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Math . Slovaca 38 , 1988, No . 1 , 

THE DISTANCE BETWEEN VARIOUS ORIENTATIONS 
OF A GRAPH 

BOHDAN ZELINKA 

Various types of distances between isomorphism classes of graphs were 
studied by various authors; see [1]—[6]. Here we introduce the distance between 
isomorphism classes of mixed graphs which are obtained from the same undirec
ted graph by orienting edges. This distance is a certain measure of how these 
graphs differ from each other. Therefore we shall start by some assertions 
concerning isomorphisms between different orientations of the same graph. 

The considered graphs will be of two types: finite undirected graphs whose 
edges are coloured (arbitrarily) by two colours, green and red, and finite mixed 
graphs. (This concept includes also both directed and undirected graphs.) All 
graphs are without loops, any pair of vertices is joined by at most one edge. 

Let H be a finite undirected graph whose edges are coloured green and red. 
The set of all green (or red) edges of H will be denoted by Eg(H) (or Er(H) 
respectively). We admit the case when one of these sets is empty. 

Consider the class J((H) of all mixed graphs which are obtained from H by 
assigning directions to all green edges (the red edges remain undirected). Fur
ther, by Ji*(H) we denote the class of all isomorphism classes oiJt(H), i. e. such 
classes that two graphs from M(H) belong to the same class if and only if they 
are isomorphic. 

If © ,e^* ( / / ) , ®2eJ/*(H), then the distance d(©„ ©2) of©, and ©2 is the 
minimum number of directed edges of a graph from ©, whose directions must 
be reversed in order to obtain a graph from ©2. It is easy to prove that Ji*(H) 
with this distance is a metric space. 

For the sake of simplicity we shall sometimes speak about the distance 
between graphs instead of the distance between isomorphism classes of graphs; 
the distance d(G]9 G2) between the graphs G,, G2 from Ji(H) is the distance 
d(©,, ©2) between the classes ©,, ©2 from M*(H) such that Gxef&x, G2G©2. 
Note that two graphs having the distance zero need not be equal, but are 
isomorphic. 

The case when all edges of H are red is trivial; then Jt(H) = {//}. 
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Before the study of the distance we shall present some results on isomor
phisms between graphs from Ji(H). 

Let <p be an isomorphism of a graph GxeJt(H) onto a graph G2eJ/(H). If 
u, v are two vertices of V(H), then the pairs u, v and (p(u), (p(v) are either both 
joined by a green edge, or both joined by a red edge, or neither is joined. 
Therefore (pis also an automorphism of//which preserves the colours of edges. 
In the following we shall study the properties of these automorphisms from this 
viewpoint. The colour-preserving automorphisms of//form a group; we denote 
it by CA(H). 

If (pe CA(H), then it induces a permutation (pv of the vertex set V(H) of H and 
a permutation <pe of the set Eg(H). let e be a green edge of H which is contained 
in a cycle C of q>e of the length k. This cycle consists of the edges e, 
q>(e), ...,(pk~x(e) and we have q>k(e) = e. Thus e is fixed in (pk. If both end 
vertices of e are fixed in (pk, then we say that C is a cycle of the type I. If (pk maps 
the end vertices of e mutually onto each other, then we say that C is a cycle of 
the type II. 

Now let Gx, G2 be two graphs from Jl(H). By E+(GX, G2) (or E~(GX, G2)) we 
denote the set of green edges of H which have equal (or mutually opposite, 
respectively) directions in Gx and G2. 

Theorem 1. Let Gx, G2 be two isomorphic graphs from Ji(H), let <p be an 
isomorphic mapping of Gx onto G2. Let C be a cycle ofq> of the type I. Then the 
number of edges from E~(GX, G2) in C is even. 

Proof. Let k be the length of C. Then we denote e0 = e and e( = q?(e) for 
i = 1, ..., k — 1. For each / = 0, 1, ..., k — \ let w, (or i;.) be the initial (or 
terminal, respectively) vertex of e, in Gx. Now letj be an integer, 0 ^ j ^ k — 2. 
If ej+xeEJt(Gx, G2), then also in G2 its initial vertex is uj+x and its terminal 
vertex is vj+x. The edge e, + , is the image of e, in (p. If we consider <p as a mapping 
of Gx onto G2, then (p maps the edge e} of G, directed from w, to Vj onto the edge 
ej+, of G2 directed from uj+, to vj+x. Therefore <p(uj) = uj+,, cp(vj) = vj+,. If 
ej+xeE~(Gx, G2), then in G2 its initial vertex is vj+x and its terminal vertex is 
uj+x. Then q>(u) = vj+,, (p(Vj) = uj+,. By induction we obtain that ^(UQ) = u, 
and ^(t'o) = ^ if and only if the number of edges from E~(GX, G2) among the 
edges ex, ..., e} is even. This holds al so forj = k. As C is of the type I, we have 
<Pk(u0)

 = wo> ^(^o) = ô a n d ^ e number of edges from E~(GX, G2) must be 
even. • 

Theorem 2. Let G,, G2 6e two isomorphic graphs from J((H), let <p be an 
isomorphic mapping ofGx onto G2. Let C be a cycle of (p of the type II. Then the 
number of edges from E~(GX, G2) in C is odd. 

Proof is analogous to the proof of Theorem 1. • 
If G is a mixed graph, then by G(<-) we shall denote the graph obtained from 

G by reversing the directions of all directed edges. 
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Theorem 3. Let GeJi(H), let G s G(<-). Then any isomorphic mapping <p of 
G onto G(<-) has the following properties: 

(i) If two vertices u, v belong both to cycles of <pv of odd lengths, then they are 
either non-adjacent, or joined by a red edge. 

(ii) If two vertices u, v belong to the same cycle of <pv of the length k divisible 
by 4 and v = <pk/2(u) holds, then they are either non-adjacent, or joined by a red 
edge. 

Proof. Suppose that u, v belong both to cycles of <pv of odd lengths and 
they are joined by a green edge e. Then e is in a cycle C of <pe whose length is 
the least common multiple of the lengths of cycles to which u and v belong; this 
implies that it is also odd. Evidently all green edges are in E~(G, G(<-)), 
therefore C contains an odd number of edges from E~(G, G(<-)). According to 
Theorem 1 the cycle C cannot be of the type I. But neither C can be of the 
type II; in this case both u and v would belong to the same cycle of <pv with the 
length equal to the length of C multiplied by 2, i. e. with an even length. This 
is a contradiction. Now suppose that u and v belong to the same cycle of <pv of 
the length k divisible by 4, v = <pkf2(u) holds and u, v are joined by a green edge 
e. Then <pk,2(e) = e and e belongs to a cycle C of <pe of the length k/2. As k is 
divisible by 4, the number k/2 is even and C contains an even number of edges 
from E~(G, G(<-)), which contradicts Theorem 2. • 

If H is a complete graph, all of whose edges are green, then M(H) is the class 
of all tournaments on V(H). 

Theorem 4. let G be a tournament such that G = G(<-), let <p be an isomor
phism of G onto G(<-). If G has an even number of vertices, then all cycles of <pv 

have lengths congruent to 2 modulo A.IfG has an odd number of vertices, then <pv 

has one cycle consisting of a fixed vertex and all other cycles of <pv have lengths 
congruent to 2 modulo 4. 

P r o o f In the case of tournaments any two vertices are joined by a green 
edge. Hence by Theorem 3 no two of them belong to cycles of <pv of odd lengths. 
This implies that there is at most one cycle of <pv of an odd length and this cycle 
(if it exists) has the length 1. Other cycles of <pv must have even lengths, i.e. 
lengths congruent to 0 or 2 modulo 4. Suppose that there exists a cycle C of <pv 

of the length k = 0 (mod 4). Then k/2 is even and there exists an edge joining 
a vertex u of C with <pk,2(u), which again contradicts Theorem 3. The number of 
vertices belonging to cycles of <pv of even lengths is evidently fixed; hence a fixed 
vertex exists if and only if the number of vertices of G is odd. • 

Theorem 5. Let a finite undirected graph H with edges coloured in green and 
red be given. Let <pbe a colour-preserving automorphism ofG. Let E~ be a subset 
of Eg(H) with the property that in each cycle of (pe of the type I there is an even 
number of edges from E~ and in each cycle of <pe of the type II there is an odd 
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number of edges from E~. Then there exist graphs Gb G2from Ji(H) such that 
cp is an isomorphism of Gx onto G2 and E~(GX, G2) = E~. 

Proof. We shall prove the assertion by the construction of the graphs G,, 
G2. Let C be a cycle of (pe, let k be its length. Choose and edge e0 in C and direct 
it arbitrarily. For i = 1, ..., k — 1 denote et = (pl(eo)- Now proceed by induction. 
Let 1 _l i _l k — 1 and let et_ x be yet directed. Let w,_ x be its initial vertex and 
let Vi_x be its terminal vertex. If e,e£~, direct it from (p(vt_x) to (p(ut_x)\ if 
e& E~, direct it from (p(ut_ x) to (p(vt_ x). We do this with each cycle of <pe, the 
mixed graph thus obtained will be Gx. The graph G2 will be obtained from Gx 

by reversing the directions of all edges from E~. It is easy to prove that the 
graphs G,, G2 are the required graphs. • 

In the case when E~ = 0, we have Gx = G2 and cp is an automorphism of Gx. 
If E~ = Eg(H), then G2 = G,(<-). This yields us two corollaries. 

Corollary 1. Let a finite undirected graph H with edges coloured in green and 
red be given. Let cp be a colour-preserving automorphism of G. The graph 
GeJ((H) with the property that cp is an automorphism of G exists if and only if 
all cycles of cpe are of the type I. 

Corollary 2. Let a finite undirected graph H with edges coloured in green and 
red be given. Let cp be a colour-preserving automorphism of G. The graph 
GeJi(H) such that cpe is an isomorphism ofG onto G(<-) exists if and only if all 
cycles of (pe of the type I have even lengths and all cycles of q>e of the type II have 
odd lengths. 

The necessity of the conditions follows from Theorem 1 and Theorem 2. We 
have yet another corollary. 

Corollary 3. For a finite undirected graph H with edges coloured in green and 
red the following assertions are equivalent: 
(i) All green edges of H are fixed in all colour-preserving automorphisms of H. 

(ii) Any two distinct graphs from Ji(H) are non-isomorphic. 
Now we may return to the distance. By 3)(H) we denote the graph whose 

vertex set is Jt*(H) and in which two vertices ©,, ©2 are adjacent if and only 
ifd(©„©2) = 1. 

Theorem 6. The distance of any two vertices ©,, ©2 in Q)(H) in the graph-
theoretical sense is equal to d(©l9 ©2). 

Proof. Let ©, ©' be two classes from M*(H), let d(©, ©') = k. Let 
Ge ©, G' e ©' and let G, G' be such that there exist exactly k edges of H whose 
directions in G and in G' are opposite. Let these edges be eu ...,ek. For 
/ = 1, ..., k let G.be the graph obtained from G by reversing the directions of 
edges ex, ..., e, and let ©, be the class from Jt*(H) such that G,e ©,. Evidently 
the classes ©, ©,, ©2, ..., ©^ = ©' are vertices of a path of the length k from © 
to ©' in Q)(H). On the other hand, if there exists a path of the length k it is 
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evident that a graph from ©' can be obtained from a graph from © by reversing 
the directions of at most k edges. This implies the assertion. D 

Theorem 7. Let H be a finite undirected graph whose edges are coloured in green 
and red, let all green edges of H be fixed in all automorphisms from CA(H). Let 
k be the number of green edges of H. Then Q)(H) is the graph of the k-dimensional 
cube. 

Proof. Denote the green edges of H by ex,...,ek. Choose a graph 
G0eJl(H). Then to each graph GeJi(H) assign a k-dimensional vector 
v(G) = (ax, ..., ak), where for each i = 1, ..., k the number a, = 1 if et has opp
osite directions in G0 and G, and a, = 0 otherwise. Evidently to each k-dimen
sional vector v whose coordinates are equal to 0 or 1 there exists G e M(H) such 
that v = v(G). The graph of the k-dimensional cube is the graph whose vertex 
set is the set of all such vectors and in which two vertices are adjacent if and only 
if they differ in exactly one coordinate. As each class of Jt*(H) contains only 
one graph from Ji(H), evidently to each vertex of the graph of the k-dimension
al cube a class of Ji*(H) can be assigned and thus &>(H) is obtained. D 

In the sequel the distance between G and G(<-) will be important. 
Theorem 8. Let t$>eJt*(H), let Ge(5. Then the maximum of distances 

d(©, ®')/or all &eJt*(H) is at most \\Eg\ + id(G, G(^)). 
Proof. Let G'e©' , let F be the set of green edges of H which have opp

osite directions in G and G'. Let E0 be the subset of the set Eg of the maximum 
cardinality with the property that by reversing directions of all edges ofE0 again 
a graph from © is obtained. Evidently \E0\ = \Eg\ — d(G, G(<-)). Let £, = 
= E0uF,E2 = F-E0, then \E2\ = d(G, G(^)). If\Ex\ = \\Eg\ - \d(G, G(+-)), 
then d(®, ©') = \El\ + \E2\ = \\Eg\+\d(G, G(«-)). If \EX\ = \ \Eg\ -
— \d(G, G(<-)), we consider the graph G" obtained from G by reversing the 
directions of all edges of E0; we have G"e©. By reversing the directions of all 
edges of (E0 — Ex) u E2 we obtain G" e © from G ' e © ' . Hence \(E0 — Ex) u 
u E2\ = d(©, ©'). We have \E0 - Ex\ = \Eg\ - d(G, G(^)) - \EX\ and thus 
d(©,©') = \(E0-EX\KJE2\ = \Eg\ - d(G, G(^)) - \EX\ + \E2\ = \Eg\ -
- d(G, G(+-)) - \\Eg\ + id(G, G(<-)) + d(G, G(*-)) = \\Eg\ + \d(G, G(+-)). D 

Corollary 4. The diameter of <2)(H) is at most 

\\Eg\ + imax{d(G, G(^))|Ge Jt(H)}. 

Corollary 5. The radius of Q)(H) is at most 

\\Eg\ + imin{d(G, G(+-))\Ge J/(H)}. 

In the case of the graph H from Theorem 6 we have d(G, G(<-)) = \Eg\ for 
each GeJt(H). Both the radius and the diameter of Q)(H) are equal to \Eg\. 

We shall describe an example of a graph I/with the property that G .= G(«-) 
for each geJi(H). Let the vertex set of H be {ux, ..., uk, vx, ..., vk}. Let the green 
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edges of H be all edges u,!;, for i = 1, ..., k and let the red edges of H be all edges 
ifUj and vtVj for 1 ̂  i ^ k, 1 ̂  j ^ k, / # j. The diameter of<2>(H) is then [k/2] and 
its radius is [k/4]. 

Finally we shall prove a theorem on tournaments. 
Theorem 9. Lef H be a complete graph with n vertices, all of whose edges are 

green. Let GeJi(H). Then d(G, G(<-)) ̂  \n(n — 2) for n even and 
d(G, G(<-)) = \(n - If for n odd. 

Proof. We choose a certain partition & of V(H). If n is even, then each 
class of SP consists of two vertices; if n is odd, then one class consists of one 
vertex and all the others of two vertices. Then there exists an automorphism <p 
of H such that each class of & is a cycle of <pv. Then each cycle of q>e either has 
the length 1 and the type II, or has the length 2 and the type I. According to 
Corollary 2 there exists a graph G' eJt(H) such that G' =" G'(<-) and q> maps 
G' onto G'(<-). Moreover, we may construuct G' in such a way that we choose 
the direction of one edge in any cycle of cpe. Hence we choose these directions 
to be the same as in G. The number of cycles of (pe is \n2 for n even and \(n2 — 1) 
for n odd. Hence d(G, G') ^ \n(n — 1) — \n2 = \n(n — 2) for n even and 
d(G, G') = J(/i - l)2 for n odd. Analogously d(G(<-\ G'(<-)) = 
= d(G(<-), G') = \n(n - 2) and d(G{<-)9 G'(«-)) = </((/(«-)• Gr) = J/i - l)2 for 
« odd. According to the triangle inequality d(G, G(+-)) ^ d(G, G') + 
+ d(G(<-), G') and this is at most \m(n — 2 for n even and \(n — l)2 for AI 
odd. • 

We have spoken about mixed graphs, but all results can be easily transferred 
to directed graphs in which pairs of oppositely directed edges joining the same 
pair of vertices are admitted. It suffices to replace each undirected edge by such 
a pair. 
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PACCTOЯHИE MEЖДУ PAЗЛИЧHЫMИ OPИEHTAЦИЯMИ ГPAФA 

Bohdan Ze l inka 

Peзюмe 

B cтaтьe иccлeдoвaны cмeшaнныe гpaфы, кoтopыe пoлyчeны из зaдaннoгo нeopиeн-
тиpoвaннoгo гpaфa чepeз ввeдeниe opиeитaции нa зaдaннoм пoдмнoжecтвe eгo мнoжecтвa 
peбep. Bвoдитcя и изyчaeтcя нeкoтopoe paccтoяниe мeждy тaкими гpaфaми. 
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