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INDIVIDUAL ERGODIC THEOREM 
IN A REGULAR SPACE 

ERViN HRACHOVINA 

The paper brings a proof of the Individual Ergodic Theorem for F-valued 
measurable functions, where Y is a regular boundedly cr-complete vector lattice 
(Theorem 5). 

Preliminaries 

Troughout the paper Xwill denote a non-empty set, if a a-algebra of subsets 
of x, R the set of all real numbers, R+ the set of all positive real numbers and 
N the set all positive integers. 

Let Y be a boundedly cr-complete vector lattice (see [5]). We say that a 
sequence (yn)„eN of elements of Fr-converges toy if there exists ue Y, u > 0 such 
that, for each seR*, there exists such n0eN that for any n ^ n0 

\y-yn\£eu9 

where |y| = sup{y, - y} (see [5]). 
r 

Whe shall denote the r-convergence by y„ --• y or lim yn = y. If (yn) is a non-
n-* oo 

increasing sequence, we shall write yn \ y. and dually if (yn) will be a non-
decreasing sequence. 

Let (yn) be a bounded sequence of points in Y. Put 

z„= infy*, vvw = supyjt. 
k^ n k^n 

Then the sequence (zn) is non-decreasing, (wn) is non-increasing and zn ^ y„ < wrt 

for each neN. Further, the sequence (zn) is upper bounded and (wn) is lower 
bounded and therefore there exists inf wn and sup zn. We shall denote the element 

infww by lim supy„ and supz„ by lim infy„. 
n -*• oo n -* oo 

In what follows, Y will denote a regular space, i.e., Y will mean a boundedly 
cr-complete vector lattice with the following properties: 
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1/ Y has the <j-property, i.e., if (yn) is any sequence in Y such that yn = 0 each 
n G iV, then there is a bounded sequence (r,7) of positive real numbers such that 
(r,y,.),ie.v 1s a bounded sequence; 

r 

2/ )'n -*}' if ar-d only if V = lim supy„ = lim infy„. Note that the family of all 
n —> x n —> x 

real sequences is regular whereas, e.g., the family of all real sequences converging 
to 0 is not. We denote the set {ye Y: y > 0} by Y+ and put 

][u] = {yeY: |y| = rw, for some reR+} 

for ue Y4". We define a function F: 7[w] -• i? in the following way: 

p{y) = mf {reR:\y\ = ru}. (1) 

Then I[/l] becomes a Banach lattice, i.e., 7[t/] is a boundedly cr-complete vector 
lattice with a monotonous norm p (see [5]). 

Proposition 1. A vector lattice Y has the cr-property if and only if, for an 
arbitrary countable subset M of Y, there exists ueY+ such that M c 7[w]. 

The proof is evident. 
Definition 1. We say that a sequence of functions (f„)„,f„: X-+ Y9 uniformly 

r-converges t o / i f there exists ue Y+ such that the following condition holds: 
given seI?+, we can find n0eN such that, for each n = n0 and xeX, we have the 
inequality: /(x) - / ( x ) | = a/. 
We shall denote by u- lim / = / the uniform r-convergence of a sequence of 

n -* x 

functions (/)„ to/ . The element ue Y+ is then called the regulator of the uniform 
convergence. 

Elements of the integration theory 

Let (X, Sf9 P) be a probability space. A function f:X-> Y is said to be a 
simple measurable function if there exist pairwise disjoint sets Au ..., Ane&? and 
elements a,, ...,ane 7 such that 

; = 1 

The family of all simple measurable functions f:X-+ Y will be denoted by / . 
We define a function / :</-> F by putting 

/(/)= iatp(^). 
1 = I 

Definition 2. The element 1(f) is called the integral of a function / 
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Definition 3. A function f:X^> Y is said to be integrable if there exists a 

sequence (fn)n in f such that u-limf = f 
n —:• 00 

Proposition 2. If (fn)n is a sequence of simple measurable functions and this 

sequence uniformly r-converges t o f then there exists lim I(fn). 
n-> oo 

The proof of Proposition 2 is very easy. 

Corollary. Let (fn), (gn) be sequences of simple measurable functions such that 
both (fn) and (gn) uniformly r-converges to f then 

lim I(fn) = lim I(gn) . 
n -• oo n —> oo 

Definition 4. Letfbe a integrable function. The value lim I(fn) from PrOpOSi-
rt —> 00 

tion 3 is called by the integral of the function f and we shall denote it /(/), too. 
The family of all integrable functions f: X -» Y will be denoted by 2F'. 

The proofs of the following Theorems are very easy. They follow from the 
uniform r-convgence and the cr-property. 

Theorem 1. Iff g e &, c e R, thenf + g, cf |/|, sup {f, g}, inf{f, g} are integrable 
functions and 

Uf+g) = M + i(g), 
I(cf) = cl(f), 
l/(/)l = /(l/l). 

Further, i f / £ g, then 1(f) ^ 1(g). 

Theorem 2. If (fn)n uniformly r-converges to f and fn e&, then fe-^ and 

lim I(fn) = I(f). 
-> oo n ^ 

A transformation T: X -• Y is called measurable if T~] A e ^ for each A e Sf. 

Theorem 3. Letfe^7 and T be a measurable transformation. Thenfo Te«f . 
The proof of Theorem 3 is straightforward. 
We shall denote by \ %dP the integral of a real valued integrable measurable 

function £. 

Theorem 4. Let % be a bounded real valued integrable measurable function 
and ce Y, then c^e^ and 

/(c£) = cj£d/\ 

235 



Proof. If £ is a simple real valued measurable function, the proof is ev­
ident. Let £ be a bounded measurable real valued function. Then there exists a 
sequence (%„)„ of simple real valued measurable functions such that, for each 
£ei?+ , there exists n0eN such that 

\&(X) - &X)\ = 8 

for ani n ^ n0 and xeX. Hende u-lim c lim = c£ Also 
n -* x n -» oc_ 

|I(c^) - cj£dP| ^ |c|H£„ - a dP ̂  s\c\, 

whenever n ^ «0, and thus 

lim/(<:£.) = cfédP. 

An individual ergodic theorem 

Q.E.D. 

Recall (see [6]) that (X, Sf, P, T) is called a dynamical system if (X, Sf, P) is 
a probability space and T is a measure-presreving transformation, i.e., T is 
measurable and 

P(A) = P(7~]A) 

for each AeSf. k functionf.X -• Y is called invariant if there exists A e Sf with 
P(A) = 0 and, for each xeX — A we have 

f(x)-f(Tx). 

We are going to prove the individual ergodic theorem for a 7-valued integ­
r a t e function. 

Theorem 5. (Individual ergodic theorem.) Let (X, Sf, P T) be a dynamical 
system and f be an integrable function, then there exists an invariant function 
f* e & and A e Sf with P(A) = 0 such that 

lim-I1f(rx)=/*(x) 
" -> oo ft , = o 

for each xeX — A. Also for/* there holds 

/(/*) = /(/)• 

Proof. This Theorem will be proved in a few steps, 
i) Let f= c%B, where BeSf. Since %B *S a bounded real valued measurable 
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function, then by [6] there is an invariant set A eZf (A = T"U) with P(A) = 0 
and a bounded invariant integrable measurable function £ such that, for any 
eeR+ and xeX— A, there is n0 so that 

1". 
- I %B(TX) - Š(x) 
и, = o 

<є (2) 

for n = n0, and P(B) = f£dP. According to (2) 

lim-"i;V(T,x) = ̂ (x) 
" -> °o fl , = 0 

for each xeX — A. Since £ is invariant then c£ is also invariant. By Theorem 4 
ct^elF and 

/ (c3 = cj£dP = cfcd/> = /( /) . 

ii) According to i) we have that this Theorem holds in the case of a simple 
7-valued integrable function. 
iii) Le t fe^ be arbitrary. Then there exists a sequence (fn) of simple measurable 
functions and ueY+ such that, for any seR+

9 there is n0e N such that 

fn(x)-eU^f(x)Sfn(x) + ™ 

for each n = n0 and xeX. For each keN put 

П- 1 

Then 

Sk(f,x) = ^f(Vx). 

Sk(f„,n) -єu = Sk(f,x) = Sk(fn,x) + єu 

whenever n^n09 keN and xeX. By ii) there exist invariant sets AneSf with 
P(An) = 0 and integrable functions fte & such that 

iimSk(fn9x)=fn\x)9 
n -* oo 

00 

for each xe X - An. Putting A = (J 4 , we have Z>(,4) = 0, v4 is invariant and, 
i= 1 

for each xeX — A and n ~ H0 we obtain 

/K*) - m = lim inf Sk(f9 x)SJn\x) + eu9 (3) 
n-> 00 

fj(x) - eu = lim sup Sk(f, x) = fJM + eu. (4) 
rt —> 00 
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Hence for each xeX-A there is limffrx) = j^x ) . For xeA we define 
n —> oo 

j?(x) = 0. According to (3) or (4), 

\fax)zA(x)-/Rx)\£eu9 

whenever n = n0 and xeX, and therefore j * e ̂  . 
By ii)j?are invariant and If$ = I(f„). Then 

/(/*) = lim / ( / ^ _ ,) = lim /(/J) = lim /(/<,) = /(/) . 
Ai-+oo n -> oo «->oo 

Q.E.D. 
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ИНДИВИДУАЛЬНАЯ ЭРГОДИЧЕСКАЯ ТЕОРЕМА В РЕГУЛЯРНЫХ 
ПРОСТРАНСТВАХ 

Ет\\п Н г а с Ь о у т а 

Резюме 

В статье иследуется индивидуальная эргодическая теорема в регулярных пространствах. 
Она доказывается с помощью этой же теоремы для случая действительной случайной вели­
чины. Случайная величина определяется как предел последовательности простых случайных 
величин. 
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