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LOCALLY SNAKE-LIKE GRAPHS
BOHDAN ZELINKA

This paper continues the study of local properties of graphs pursued by
various authors, eg. [1]—[4]. Surveys of these investigations are in [5] and [6].

Let G be an undirected graph (without loops and multiple edges), let v be its
vertex. The symbol N;(v) denotes the subgraph of G induced by the set of all
vertices which are adjacent to v in G.

A snake is a graph whose vertices and edges form a path. (We distinguish a
‘“path” as a sequence of vertices and edges and a “‘snake” as a graph. But a graph
which is called here “snake” is often called also “path”.) In other words, a snake
is a connected graph in which exactly two vertices have the degree 1 and all
others have the degree 2. The length of a snake is the number of its edges.

A graph G with the property that N;(v) is a snake of the length at least 1 for
each vertex v of G will be called a locally snake-like graph.

Here we shall study locally snake-like graphs which are finite, planar and
3-connected. We require them to be 3-connected, because in this case the faces
of a finite planar graph are uniquely determined. The number of edges forming
a boundary of a face will be called the degree of that face.

Note that if a locally snake-like graph G is 3-connected and not isomorphic
to K, then Ng;(v) for each v is a snake of the length at least 2; otherwise G would
contain a vertex of the degree 2 and thus it would not be 3-connected.

Theorem 1. Let G be a finite planar 3-connected graph. Then the following two
assertions are equivalent :

(1) G is locally snake-like.

(ii) Each vertex of G is adjacent to exactly one face of degree greater than 3
and each triangle in G is the boundary of a face of G.

Proof. (i) = (ii). First we shall prove thateach triangle in G. Consider an
arbitrary triangle T in G with the vertices u, v, w. Suppose that T is not the
boundary of a face of G. Then V(G) — {u, v, w} (where V(G) is the vertex set
of G) is the union of two non-empty disjoint sets 4, B with the property that
each path in G connecting a vertex of A with a vertex of B contains at least one
of the vertices u, v, w. Each of the vertices u, v, w is adjacent to a vertex of 4 and
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to a vertex of B; otherwise the remaining two of these vertices would form a
two-element cutset in G and G would not be 3 connected. Consider the graph
Ng(u). It contains the edge vw and moreover at least one vertex of 4 and at least
one vertex of B. As Ng;(u) is a snake, it contains a path connecting a vertex
of A with a vertex of B; this path goes through the edge vu. Hence there exists
a vertex x,€ A adjacent to » and to one of the vertices v w - without loss of
generality let x, be adjacent to v. Now counsider Ng(u), nalogously we prove
that there exists a vertex x,€ A adjacent to w and to one of the vertices u. v;
without loss of generality suppose that x, is adjacent to u. Now return to N (u).
It contains a path connecting x, with x, and having inner vertices v, w. Both
terminal vertices of this path are in 4. But u is adjacent also to a vertex x;€ B.
Thus N, (1) must contain a path connecting x; with x, or x, As x;€ A4, x,€A,
X;€ B, such a path must contain v or w (the vertex u 1s not in N;(u)). But then
v or w is adjacent in Ng;(u) to a vertex of B and thus 1t has the degree at
least 3 in Ng;(u), which is a contradiction with the assumption that N;(u) is a
snake. Hence T is the boundary of a face in G ; as it was chosen arbitrarnly, this
is true for all triangles in G.

Now consider a vertex v of G. As G is locally snake-like, the graph N (1) is
a snake. Let its vertices be u,, uy, ..., u, let its edges be v, _,u, fori=1, ..., k.
Then there exist triangles »,_,u,vin G for i = 1, ..., k; they are faces of G, as
it was proved above. The vertices u,, u, are not adjacent (otherwise N;(v) would
contain a circuit), thus the edges vu,, vy, belong to a face of G of a degree greater
than 3.

(ii) = (i). Let F, ..., F, be the faces incident with a vertex v of G such that F
and F, fori=1, ...,k — 1 have a common edge vy, and F, F, have a common
edge vu,. Let E, ..., F, be trianguiar, let F{ have more than 3 edges. Then the
vertex set of Ng(v) is {u,, ..., 4} and this graph contains the edges w,u,, , for
i=1, ...,k — 1. Suppose that there exists an edge joining u,, u;, where 1 < i <
<i+1<j=2k.Ifi=1,j=k,then the vertices v, u,, u, form a triangle and this
is the boundary of F ; the face F is triangular, which is a contradiction. If i > 1
(or j > k), then the vertices v, u,, u;, form a triangle and simultaneously they
separate u; _, from u; ., (or u;_, from u; , ,); thus they form a triangle which is
not a face of G, again a contradiction. Hence N;(v) is a snake. As this holds for
each vertex v of G, the graph G is locally snake-like. [

Corollary. Let G be a finite planar 3-connected locally snake-like graph. Then
the circuits of G which are boundaries of faces of degrees at least 4 form a spanning
subragph of G, all of whose connected components are circuits.

Theorem 2. The maximum number of edges of a finite planar 3-connected
locally snake-like graph with n vertices, where n = 8, is equal to 2n + 3[n/4] — 6.
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Proof. Let G be a planar 3-connected locally snake-like graph with n > 8
vertices. Let G, be its spanning subgraph described in Corollary. Let the circuits
k

of Gybe D, ..., D;, let d; be the length of D, fori = 1, ..., k. Obviously Y d, = n.
i=1

As each D; is the boundary of a face of G, it has no chord inside this face. It has

neither a chord outside this face, because then the end vertices of this chord

would form a cutset in G and G would not be 3-connected. Hence none of the

circuits Dy, ..., D, has a chord. Thus to each D; we may add d; — 3 chords in such

a way that the graph G, obtained from G by adding them is also planar

(obviously we put them inside the face bounded by this circuit). If m denotes the
k

number of edges of G, then G, has m + ). (d; — 3) = m + n — 3k edges. The

i=1

maximum number of edges of a planar graph with » vertices is 3n — 6; hence
m+ n — 3k £ 3n — 6, which implies m <2n+ 3k — 6. Asd; =24 fori=1, ...,
..., k, the maximum possible & is [n/4] and this gives m < 2n + 3[n/4] — 6.

Now let n = 8 be given. Let r be the number from the set {0, 1, 2, 3} such that
r = n(mod 4), let k = [n/4]. Consider two disjoint circuits C, and C,. The vertex
set of C, is {u,, ..., Uy}, the vertex set of C, is {v,, ..., vy . ,}. The edges of C, are
wu,,, fori=1, ..., 2k — 1 and wu,,u,, the edges of C, are v,v;,, fori=1, ...,
..o, 2k +r —1 and vy, ,v,. We add the edges w0, for i=1, ..., 2k — 1 and
Uy, Uy . » and further the edges u;v,, , for even i < 2k — 2 and u,,v,. Finally, we
add the edges u,u, fori=3, ..., 2k — 1 and vyv;for i =3, ..., 2k + r — 1. The
resulting graph satisfies the conditions of Theorem 1, as the reader may verify
himself. O
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In Fig. 1 we see such a graph for n =23. A planar 3-connected locally
snake-like graph with eight vertices is shown in Fig. 2.
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JIOKAJIbBHO 3MEEOBPA3HBIE I'PA®bI
Bohdan Zelinka

Pe3iome

Cumbo1oM Ng(v) o6o3nataetcs monrpad G MOPOXIEHHBIH MHOXCTBOM BCEX BEPLUMH,
CMEXHBIX C BeplMHOA v B G. Ec:iu N (v) AB15€TCA UenbIo 1 Kax A0M BepuuHbi v rpada G, 10 G

Ha3BIBAETCA J10KATLHO 3Mee00pa3HbiM rpadom. Mccnenyrotes nokaisHo 3Meeobpastbie rpads,
KOTOpbI€E NTAHAPHBI U 3-CBSA3HBI.

88



		webmaster@dml.cz
	2012-08-01T04:09:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




