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INDIVIDUAL ERGODIC THEOREM
IN A REGULAR SPACE

ERVIN HRACHOVINA

The paper brings a proof of the Individual Ergodic Theorem for Y-valued
measurable functions, where Y is a regular boundedly o-complete vector lattice
(Theorem 5).

Preliminaries

Troughout the paper X will denote a non-empty set, & a o-algebra of subsets
of x, R the set of all real numbers, R* the set of all positive real numbers and
N the set all positive integers.

Let Y be a boundedly o-complete vector lattice (see [5]). We say that a
sequence (y,), v of elements of Y r-converges to y if there exists u€ Y, u > 0 such
that, for each €e R*, there exists such nye N that for any n = n,

ly — vl = eu,
where |y| = sup{y, — y} (see [5]).
Whe shall denote the r-convergence by y,— y or lim y, = y. If (,) is a non-

increasing sequence, we shall write y, ~ y. and dually if (y,) will be a non-
decreasing sequence.
Let (y,) be a bounded sequence of points in Y. Put

z, = infy,, w, = supy,.
k>n

k>n

Then the sequence (z,) is non-decreasing, (w,) is non-increasing and z, < y, < w,
for each ne N. Further, the sequence (z,) is upper bounded and (w,) is lower
bounded and therefore there exists inf w, and sup z,. We shall denote the element

infw, by lim supy, and supz, by lim infy,.

In what follows, Y will denote a regular space, i.e., Y will mean a boundedly
o-complete vector lattice with the following properties:
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1/ Y has the o-property, i.e., if (y,) is any sequence in Y such that y, = 0 each
ne N, then there is a bounded sequence (r,) of positive real numbers such that
(V). v 1s @ bounded sequence;

2, v,—vifand only if y = lim sup y, = lim infy,. Note that the family of all

real sequences is regular whereas, e.g., the family of all real sequences converging
to 0 is not. We denote the set {y€ Y: y > 0} by Y* and put

Iu) = {yre Y:|y| Sru, for some re R*}
for ue Y*. We define a function p: Ilu] — R in the following way:
p(v) = inf{re R:|y| < ru}. §))

Then I[u] becomes a Banach lattice, i.e., [[u] is a boundedly o-complete vector
lattice with a monotonous norm p (see [5]).

Proposition 1. A vector lattice Y has the o-property if and only if, for an
arbitrary countable subset M of Y, there exists ue Y* such that M < [[u].

The proof is evident.

Definition 1. We say that a sequence of functions (f,),, f,: X — Y, uniformly
r-converges to f if there exists ue Y* such that the following condition holds:
given €€ R, we can find nye€ N such that, for each n = n, and x € X, we have the
inequality: |[f(x) — f,(x)] < eu.

We shall denote by u-lim f, = f the uniform r-convergence of a sequence of

functions (f;), to f. The element u€ Y* is then called the regulator of the uniform
convergence. ;

Elements of the integration theory

Let (X, &, P) be a probability space. A function f: X — Y is said to be a
simple measurable function if there exist pairwise disjoint sets A4,, ..., 4,€ & and
elements a,, ...,a,€ Y such that

f= 'Zl aixa,

The family of all simple measurable functions f: X — Y will be denoted by #.
We define a function I: ¢ — Y by putting

I(f) = i a,P(4).

i=1

Definition 2. The element I(f) is called the integral of a function f.
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Definition 3. A function f: X — Y is said to be integrable if there exists a

sequence (f,), in # such that u-lim f, = f.

Proposition 2. If (f,), is a sequence of simple measurable functions and this

sequence uniformly r-converges to f, then there exists lim I(f;).

n— oo

The proof of Proposition 2 is very easy.

Corollary. Let (f,), (g,) be sequences of simple measurable functions such that
both (f,) and (g,) uniformly r-converges to f, then

lim I(f)) = lim I(g,) .

Definition 4. Let f'be a integrable function. The value lim /(f,) from Proposi-

tion 3 is called by the integral of the function f and we shall denote it I(f), too.
The family of all integrable functions f: X — Y will be denoted by &.

The proofs of the following Theorems are very easy. They follow from the
uniform r-convgence and the o-property.

Theorem 1. If f, g€ #, ce R, then f + g, cf, |fl, sup {f, g}, inf {f, g} are integrable
functions and

I(f+g) =1()+ I(g),
I(cf) = cI(),
I = 1) -

Further, if f < g, then I(f) £ I(g).

Theorem 2. If (f,), uniformly r-converges to f and f,e #, then fe # and
lim I(f,) = I(f).

A transformation T: X — Y'is called measurable if T™' 4€ &% foreach 4e ¥ .

Theorem 3. Let fe # and T be a measurable ttransformation. Then f. Te % .

The proof of Theorem 3 is straightforward.

We shall denote by | £dP the integral of a real valued integrable measurable
function &.

Theorem 4. Let £ be a bounded real valued integrable measurable function
and ce Y, then cée & and

I(cé) = c_fé‘dP.
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Proof. If £ is a simple real valued measurable function, the proof is ev-
ident. Let £ be a bounded measurable real valued function. Then there exists a

sequence (£,), of simple real valued measurable functions such that, for each
€€ R*, there exists nye N such that

[&(x) — SN £ &

for ani n < n, and xe X. Hende u-lim ¢ lim = c&. Also

n— oxC n—*aon

[1(c&,) — cfEdP| < |clfI&, — &dP < eld],

whenever n = n,, and thus
lim I(cg,) = c[&dP.
Q.E.D.

An individual ergodic theorem

Recall (see [6]) that (X, &, P, T) is called a dynamical system if (X, &, P) is
a probability space and T is a measure-presreving transformation, i.e., T is
measurable and

P(4) = P(T"'4)

foreach Ae &. A function f: X — Y is called invariant if there exists 4 € & with
P(4) = 0 and, for each xe X — 4 we have

Sf(x) = f(Tx).

We are going to prove the individual ergodic theorem for a Y-valued integ-
rable function.

Theorem 5. (Individual ergodic theorem.) Let (X, &, P T) be a dynamical
system and f be an integrable function, then there exists an invariant function
f*e# and A€ & with P(A) = 0 such that

n—1

lim LY AT) = f*(9)

n=opni=0
for each xe X — A. Also for f* there holds
I(*) = I(f).

Proof. This Theorem will be proved in a few steps.
i) Let f= cy, where Be . Since y, is a bounded real valued measurable
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function, then by [6] there is an invariant set A€ & (4 = T~'4) with P(4) =0
and a bounded invariant integrable measurable function & such that, for any
ge R* and xe X — A, there is n, so that

n—1

Y 2T - 0| S ¢ @

for n 2 ny, and P(B) = [¢dP. According to (2)

lim LY AT) = )

nsOpi=0

for each xe X — A. Since £ is invariant then ¢ is also invariant. By Theorem 4
cée F and

1(cé) = cfEdP = cjde = I(f).

ii) According to i) we have that this Theorem holds in the case of a simple
Y-valued integrable function.

iii) Let fe & be arbitrary. Then there exists a sequence (f,) of simple measurable
functions and ue Y* such that, for any €e R*, there is nye N such that

Ja(x) — eu = f(x) £ 1,(x) + eu

for each n = n, and xe X. For each ke N put
ln—l .
Si(f,x) ==Y A(Tx).
ki=o
Then

Silfwn) — eu £ Si(f, %) < Silf,, x) + &u

whenever n > ny, ke N and xe X. By ii) there exist invariant sets 4,€.% with
P(A,) = 0 and integrable functions f*¢ # such that

hm Sk(/;u x) =.f:(x) ’

for each xe X — A4,. Putting 4 = | ) 4,, we have P(4) = 0, 4 is invariant and,
i=1

for each xe X — A and n = n, we obtain

Sx) — eu < lim inf S,(f, x) < f)x) + au, 3)
SXx) — e < lim sup S,(f, x) < fAx) + eu. | @)
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Hence for each xeX — A there is lim f}{x) = ff{x). For xeA we define
SA(x) = 0. According to (3) or (4),
) 24(x) — S| = eu,

whenever n 2 n, and xe X, and therefore f*e % .
By ii) f*are invariant and If® = I(f,). Then

I(*) = lim I(*,_ ) = lim I(H = lim I(E) = I().

Q.E.D.
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UHAUBUAYAJIBHAA QPITOJNYECKAS TEOPEMA B PEI'VJIAAPHBIX
IMPOCTPAHCTBAX

Ervin Hrachevina

Pe3iomMme

B cTtaThe ucnenyercs HHAMBHAYaIbHASA IProAHyecKkas TeOpeMa B PEryJIspHbIX IPOCTPAHCTBAX.
OHa [10Ka3bIBAETCA C MOMOLIBIO ITOH Xe TEOpeMBbI 1A Cilyyasi NeHCTBHUTEILHOM ClTy4aifHOM BeJIH-
yuHbl. CllyyaiiHas BeJIMYHHA ONMpEAEsIAETCA KaK Mpeies MOoCaeA0BaTEIbHOCTH NPOCThIX CY4alHbIX
BEJIHYMH.
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