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LOCALLY SNAKE-LIKE GRAPHS 

BOHDAN ZELINKA 

This paper continues the study of local properties of graphs pursued by 
various authors, eg. [1]—[4]. Surveys of these investigations are in [5] and [6]. 

Let G be an undirected graph (without loops and multiple edges), let v be its 
vertex. The symbol NG(v) denotes the subgraph of G induced by the set of all 
vertices which are adjacent to v in G. 

A snake is a graph whose vertices and edges form a path. (We distinguish a 
"path" as a sequence of vertices and edges and a "snake" as a graph. But a graph 
which is called here "snake" is often called also "path".) In other words, a snake 
is a connected graph in which exactly two vertices have the degree 1 and all 
others have the degree 2. The length of a snake is the number of its edges. 

A graph G with the property that NG(v) is a snake of the length at least 1 for 
each vertex v of G will be called a locally snake-like graph. 

Here we shall study locally snake-like graphs which are finite, planar and 
3-connected. We require them to be 3-connected, because in this case the faces 
of a finite planar graph are uniquely determined. The number of edges forming 
a boundary of a face will be called the degree of that face. 

Note that if a locally snake-like graph G is 3-connected and not isomorphic 
to K3, then NG(v) for each v is a snake of the length at least 2; otherwise G would 
contain a vertex of the degree 2 and thus it would not be 3-connected. 

Theorem 1. Let G be a finite planar 3-connected graph. Then the following two 
assertions are equivalent: 

(i) G is locally snake-like. 
(ii) Each vertex of G is adjacent to exactly one face of degree greater than 3 

and each triangle in G is the boundary of a face of G. 

Proof. (i)=>(ii). First we shall prove thateach triangle in G. Consider an 
arbitrary triangle T in G with the vertices w, v9 w. Suppose that T is not the 
boundary of a face of G. Then V(G) — {w, v9 w} (where V(G) is the vertex set 
of G) is the union of two non-empty disjoint sets A9 B with the property that 
each path in G connecting a vertex of A with a vertex of B contains at least one 
of the vertices w, v, w. Each of the vertices u, v9 w is adjacent to a vertex of A and 
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to a vertex of B; otherwise the remaining two of these vertices would form a 
two-element cutset in G and G would not be 3 connected. Consider the graph 
NG(u). It contains the edge vw and moreover at least one \ertex of A and at least 
one vertex of B. As NG(u) is a snake, it contains a path connecting a vertex 
of A with a vertex of B; this path goes through the edge vw. Hence there exists 
a vertex x, e A adjacent to u and to one of the vertices r w • without loss of 
generality let x, be adjacent to v. Now consider NG(n), nalogously we prove 
that there exists a vertex x2eA adjacent to w and to one of the \ertices w, v\ 
without loss of generality suppose that x2 is adjacent to u. Now return to NG(u). 
It contains a path connecting x, with x2 and having inner \ertices v, u. Both 
terminal vertices of this path are in A. But u is adjacent also to a vertex x3eB. 
Thus NG(u) must contain a path connecting x3 with x, or x2 \ s xxeA, \2eA, 
x3eB, such a path must contain v or w (the \ertex u 1s not in NG(u)). But then 
v or w is adjacent in Nc(u) to a vertex of B and thus it has the degree at 
least 3 in NG(u), which is a contradiction with the assumption that NG(u) is a 
snake. Hence Fis the boundary of a face in G; as it was chosen arbitrarily, this 
is true for all triangles in G. 

Now consider a vertex v of G. As G is locally snake-like, the graph NG(i) is 
a snake. Let its vertices be u0, ux, ..., uk, let its edges be u;_ ,u. for i = 1, ..., k. 
Then there exist triangles ui_luiv in G for i = 1, ..., k; they are faces of G, as 
it was proved above. The vertices u,, uk are not adjacent (otherwise NG(v) would 
contain a circuit), thus the edges vux, vuk belong to a face of G of a degree greater 
than 3. 

(ii) => (i). Let Fx, ..., Fk be the faces incident with a vertex v of G such that F, 
and Fi+ x for i = 1, ..., k — 1 have a common edge vu, and I£, I^ have a common 
edge vuk. Let Is, ..., IV be triangular, let Fx have more than 3 edges. Then the 
vertex set of NG(v) is {ux, ..., uk} and this graph contains the edges utul + x for 
i = 1, ..., k — 1. Suppose that there exists an edge joining u„ uj9 where 1 __ / < 
< i + 1 < j :_ k. If / = l,j = k, then the vertices v, ux, uk form a triangle and this 
is the boundary of Fx; the face Fx is triangular, which is a contradiction. If / > 1 
( o r j > k), then the vertices v, ut, Uj form a triangle and simultaneously they 
separate ut_ x from u/+ j (or u}_ x from u^,); thus they form a triangle which is 
not a face of G, again a contradiction. Hence NG(v) is a snake. As this holds for 
each vertex v of G, the graph G is locally snake-like. • 

Corollary. Let G be a finite planar ^-connected locally snake-like graph. Then 
the circuits ofG which are boundaries of faces of degrees at least A form a spanning 
subragph of G, all of whose connected components are circuits. 

Theorem 2. The maximum number of edges of a finite planar ^-connected 
locally snake-like graph with n vertices, where n §; 8, is equal to 2n + 3[rz/4] — 6. 
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Proof. Let G be a planar 3-connected locally snake-like graph with n = 8 
vertices. Let G0 be its spanning subgraph described in Corollary. Let the circuits 

k 

of GobeDj, ..., Dk, letd.be the length of I), for / = 1, ...,k. Obviously £ d, = n. 
i= 1 

As each D, is the boundary of a face of G, it has no chord inside this face. It has 
neither a chord outside this face, because then the end vertices of this chord 
would form a cutset in G and G would not be 3-connected. Hence none of the 
circuits Dx,..., Dk has a chord. Thus to each D, we may add d, — 3 chords in such 
a way that the graph Gx obtained from G by adding them is also planar 
(obviously we put them inside the face bounded by this circuit). If m denotes the 

k 

number of edges of G, then Gx has m + ]T (d. — 3) = m + n — 3k edges. The 
i=\ 

maximum number of edges of a planar graph with n vertices is 3n — 6; hence 
m + n — 3k = 3n — 6, which implies m ^ 2n + 3k — 6. As d, ^ 4 for / = 1, ..., 
..., k, the maximum possible k is [n/4] and this gives m = 2n + 3[«/4] — 6. 

Now let n = 8 be given. Let r be the number from the set {0, 1, 2, 3} such that 
r = n (mod 4), let k = [n/4]. Consider two disjoint circuits Cx and C2. The vertex 
set of C, is {w,, ..., u2J, the vertex set of C2 is {vx, ..., v2Jt + r}. The edges of Cx are 
W/W/+, for / = 1, ..., 2k — 1 and u2kux, the edges of C2 are vfvi+ x for / = 1, ..., 
..., 2k -f r — 1 and v2k + rvx. We add the edges w.v, for / = 1, ..., 2k — 1 and 
u2kv2k + r

 a n d further the edges utVi+ x for even / = 2k — 2 and w-̂ î- Finally, we 
add the edges uxu{ for i = 3, ..., 2k — 1 and vjv, for / = 3, ..., 2k + r — 1. The 
resulting graph satisfies the conditions of Theorem 1, as the reader may verify 
himself. • 
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In Fig. 1 we see such a graph for n = 23. A planar 3-connected locally 
snake-like graph with eight vertices is shown in Fig. 2. 
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ЛОКАЛЬНО ЗМЕЕОБРАЗНЫЕ ГРАФЫ 

ВоЬс1ап 2 е Н п к а 

Резюме 

Симболом N(1^) обозначается полграф С7 порожденный множством всех вершин, 
смежных с вершиной V в С. Если /Ус(г) является цепью для каждой вершины V графа С, то С 
называется локально змееобразным графом . Исследуются локально змееобразные графы, 
которые планарны и 3-связны. 
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