since \mathcal{M}_k is finite dimensional, the weak convergence $(\stackrel{\sim}{\rightarrow})$ is equivalent to the norm convergence (\rightarrow) .

Proof. Let A = C(X) and $H = \mathbb{C}^k$ so that $\beta(H) = \mathcal{M}_k$. It is clear that ϕ_0 is *linear, and for all $f \in C(X)$,

$$\phi_0(f^2) = f^2(x_1)P_1 + \dots + f^2(x_m)P_m$$

= $[f(x_1)P_1 + \dots + f(x_m)P_m]^2$
= $[\phi_0(f)]^2$,

since $P_i^* = P_j = P_i^2$ and $P_i P_j = 0$ for $i \neq j$, $1 \leq i$, $j \leq m$. Thus, ϕ_0 is a C*-homomorphism.

Let ϕ be an extreme point of $\mathbf{P}(C(X), \mathcal{M}_k)_1$ such that $\phi|_C = \phi_0|_C$. In order to apply Theorem 2.2, we show that $\phi = \phi_0$.

Let $\phi_0(1) = P_0$. Since $1 \in C$, we see that ϕ is an extreme point of

 $\{\psi: C(X) \rightarrow \mathcal{M}_k: \psi \text{ positive and } \psi(1) = P_0\}$.

Now, the algebra C(X) is commutative and hence every positive map on C(X) is completely positive ([10], 3.9 of Ch. IV). It then follows by Theorem 1.4.10 of [1] that

$$\phi(f) = f(y_1)Q_1 + \ldots + f(y_p)Q_p ,$$

for all $f \in C(X)$, where $y_1, ..., y_p$ are distinct points of X and $Q_1, ..., Q_p$ are positive matrices in \mathcal{M}_k satisfying $Q_1 + ... + Q_p = P_0$.

Since C separates each x_i from every other point of X, and since C is an algebra containing 1, it follows that there are $f_1, ..., f_m$ in C with

$$f_j(x_j) = 1, f_j(x_i) = 0$$
 for $i \neq j, 1 \le i, j \le m$.

94

First we show that each $x_i \in \{y_1, ..., y_p\}$. For otherwise, we can find $f_0 \in C$ such that $f_0(x_i) = 1$ and $f_0(y_i) = 0$ for all $1 \le i \le p$. Then $f_0f_i \in C$ and

$$\phi_0(f_0f_j) = P_j = 0 = \phi(f_0f_j) ,$$

which is a contradiction to $\phi|_c = \phi_0|_c$. Thus, each x_i equals some y_i . Hence $m \le p$. By renumbering the y_i 's and the corresponding Q_i 's, we may assume that $y_1 = x_1, \ldots, y_m = x_m$. Then for all $f \in C(X)$,

$$\phi(f) = f(x_1)Q_1 + \ldots + f(x_m)Q_m + f(y_{m+1})Q_{m+1} + \ldots + f(y_p)Q_p$$

Were p > m, then we could find $g_0 \in C$ such that $g_0(x_i) = 0$ for all $1 \le j \le m$ and $g_0(y_i) = 1$ for all $m + 1 \le i \le p$. Then

$$Q_{m+1} + \ldots + Q_p = \phi(g_0) = \phi_0(g_0) = 0$$

Since $Q_i \ge 0$, we see that $Q_{m+1} = ... = Q_p = 0$. Thus, for all $f \in C(X)$,

$$\phi(f) = f(x_1)Q_1 + \ldots + f(x_m)Q_m \; .$$

But for $1 \leq j \leq m$,

$$Q_i = \phi(f_i) = \phi_0(f_i) = P_i$$

Hence $\phi = \phi_0$. Now Theorem 2.2 applies and we obtain the desired result.

Remark 2.4. Often one can choose a finite number of functions $f_1, ..., f_p$ in C(X) which separate any two distinct points of X. Also, we can easily see, as in Corollary 4 of [8], that the conditions $\phi_n(f_i) \rightarrow \phi_0(f)$ for j = 1, ..., p and $\phi_n\left(\sum_{j=1}^p |f_j|^2\right) \rightarrow \phi_0\left(\sum_{j=1}^p |f_j|^2\right)$ imply $\phi_n(|f_j|^2) \rightarrow \phi_0(|f_j|^2)$ for each j. Then, the result in Theorem 2.3 says that $\phi_n(f) \rightarrow \phi_0(f)$ for all $f \in C(X)$, provided

$$\phi_n(1) \to \phi_0(1) ,$$

$$\phi_n(f_j) \to \phi_0(f_j), \quad j = 1, \dots, p, \text{ and }$$

$$\phi_n\left(\sum_{j=1}^p |f_j|^2\right) \to \phi_0\left(\sum_{j=1}^p |f_j|^2\right) .$$

For example, if X is a compact subset of the Euclidean space \mathbb{R}^p , then we can take f_i to be the jth co-ordinate function, j = 1, ..., p. If X denotes the p-dimensional torus $\{(e^{i\theta_1}, ..., e^{i\theta_p}): 0 \le \theta_i \le 2\pi, j = 1, ..., p\}$, then we can let $f_i((e^{i\theta_1}, ..., e^{i\theta_p})) = e^{i\theta_i}$. Since in this case, $|f_i|^2 = 1$ for $1 \le j \le p$, we need the convergence of (ϕ_n) only on 1, $f_1, ..., f_p$. These results generalize earlier results proved for the case $\mathcal{M}_1 = \mathbb{C}$, i.e., for positive functionals on C(X). (See Corollaries 2.5 and 2.6 of [9].)

When the map ϕ_0 that is being approximated is not a C*-homomorphism, the following version of Theorem 2.2 is useful.

Theorem 2.5. Let ϕ_0 , ϕ_1 , ϕ_2 , ... be a sequence in $\mathbb{P}(A, \beta(H))_1$ (resp., a sequence of Schwarz maps from A to $\beta(H)$), and let $E \subset A$ be such that for every $a \in E$,

$$\phi_n(a) \xrightarrow{w} \phi_0(a)$$
 and $\phi_n(a^* \circ a) \rightarrow \phi_0(a^* \circ a) = \phi_0(a)^* \circ \phi_0(a)$.

Assume that if ϕ is an extreme point of $\mathbf{P}(A, \beta(H))_1 a \phi \neq \phi_0$, then there is a_0 in the J*-subalgebra (resp., the C*-subalgebra) generated by E in A such that $\phi(a_0) \neq \phi_0(a_0)$.

Then $\phi_n(a) \xrightarrow{w} \phi_0(a)$ for all $a \in A$.

Proof. By the theorem quoted in the Introduction, the set

$$\{a \in A \colon \phi_n(a) \xrightarrow{w} \phi_0(a), \phi_n(a^* \circ a) \xrightarrow{w} \phi_0(a^* \circ a) = \phi_0(a)^* \circ \phi_0(a)\}$$

is a J*-subalgebra and it contains E. Hence it contains the J*-subalgebra J_E generated by E in A. Thus, for every $a_0 \in J_E$, we have

$$\phi_n(a_0) \xrightarrow{\kappa} \phi_0(a_0), \phi_n(a_0^* \circ a_0) \xrightarrow{\kappa} \phi_0(a_0^* \circ a_0) = \phi_0(a_0)^* \circ \phi_0(a_0).$$

Then the proof of Theorem 2.2 holds verbatim if we replace C by J_E throughout. In case each ϕ_n in a Schwarz map, we merely have to replace C by the C*-subalgebra C_E generated by E in A.

Remark 2.6. If either A is commutative, or if $\beta(H)$ is commutative (i.e., H is of dimension 1), then every $\phi \in \mathbf{P}(A, \beta(H))_1$ is, in fact, a Schwarz map ([10], 3.5, 3.9 and 3.8 of Ch. IV). When $H = \mathbf{C}$, we obtain the following result from Theorem 2.5:

Let $\phi_0, \phi_1, \phi_2, \dots$ be positive functionals on a C*-algebra A with $\phi_n(1_A) \leq 1$. Let $E \subset A$ be such that for very $a \in E$,

$$\lim \phi_n(a) = \phi_0(a)$$

and

$$\lim \phi_n(a^* \circ a) = \phi_0(a^* \circ a) = |\phi_0(a)|^2.$$

If the C*-algebra C_E generated by E in A separates ϕ_0 from every other extreme point of $\mathbf{P}(A, \mathbf{C})_1$, then $\phi_n(a) \rightarrow \phi_0(a)$ for all $a \in A$.

This result improves upon Theorem 1.2 of [7] for a C*-algebra A with identity, because the earlier result assumed in addition that $\phi_0|_{C_E}$ was an extreme point of the set of all positive functionals of norm ≤ 1 on C_E , and it required

$$\lim \phi_n(a^*a) = \phi_0(a^*a) = |\phi_0(a)|^2 = \phi_0(aa^*) = \lim \phi_n(aa^*)$$

Various concrete cases of this result about positive functionals are given in [7]. We choose to improve one of them.

Corollary 2.7. Let $T_0 \in \beta(H)$ be normal and λ_0 be a simple eigenvalue of T_0 with

a corresponding unit eigenvector x_0 . Let (ϕ_n) be a sequence of positive functionals on $\beta(H)$ such that

$$\phi_n(I) \rightarrow 1,$$

 $\phi_n(T_0) \rightarrow \lambda_0, \text{ and}$
 $\phi_n(T_0^*T_0) \rightarrow |\lambda_0|^2.$

Then $\phi_n(T) \rightarrow \langle Tx_0, x_0 \rangle$ for all $T \in \beta(H)$.

Proof. Let $A = \beta(H)$ and $\phi_0(T) = \langle Tx_0, x_0 \rangle$ for $T \in \beta(H)$. On replacing ϕ_n by $\phi_n/\phi_n(I)$, we can assume without loss of generality that $\phi_n(I) = 1$. Let $E = \{1, T_0\}$. Since $T_0^*T_0 = T_0T_0^*$, we see that $\phi_n(T_0^* \circ T_0) \rightarrow \phi_0(T_0^* \circ T_0) = ||T_0x_0||^2 = |\lambda_0|^2 = |\phi_0(T_0)|^2$.

Let $\sigma(T_0)$ denote the spectrum of the normal operator T_0 , and μ_0 denote the corresponding spectral measure. If f_0 is the characteristic function of the set $\{\lambda_0\}$, then f_0 is continuous on $\sigma(T_0)$, since λ_0 is an isolated point of $\sigma(T_0)$. Hence f_0 is a uniform limit of polynomials in z and \bar{z} on $\sigma(T_0)$. The spectral mapping theorem shows, in turn, that

$$f_0(T_0) = \int_{\sigma(T_0)} f_0(z) \, \mathrm{d}\mu_0(z) = \mu_0(\{\lambda_0\})$$

is a limit in $\beta(H)$ of polynomials in T and T^{*}. Thus, $f_0(T_0) \in C_E$, the C^{*}-subalgebra generated by E in $\beta(H)$. But $f_0(T_0)$ is an orthogonal projection and its range is the eigenspace corresponding to λ_0 , which is one dimensional. Thus, $f_0(T_0)x = \langle x, x_0 \rangle x_0$ for all $x \in H$.

Let ϕ be an extreme point of $\mathbf{P}(\beta(H), \mathbf{C})_1$ and $\phi \neq \phi_0$. Then by Theorem 2.5.2 of [5], either $\phi(T) = 0$ for all compact $T \in \beta(H)$, or $\phi(T) = \langle Tx_1, x_1 \rangle$ for some $x_1 \in H$ with $||x_1|| = 1$ and all $T \in \beta(H)$. In the former case, $\phi(f_0(T_0)) = 0$ since $f_0(T_0)$ is compact, while $\phi_0(f_0(T_0)) = \langle f_0(T_0)x_0, x_0 \rangle = \langle x_0, x_0 \rangle = 1 \neq 0$. In the latter case, $\phi(f_0(T_0)) = \phi_0(f_0(T_0))$ implies $\langle f_0(T_0)x_1, x_1 \rangle = 1$ so that x_1 is in the range of the projection $f_0(T_0)$, i.e., x_1 and x_0 are scalar multiples of each other. But then $\phi = \phi_0$, which is not the case. Thus, we see that the element $f_0(T_0)$ in C_E separates ϕ from ϕ_0 . By the result in Remark 2.6, we see that $\phi_n(T) \to \phi_0(T) = \langle Tx_0, x_0 \rangle$ for all $T \in \beta(H)$.

Remark 2.8. The above result is better than Corollary 3.2 of [7] since the earlier result required in addition that the operator T_0 be compact and that λ_0 satisfy $|\lambda_0| = ||T_0||$.

In order to apply this result to specific situations, we must have examples of operators which have simple eigenvalues. In this connection the following results are known:

1. Let an $n \times n$ non-singular normal matrix A_0 be such that all its minors have non-negative determinants and the elements just above and justs below the principal diagonal are non-zero. Then all the eigenvalues of A_0 are simple (Chapter II, Theorem 6 of Sec. 6 and Theorem 10 of Sec. 7 in [2]).

2. Let k(s, t) be a continuous real-valued function for $(s, t) \in [a, b] \times [a, b]$. For $f \in L^2([a, b]) = H$, let

$$T_{0}(f)(s) = \int_{a}^{b} k(s, t) f(t) \, \mathrm{d}t, \ s \in [a, b]$$

be a normal operator in $\beta(H)$. If k(s, t) > 0 for $a \le s, t \le b$, and if for $a < s_1 < ... < s_n < b, a < t_1 < ... < t_n < b$, the determinant of the matrix $(k(s_i, t_j))$ is non-singular, then all the eigenvalues of T_0 are simple (Chapter IV, Sec. 2, pp. 239 and 240 of [2]).

Addendum: Question similar to the ones consider in this note, but for completely positive linear maps on $\beta(H)$ are consider in the Weak Korovkin approximation by completely positive linear maps on $\beta(H)'$ by the authors. This paper is to appear in the Journal of Approximation Theory.

REFERENCES

- [1] ARVESON, W.: Subalgebras of C*-algebras. Acta. Math. 123, 1969, 141-224.
- [2] GANTMAKHER, F. P.—KREIN, M. G.: Oscillation Matrices and Kernels, and Small Vibrations of Mechanical Systems. 2nd Edition, Gostekhizat, Moscow, 1950; English translation published by U. S. Atomic Energy Commission.
- [3] KADISON, R. V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 56, 1952, 494–503.
- [4] KADISON, R. V.: The trace in finite operator algebras. Proc. Amer. Math. Soc. 12, 1961, 973-977.
- [5] KADISON, R. V.: Lectures on Operator Algebras. Cargese Lectures in Theoretical Physics, 41-82, Gordon and Breach Science Pub., New York, 1967.
- [6] KOROVKIN, P. P.: Linear Operators and Approximation Theory. Hindustan Pub. Cor., Delhi, 1960.
- [7] LIMAYE, B. V.—NAMBOODIRI, M. N. N.: Approximation by positive functionals. J. Indian Math. Soc. 43, 1979, 195—202.
- [8] LIMAYE, B. V.—NAMBOODIRI, M. N. N.: Korovkin-type approximation on C*-algebras. J. Approx. Theory 34, 1982, 237—246.
- [9] LIMAYE, B. V.—SHIRALI, S. D.: Korovkin's theorem for positive functionals on * normed algebras. J. Indian Math. Soc. 40, 1976, 163–172.
- [10] TAKESAKI, M.: Theory of Operator Algebras I. Springer-Verlag, New York, 1979.

Received March 14, 1984

Department of Mathematic Group of Theoretical Studies Indian Institute of Technology Powai, Bombay 400 076 INDIA

СЛАБАЯ АППРОКСИМАЦИЯ ПОЛОЖИТЕЛЬНЫХ ОТОБАЖЕНИЙ С*-АЛГЕБР

B. V. Limaye-M. N. N. Namboodiri

ī

Резюме

Пусть А — С*-алгебра с единицей 1_A и $\beta(H)$ — множество всех ограниченных операторов в пространстве Гильберта Н. Пусть $\phi_n: A \to \beta(H)$, n = 0, 1, 2, ..., последовательность положительных отображений, для которых ϕ_n $(1_A) \leq I$ и $\phi_n(a) \to \phi_0(a)$ слабо для a, принадлежащих некоторому подмножеству A. В терминах экстремальных точек положительных отображений приводятся достаточные условия для слабой сходимости $\phi_n(a) \to \phi_0(a)$ для всех $a \in A$.

Улучшается результат автора о приближении простого собственного значения нормального оператора.