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CONGRUENCE RELATIONS ON AND VARIETIES
OF DIRECTED MULTILATTICES

JUDITA LIHOVA—KAROL REPASKY

Foundations of the theory of multilattices were laid in the fifties by Be-
nado (cf. [1]—[4]). The research was carried on by other authors (cf. e.g.
[11]—[14], [16], [17], [23], [24]; [16] and [17] concern multilattice groups).

The notion of the variety of multialgebras was introduced by
Schweigert in [22]. In this paper there are investigated some questions
concerning varieties of directed multilattices. We prove that both the class.of all
modular directed multilattices and the class of all distributive directed multilat-
tices are varieties (section 5). In contrast with the situation in the lattice of
varieties of lattices we show that there are infinitely many varieties of distri-
butive directed multilattices and infinitely many of them cover the variety of all
distributive lattices (section 6). The results of sections 5 and 6 are obtained by
applying those of sections 1—4 concerning congruence relations on directed
multilattices. The notion of the congruence relation dealt with here is in accor-
dance with the corresponding notions introduced by Pickett (see [18]) for
multialgebras and by Schweigert for relational systems (see [22]). As to
the notions of the regularity considered by Dubreil-Jacotin and Croi-
sot in [6], every congruence relation on a directed multilattice M is a
strongly regular and hence normally regular and regular equivalence on (M, <),
but a strongly regular equivalence on (M, <) need not be a congruence relation
on M.

0. Introduction

Let (M, <) be a partially ordered set, a, be M. Denote by u(a, b) and /(a, b)
the set of all upper and lower bounds of the set {a, b} in M, respectively. Further
let a v b denote the set of all minimal elements of the set u(a, b), a A b the set
of all maximal elements of the set /(a, b). If a v b = {h}, then we shall write
a v b = h. The meaning of a A b = d will be analogous. If 4, B < M, we define
Av B=u{av b:aeAd, beB} and A A B is defined dually. For heu(a,b)
define (av b),={veavb:v<h} and for del(a,b) let (anb),=
={wea A b:w>=d}.
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0.1. Definition. A partially ordered set (M, <) is said to be a multilattice if the
sets (a v b),, (a A b), are nonempty for all a,be M, heu(a,b), del(a,b). If,
moreover, (M, <) is a directed set, i.e. the sets u(a, b), l(a, b) are nonempty for all
a,be M, then (M, <) is called a directed multilattice.

A multilattice M is a lattice if and only if card (a v b) = card (a A b) = 1 for
all a,be M.

If M is a directed multilattice, then we can assign to every couple of elements
a,be M nonempty sets a A b, a v b. Hence (M,{ A, v})is a multialgebra with
two binary multioperations.

1. Congruence relations

Let @ be a binary relation ona set X, 4 < X, B < X. By A®@B we mean that
(1) for each ae A there exists be B such that a®b and (2) for each be B there
exists a € A such that a®b. If, e.g., A = {a}, we shall write a®B instead of 4OB.

1.1. Definition. Let O be a binary relation on a directed multilattice M. Then
O is called a congruence relation on M provided that:

(1) O is an equivalence relation on M,

(it) for all a,a’, b,b’ € M the relations a®a’, bOb’ imply a v bOa’ v b’ and
anbBOa Ab.

Evidently the condition (ii) can be replaced by

(it") for all a,b,ce M the relation a®b implies a~v ¢Ob v ¢, a A cOb A c.

This definition is in accordance with that of an ideal (or ideal congruence
relation) for a multialgebra (cf. [18], p.329) and with the definition of a con-
gruence relation on a relational system (cf. [22], Definition 1.1). It generalizes the
definition of a congruence relation on a lattice.

If @ is a congruence relation on a directed multilattice M and ae M, then
define [a]@ = {be M: bBaj}. It is easy to see that [a] @ is a convex subset of M.

1.2. Lemma. Let © be a congruence relation on a directed multilattice M and
let a,be M. The following conditions are equivalent:

(1) aBb;

(i) u@®v for alluea A b, vea v b;
(i) a A bBa v b,
(iv) u®v for some uea A b, vea v b.

Proof. Let a®b. Then a A a®anb and also av aB@a v b. Since
aAna=ava=a, we get (ii). The implications (ii) = (iii) = (iv) are evident.
Finally (iv) implies (i) by convexity of [u]©.
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Remark. If @ is a congruence relation on a directed multilattice M, then
the relation a®b implies a v ¢c@b v ¢ (a A cOb A c) for any ce M, but it need
not be u@v foreachuea v c,veb v c(uea A c,veb A c). Toshow this, we can
take M in Fig. 1 and ® whose equivalence classes are {a, b}, {x, y}, {r, s}, {c}, {0},

().

Let M be a directed multilattice, © a reflexive binary relation on M. Consider
the following conditions for ©:
(1)) for all x,ye M, x®y if and only if u®v for some uex A y, vex v y;
(i) for all x,yze M, if x <y < z, xOy, yOz, then xOz;
(iii)) for all x,y,teM, if x <y, xOy, then x v tOy vit, x A tOy A t.
Our aim is to prove that these conditions are necessary and sufficient for @
to be a congruence relation.

1.3. Lemma. Let O fulfil (i,)—(iii,) and let a, b, c, d be elements of M such that
a<b<d a<c<d, a®d. Then bOc holds.

Proof. Choose ue(b A c¢),, ve(b v c),. The relation a®d gives u@Gd by
(iii;). Using (iii;) once more we get uGv. By (i,) we have bOc.

1.4. Lemma. Let O fulfil (i)—(iii,) and let a, b be elements of M satisfying
a®b. Then tea A b implies t@a, tOb and rea v b implies a®r, bOr.

Proof. Let tea A b. The relation a®b implies ¢,Or, for some t,€a A b,
r,ea v b, by (i,). Then, using 1.3, we obtain a@r,. From this it follows that :®b
by (iii;). Analogously we can prove t®a and the second part of the statement.

1.5. Lemma. If O is a reflexive relation satisfying (i,)—(iii,), then © is an
equivalence relation.

Proof. The symmetry of © is evident from (i,). We will prove the tran-
sitivity of @. Let x@y, y@z. Choose uex v y, vEy V z, WEU V U, FEX A ),
SEy A z,ter A s. Then 1.4 gives r@y and using (iii,) we obtain ¢t@s. Analogous-
ly y®u implies vOw. Using again 1.4 and (ii,) we get tOw. Then by 1.3 we have
x0x:.
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1.6. Lemma. Let @ be a reflexive relation satisfying (i,)—(iii,). Then for all
a,b,ce M the relation a®b implies a~v cOb v ¢, a A cOb A c.

Proof. We will prove, e.g., that a®b implies a v ¢®b v ¢. Let a®b hold.
Choose tea v c. By (i;) there exist ieca A b, jea v b satisfying i@)j. In view of
(iii)) we have i v ¢@j v ¢. Since ¢ is an upper bound of {i,c}, there exists
me (i v ¢), and we can choose n€j v ¢ such that m®n. Now let re (b v ¢),. We
will show that ¢Or. Since i@a by 1.4, using (iii,) we get mOt. Analogously Oy
implies r®n. Finally mOt, m@n and rOn give tOr by 1.5. The proof of the fact
that for every reb v c there exists tea v c satisfying @& would be analogous.

The following theorem generalizes the result of G. Gréidtzer and E. T.
Schmidt (cf. [9]) and F. Maeda (cf. [15]) for lattices.

1.7. Theorem. Let M be a directed multilattice, O a reflexive binary relation
on M. Then O is a congruence relation if and only if it fulfils the conditions (i,),
(ii)) and (iii)).

Proof. Let @ be a congruence relation on M. The validity of (ii,), (iii,) is
evident, while (i,) follows from 1.2. If @ fulfils (i,)—(iii,), then it is a congruence
relation by 1.5 and 1.6.

2. The lattice of all congruence relations

Denote by Con M the system of all congruence relations on a directed
multilattice M. Applying a known result for relational systems (cf. [22], Theo-
rem 1.4) we obtain that Con M is a complete lattice. The join is the same as in
the lattice of all equivalence relations. The intersection of two congruence
relations on a relational system need not be a congruence relation in general. But
we will show that the intersection of an arbitrary nonempty system of con-
gruence relations on a directed multilattice is a congruence relation, exactly as
in the case of lattices. The proof is based on the following two lemmas.

2.1. Lemma. Let @ ConM, a, b, ce M, a < b, a®b. Then

(i) every couple of the elements veb v c, ue(a v c), fulfils uGv;
(ii) every couple of the elements rea A c, se(b A c), fulfils r©s.
The proof is evident.

2.2. Lemma. Let @cConM, a,b,ce M, a < b, a®b.
(i) If ueav c, web v u,ve(b v c),, then uG;
(i) If seb A c,tea n s, re(a A c),, then r6s.

Proof. We will prove (i), the proof of (ii) would be dual. Choose
ue(@vec), pecunru’), qge(u A u’),. The relation a®@b implies uGw, which
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gives u A u’'Ou’. Hence p@q and we infer p v q6q. Since u,u’ep v g, we obtain
u@uy’. Finally 2.1 gives u’@v and this together with u®u’ yields uGv.
Using 1.7, 2.1 and 2.2 we obtain the following theorem.

2.3. Theorem. If ) # {©,: ieI} < Con M, then{O,: ie I}e Con M.
We will prove two lemmas to obtain a simple description of the join in
Con M.

2.4. Lemma. Let {0,,...,0,} < ConM, {z,,z,,...,2,} S M and let z,0,z,
0,z,...2,_,0,z,. Then there exist uy,u,,...,u,€ M such that uy=z, < u; < ...
e S Uy, U OO, ... u, O, and u; > z; for each je{0, ..., n}.

Proof. It suffices to set u,=2z, and to choose wu,ey Vv z,...
vy Uy €U, _ | V Z,,.

2.5. Lemma. Let {@,,...,0,} < Con M, uy < u, < ... < u, be a chain of ele-
ments of M such that u,Ou,O,u, ... u, _,0,u,. Further let uy < v < u,. Then there
exists a chain vy=uy < v, < ... < v, =0 such that v,0,v,0.,...v,_,0,v, and
u; = v; for each je{0, ...,n}.

Proof. Define vy =u,, vie(u A v),, 1,6 AV),,....,0, €U, A V), | =

= {v}. Then the statement holds true by 2.1.
Using 2.4, 2.5 and their duals we obtain the following theorem.

2.6. Theorem. Let O be the join of a nonempty subsystem {@;: ie I} of Con M.
Then for a,be M a®b holds true if and only if there exists a chain
2y < 2; < ... < 2, in M and congruence relations O, , ..., ©, €{0;: i€ I} such that

‘zoea nb,z,eav b, 200,2,0,z,...2,_,0, z,.

Now using 2.3, 2.6 and 1.2 we obtain (in the same way as in the case of
lattices) that for any directed multilattice M the lattice Con M is algebraic and
satisfies the infinite distributive law

OA(V{D:iel})=v{OAD:iell.

We can ask whether the congruence lattice of any directed multilattice is
isomorphic to the congruence lattice of a lattice. This question is open. How-
ever, since several sufficient conditions for an algebraic distributive lattice to be
a congruence lattice of a lattice are known (see e.g. [7], [8], [10], [19], [20], [21]),
in some special cases the answer is affirmative. E.g. to any directed multilattice
M with a finite congruence lattice there exists a lattice L with Con L isomorphic
to Con M.

3. Congruence relations generated by sets of quotients

Results of this section have a rather technical character; they will be applied
by investigating varieties of directed multilattices. We will describe the least
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congruence relation on a directed multilattice M that collapses a given set of
quotients. (For the case of lattices cf. [5], 10.2, p. 77).

If a > b in M, then the subset {xe M: a > x > b} is called a quotient and is
denoted by a/b. A quotient c/d is a subquotient of a/b if a > ¢ > d = b. Given
two quotients a/b and c¢/d, we say that a/b is an upper transpose of ¢/d and ¢ d
is a lower transpose of a/b if deb A ¢, aeb v c. A quotient a/b will be called a
transpose of c/d if a/b is either an upper or a lower transpose of c¢/d. Two
quotients a/b and c/d are projective if there is a finite sequence of quotients
alb = xy/ve, X1 /Y15 ---» Xu/¥, = c/d such thateach x;_,/y,_, is a transpose of x;/y;.
More generally, a/b is said to be weakly projective into c/d in n steps if there is
a finite sequence of quotients a/b = xy/yy, X1/V1, ..., X,/¥, = c/d such that each
X;_/yi_, is a transpose of a subquotient of x,/y,.

3.1. Lemma. Lete, > e, = ... 2> e, be a chain in M and let a quotient r/s be a
transpose of e,/e,. Then there existsachainry=r >=r, > ... = r, = s such that for
each ie{l,...,n} the quotient r;_,/r; is weakly projective into e, _,/e;.

Proof. Let us suppose, e.g., that r/s is a lower transpose of ¢,/e,. It suf-
fices to set ro=r, re(rgne), e Ae)y,...r_1€(F,_,ne, )
r€(r,_1 A ), = {s}.

3.2. Lemma. Lete,>e, > ... > e, be achainin M and let ey > t > e,. Then
there exist chainsfy=t>fi, > ... 2 f,=e, g =€ =g = ... = g, = t such that
for each i€{l, ...,n} the quotients f;_ | f; and g,_,/g; are weakly projective into
€ /e

Proof. Wecan set fo=1, fie(fo A €)).,, Le(fi A €),,...fu€(f, 1Ae), =
= {en}’ 8n = L, gn—le(gn Vv en—l)eo’ gn—Ze(gn—l v en—2)e0’ ~~~,g0€(g1 v 6’0)«0 =
= {e,}. Then the quotients f;_,/f, g _,/g: are such as we need.

Using 3.2 and the transitivity of the property ““to be weakly projective into”
we get:

3.3. Lemma. Lete,> e, > ... > e, be achainin M and let u/v be a subquotient
of eye,. Then there exists a chain ty=u>t, > ... > t, = v such that for each
ie{l,...,n} the quotient t,_,[t; is weakly projective into e,_ /e;.

3.4. Theorem. Let Q be a nonempty set of quotients of a directed multilattice
M. Define the relation @ on M by the rule: a®b if there exists a finite chain
ep=e = ... =e,in Msuchthateyea v b,e,ea A bandforeachie{l,...,n} the
quotient e; _ ,[e; is weakly projective into some quotient in Q. Then © is the least
congruence relation that collapses the quotients in Q.

Proof. First we will show by 1.7 that ® is a congruence relation. To
show that @ is reflexive, take ce M and a quotient a/be Q. If pec v a,
ge(c v b),, then c/c is weakly projective into p/q and the last quotient is weakly
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projective into a/b. Hence c/c is weakly projective into a/b and we have cOc.
Further it suffices to verify the conditions (i,)—(iii,) of 1.7.

The validity of (i,) and (ii,) is evident. Let us prove (iii,). Let x, y, te M, x < y,
xOy. We will prove that x v t@y v t. The proof of x A t@y A t would be dual.
By assumption there exists a chainy = ¢, > ¢, > ... > e,, = x in M such that for
each ie{l,...,m} the quotient ¢;_,/e; is weakly projective into some quotient
in Q.

Takevey v tand fo=v, fie(e, v 1), Le(e, v 1), ...,u= f,€le, v 1), .
Then v=fy=>f, > ... 2f,=u and for each ie{l,...,m} f;,_,/f; is weakly
projective into e;_,/e;. Hence u@v, where uex v t.

Conversely, let uex v t. We will find vey v t such that u®v. Define the

elements u,,u,_,,....,4, as follows: wu,=uee,vt, u,_,€e,_,Vvu,,
Uy _2€€m_2 NV Upy_1y..., U €EC V Uy, UEEV U, =y Vv u,. Take ve(yv Dy,
Construct the elements vy = v, v,€(Vy A Uy),, V,E (V) A Up)ys o s V€ (U, _ ) A U,,),

(see Fig.2). Evidently v;_,/v; is weakly projective into u;_,/u; and u;_,/u; is
weakly projective into e; _,/e; for each ie{l,...,m}. Hence we have v®v,,. Take
re(x v v,),, SEx A v,. Then r@v,, by 3.3 and using 3.1 we obtain x@s. Using
again 3.1 we get u@,, since uex v v,. Now let pe(u v v),,, g€ (u A v), . Then
pOq by 3.3 and consequently u@v. We have proved that @ is a congruence
relation. '

Evidently @ collapses the quotients in Q. Finally observe that if a congruence
relation collapses a quotient a/b and x/y is weakly projective into a/b, then this
congruence collapses also x/y. This fact together with 1.2 yields that @ < @
whenever @ is a congruence relation on M which collapses all the quotients in
Q. The proof is complete.

Yo

Y
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Remark. Let {(a;,4;): iel} be any nonempty subset of M x M. Choose
viea, A b, u;ea; v b, for each je I In view of 1.2 the least congruence relation
that collapses all quotients #,/v; turns out to be the least congruence relation
satisfying a,0b, for each ie I

4. Factor multilattices

In this section we assume that @ is a fixed congruence relation on a directed
multilattice M. For the denotation of the ®-class to which an element ae M

belongs, we shall use the symbol [a] instead of the symbol [a] @ introduced in
the section 1.

4.1. Lemma. Let a,be M. The following conditions are equivalent:

(i) there exist a’€[a), b’ €[b] satisfying a’ < b’;

(ii) for any a’€[a] there exists b’ € [b] such that a’ < b’;

(iii) for any b’ €[b] there exists a’ €[a] such that a’ < b’.

Proof. Let (i) hold. We prove (ii). Take a”€[a]. The condition a’®a”
implies b'@a” v b’. Let b” be an element of @” v b’. Then b” €[b] and evidently
a” < b". The implication (ii) = (i) is evident, hence (i) and (ii) are equivalent.
Analogously it can be proved that (i) and (iii) are equivalent.

Define the relation < in the set M/ = {[a]: ae M} as follows: [a] < [b] if
and only if any of the conditions (i)—(iii) of 4.1 is fulfilled.

4.2. Theorem. The relation < defined above is a partial order and M|O with
this relation is a directed multilattice.

Proof. It is easy to see that < is a partial order and that (M/®, <) is a
directed set. Now let [c] > [a], [6]. Then there exist a,€[al, b,€[b] such that
¢>a,b,. Letde(a, v b)).. We prove that [d] is a minimal upper bound of [a]
and [b] under [c]. Evidently [a],[b] < [d] < [c]. Let [a], [p] < [u] < [d]. Then
there exist u,,u,,u’€[u] satisfying a, <u,, b, <u;, u' <d. Let uje(u, A d),,s
us€(u, A d),,. Then uiOu’ and u30u’, hence uje[u], uje(u]. Since a, < uj < d,
b, < uj<dand dea, v b, we have also deu; v u;. Consequently [d] = [u].

4.3. Theorem. In the directed multilattice M|© the following conditions are
equivalent:

(i) [c]ela] v [b];

(ii) there exists ¢’ €|c] such that ¢’ea v b;

(iil) there exist ¢’ €(c], a’€la), b’ €[b] satisfying c'ea’ v b’.

Proof. Let (i) hold. The conditions [c] > [a], [c] > [b] yield the existence
of u,ve[c] with a<u, b<v. Let deuvv, c’e(avb), Evidently [a],
[b] <[c] <[d] = [c] and we have [¢'] = [c]. We have proved (ii). Obviously (ii)
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implies (iii). The implication (iii) = (i) can be proved in the same way as in the
proof of the preceding theorem.

The directed multilattice M/© of 4.2 is called the factor multilattice of M by
©. Theorem 4.3 and its dual ensure that the factor multilattice M/@ is a factor
multialgebra of the multialgebra (M,{A, v}) (cf. [22] and [18]).

The following definition can be considered a particular case of the definition
of a relational homomorphism between two relational systems (cf. [22]) or an
ideal homomorphism between two multialgebras (cf. [18]).

4.4. Definition. Let (M,,{A, v}), (M,,{ A, v}) be multialgebras with binary
multioperations. A mapping @: M, —> M, is called a homomorphism if
panb)=(p@@) A @b)noM)and p(av b)=(p(a) v ¢(b))neM,) for
each a,be M,. A one-to-one homomorphism of M, onto M, is an isomorphism.

We shall use the following two homomorphism theorems.

4.5. Theorem. Let M, be a directed multilattice, M, a multialgebra with two
binary multioperations and let ¢ be a homomorphism of M, onto M,. Then Ker ¢
is a congruence relation on M, and the factor multilattice M,[Ker ¢ is isomorphic
to M,.

4.6. Theorem. Let M be a directed multilattice, ® a congruence relation on M.
For @ Con M, @ > @ define a relation @/ on M|O as follows:

[a]® ®/O [b] O« adb.

Then @O is a congruence relation on M|© and the factor multilattice M|©] D/ O
is isomorphic to M| ®.
Theorem 4.5 is a particular case of Theorem 1 in [18].

5. Varieties

A class of multialgebras of the same type which is closed under the construc-
tion of submultialgebras, homomorphic images and direct products is called a
variety (cf. [22], Definition 3.1). First we want to show that the class .# of all
(rected multilattices is a variety. Applying the definition of a Birkhoff subalge-
bra (see [18]) to the case of directed multilattices we get the following definition
" of a subalgebra of a directed multilattice.

5.1. Definition. 4 nonempty subset K of a directed multilattice M is a subalge-
braof Mifav b< K, a A b< K whenever a,be K.

A subalgebra of a directed multilattice is again a directed multilattice.

If (M;: ieI) is a family of directed multilattices, then the Cartesian product
of (M;: iel) ordered componentwise is evidently a directed multilattice. This
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multilattice will be denoted by IT (M,: ie ). Evidently the construction of the
direct product of multialgebras M, gives the same result.
In view of the foregoing remarks and Theorem 4.5 we have:

5.2. Theorem. The class ./ of all directed multilattices is a variety.
Now we will show that the class of all modular directed multilattices is a
variety as well as the class of all distributive directed multilattices.

5.3. Definition (cf. [1] 4.41, 6.1). A multilattice M is said to be modular
(distributive) if the conditions vea v b, vea v b’, uea A b, ueca A b’, b = b’
(veav b,veav b’',uea A b,uea A b’) imply b=1>".

5.4. Theorem. The class of all modular directed multilattices is a variety.

Proof. It is easy to see that a subalgebra of a modular directed multilat-
tice and also the direct product of modular directed multilattices are modular
multilattices. It remains to show that M/® is modular whenever M is a modular
directed multilattice and @€ Con M. Let [v] = [a] = [u], [v] = [b] = [6'] = [u],
[vlela] v [b], [vl€la] v [67), [u]l€la] A [b), [u]lela] A [b']. ([a],[P],... mean O-
classes containing a, b, ...). We can suppose that b’ < b,vea v b,uea A b’. Let
ue(a A b),. Then [u] < [u)] < [a], [b] and since [u] € [a] A [b], we have [u] = [u].
Take any b€ (u, v b’),. The relation u®u, implies b’©@b|. Now let v, (a v b)),.
Again [v] = [v,] because of [a], [b]] <[v,] <[v]. [v]ela] v [b7]. Choose any
b€ (v, A b),,. Then bOb,. We have v, > a>u,, v, 2 b, 2 b 2 u, vi€av b,
v,€av by, uyea A by, uyea A by, hence b, = b;. Then [b] =[b] = [b]] = [b']
and the proof is complete.

5.5. Theorem. The class of all distributive directed multilattices is a variety.

Proof. It is sufficient to prove that the class of all distributive directed
multilattices is closed under the construction of factor multilattices. Let M be
a distributive directed multilattice, @eCon M. Assume that [v] = [a], [b],
[6'] = [u], [v]lela] v [b], [v]€la] v [b'], [u]€[a] A [b], [ul€(a] A [b’]. There exist
v, 0,€[v], Uy, u€[u] such that v,ea v b, v,ea v b’, uyca A b, u,ea A b’. Take
re(v; A v),, s€(u; v u,), Evidently [r] = [v], [s] = [u]. Now let b,e(b A r),,
bie® Ar),. Then u,€b, A a, u,eb; A a. We will prove that rea v b,. Let
te(@av by),. Then v, =2b=2b,v,2r=>t>2b, v,ebvr,vebvt bebnr,
b,eb A t, therefore r = t. Analogously rea v b;. Further choose b,e(b, v s),,
bye(b; v s),. To prove sea A b, let us suppose that ze(a A b,),. Then
by=bzu,by,=z=2s5>u,beb v z,beb v s,u€b, A z,u;eb, A s, hence
z=ys. Analogously sea A b5. Now we have r>a, by, b5>s, reav b,
reav by, sea A by, sea A b5, which implies b, = b;. The relation u, @s implies
b,Ob, and the relation v,Or gives bOb,. Hence [b] = [b,]. Analogously it can be
proved that [b"] = [b3]. It follows that [b] = [b,] = [b5] = [b"] and this completes
the proof.
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6. The lattice of varieties

The family of all varieties of directed multilattices ordered by inclusion has
the least element — the variety of all one-element lattices and the greatest
element — the variety of all directed multilattices. As the intersection of a family
of varieties is again a variety, we shall speak of the lattice of varieties of directed
multilattices (leaving out the fact that elements of this lattice are classes).
Obviously every variety of directed multilattices different from the least one
contains the variety & of all distributive lattices. If 4" is a variety of distributive
directed multilattices and ¥~ a variety of lattices, both different from the variety
of all one-element lattices, then " N ¥ = 2. We will show that there exist
infinitely many varieties of distributive directed multilattices and infinitely many
of them cover 2.

Given a class # of directed multilattices, let P2#", S2¢, and HX denote,
respectively, the clase of all those directed multilattices that are isomorphic with
direct products of multilattices in J, the class of all directed multilattices
isomorphic with subalgebras of multilattices in J¢°, and the class of all homo-
morphic images of multilattices in J#". The fact that a class A of directed
multilattices is a variety can be then expressed by requiring that
A = PA = SH = HX . In what follows we shall apply the following theorem,
which can be proved essentially in the same way as for algebras (for the proof
for lattices see [7]). It can be generalized for arbitrary multialgebras.

6.1. Theorem. Let A~ be a nonempty class of directed multilattices. Then
HSPX is the smallest variety containing A .

Given a set ] and a filter # on I, i.e. a nonempty set of subsets of I satisfying
(1) A n Be & whenever A, Be #,and (2) A€ # whenever A 2 B, Be #, we can
define a binary relation @(% ) on the direct product IT (M;: iel) of directed
multilattices M, by the rule:

fO(F)gif and only if I(f,g) = {iel: f(i)) = g(i)}e ZF.

It can be proved easily that @(% ) is a congruence relation on IT(M;: ie ) and
we can construct the factor multilattice IT (M;: ie I)/@(&F ). This factor multilat-
tice will be called a filter product of (M: ie I), more specifically the filter product
of (M;: iel) by #, and it will be denoted by I1;(M;: ieI). By an ultraproduct
of (M;: iel) a filter product of (M;: iel) by an ultrafilter is meant.

We will use the following two lemmas, which are generalizations of analo-
gous lemmas for lattices (cf. [7]). Their proofs are essentially the same as those
for lattices.

6.2. Lemma. Let I be a nonempty set,  afilteron I. If # ={K< I: K2 J}
for a fixed J < I, then for any family (M;: i€ I) of directed multilattices the filter

115



product Mz(M;:iel) is isomorphic to II(M,:ielJ);, in particular if

i

F ={K < I: jeK} for a fixed je I, then I1z(M;: i€ ) is isomorphic to M,.

6.3. Lemma. Let M,,...,M,_, be finite directed multilattices and let
(M;: ieI) be a nonempty family of directed multilattices such that for every i€ IM,
is one of My, ..., M, _,. If U is an ultrafilter on I, then I1,,(M,: i€) is isomorphic
to M; for some je{0,...,n — 1}.

The proof of the following lemma is clear.

6.4. Lemma. If M is a directed multilattice which is not a lattice, then M has
a four-element subset represented in Fig. 3.

ueavb veavb

AEuUAv beuav

Fig. 3

6.5. Lemma. Let M\, M, be directed multilattices, ¢ a homomorphism of M,
onto M,. If a, b, u, ve M, are as in Fig. 3, then there exist a’, b’, u’, v'e M, as
in Fig. 3 such that ¢(a’) = a, o(b’) = b, e(u’) = u, p(v’) = v.

Proof. Take any a,,b,€ M, such that ¢(a)) =a, @(b)) =b. Since u,ve
eo(a)) v p(b,), there exist u’,v'eM, satisfying o) =u, @) =v, u,
v'ea, v b,.Nowleta' e(u’ A v),, b’ €’ A v'),. Then ¢(a’), p(b")eu A v and
since ¢ is order-preserving, there must be ¢(a’) = a, ¢(b") = b. Evidently u’,
v'ea vb.

Let M be a directed multilattice, U a subset of M. Define the sets U® for
nonnegative integers k as follows: U® = U; if U® is defined for some non-
negative integer /, we set U'*"=uU{xv y:x,yeU"} for |/ even and
UD = U{x A y: x,ye U for [ odd. It is easy to verify that U {U®: k > 0}
is the smallest subalgebra of M containing U.

Given a nonempty class .Z of directed multilattices, denote by S~ the class
of all members of S& that are generated by a four-element subset represented
in Fig. 3.

6.6. Lemma. Let ) be a class of directed multilattices. Suppose that there
exists a positive integer k such that if Ae S~ and U is a four-element subset of
A shown in Fig. 3 generating A, then A = U®. Then S"PA = PS™ X .

Proof. Let Ae S~ PX4". Then there exist M;e A" (iel) and four elements
u,v,a,be A as in Fig. 3 such that A4 is a subalgebra of I (M;: i€ I) generated by
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U = {u,v,a,b}. For feIl(M,: i) let f(i) denote the projection of f into M.
Set U, = {u(i), v(i), a(i), b(i)} for each iel. Then U, is either a four-element set
as in Fig.3 or u(i) = v(i) = a(i) = b(i). Denote by N, the subalgebra of M,
generated by U,. Let I, = {iel: card U, = 4}. If i¢1,, then N, is evidently the
one-element set u;, while for ie I, we have N,e S~2#. We will show that the
mapping 4 - IT(N;: ie ) assigning to f € A its restriction to I,, denoted by
S, is an isomorphism of 4 onto IT(N;: iel,). This mapping is evidently a
one-to-one homomorphism. It remains to show that it is onto. We have
NN iel) =TI(UP: ie ) =TI(UL: ie ) VIT(UD: iel)u ... VITI(UY:
iel). First we will show that every element of IT (U®: iel,) has a pre-image
in 4. Let f"eII(U{”: iel,). Introduce the denotation I = {ie ],: (i) = u(i)},
I ={ie]: ') = (), If = {ick: £'() = a@)}, I! = {iel,: £'() = b(i)}. De-
fine g',h"em(N;: iel}) in such a way that g'(i) = h’(i) = a(i) for every ielf,
g'(i) = h'(i) = b(i) for every ieI!, g’'(i) = a(i) for every ieI' U I!, h’(i) = b(i)
for every ielf UI}. Then f'eg’ v h’, g’,h’€u/l, A v/, and hence f” has a
pre-image in 4. Assume that / is a nonnegative integer less than k and every
element of IT(U{": ieI,) has a pre-image in 4. We will show that then every
element of IT(U{*"V: ieI,) has a pre-image in 4. We can suppose, e.g., that / is
even. Let f"eIT(U/*": iel,). Then for each i€l it is f'(i)e x, v y, for some
x;,y,€ UP. Define g, i’ e I1(U®: ieI,) as follows: g'(i) = x,, h’(i) = y, for every
iel,. Then f"eg’ v h’ and since by assumption g’, 4’ have a pre-image in A4, f~
has a pre-image too. We have proved that S~ P4 < PS™A".

To prove PS™ 4 < S™PA", take I1(A;: iel), where A, is a subalgebra of a
directed multilattice M,e " generated by a set U, = {u;,v;,a,,b;} as in Fig.3.
Define u,v,a,beIl(4;: ieI)in such a way that for every ie I u(i) = u;, v(i) = v;
a(i) = a;, b(i) = b;. Then u, v, a, b are as in Fig. 3. Let 4 be the subalgebra of
IT(M;: iel) generated by {u,v,a,b}. By the first part of the proof
A =T1(4;: ieI) and since evidently I1 (4;: i€ I) is a subalgebra of I1 (M;: i€ ),
we have I1(4;: ieeS~PX .

6.7. Lemma. Let (M;: i€ l) be a family of directed multilattices such that the
supremum of the lengths of M (i€ l) is finite. Suppose that there exists a positive
integer k such that if x|y is weakly projective into z|t in some M, then x|y is weakly
projective into z/t in no more than k steps. If a,be M = I1(M;: iel),a > b, then
u®(a,b) v if and only if u(i) @(a(i), b)) v(i) for all iel.

Proof. It is easy to see that if u®(a, b)v, then u(i) O(a(i), b(i)) v(z) for all
iel. Now let u(z) @(a(:) b(l)) v(i) for all ie I. Then for every iel there exists a
ﬁmte chainef>ei>...> ¢! .in M such that eseu(i) v v(i), e} eu(z) A v(i) and
all ¢/ _, /e/ are weakly pI‘OjCCthC into a(i)/b (i). Since the set {n;: ie I} is bounded
and one-element quotient is weakly projective into any quotient, we can suppose
that n,=n for every iel. Further we can suppose that for each iel and
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Jje€ll,...,n} there exists a sequence of quotients e/_,/e/ = xg/vd, x{/y/, ...
...,x,'z/y,'; = a(i)/b(i) such that x§/y{ is a lower transpose of a subquotient of
x{/yJ, x¥/y¥is an upper transpose of a subquotient of x//y# etc., because every
quotient is both an upper and a lower transpose of itself. Finally we can suppose
that /; = / does not depend on i,j. Now define ey, ey, ..., e,€ M in such a way that
e/(i) = e/foreveryiel, je{0,...,n}. Consider the sequence of quotients ¢; _ /e, =
= x{/vd, x{/y{,...,x/[y{ = a/b such that x/(i) = x}, y/(i) = y} for every iel,
je{l,...,n}, re{0,...,1}. Then evidently xJ/y{ is a lower transpose of a sub-
quotient of x{/y{, x{/y{ is an upper transpose of a subquotient of xj/yJ etc.
Hence all ¢; _,/e; are weakly projective into a/b. We have proved that u®(a, b) v.

6.8. Lemma. Let the assumptions of the preceding lemma be fulfilled and let
card Con M, = 2 for each i€ l. If a,be M, a > b and F is the filter on I generated
by I(a,b) = {ieI: a(i) = b(i)}, then O(a,b) = O(F).

Proof. It is sufficient to prove that u®(a,b)v if and only if I(u,v) 2
2 I(a, b). Let u®(a, b)v. Then u(i) O(a(i), b(i)) v(i) for each ie l. Let i€ I(a,b).
Then a(i) = b(i), which implies that @(a(i), b(i)) is the least congruence relation
on M,. It follows that u(i) = v(i), hence i€ I(u, v). Conversely let I(u,v) = I(a, b).
Take ie I. We will show that u(i) @(a(i), b(i)) v(i). If i¢ I(a, b), then O(a(i), b(i))
is the greatest congruence relation on M, and hence u(i) @(a(i), b(i)) v(i) holds
true. If ie I(a, b), then ie I(u,v) and again u(i) @(a(i), b(i)) v(i).

Using 6.8 and 6.2 we get:

6.9. Lemma. Under the assumptions and denotations as in the preceding lemma
the factor multilattice I1 (M;: ie I)/O(a,b) = I1 (M;: i€ I)|O(F ) is isomorphic to
IT(M;: iel(a,b)).

6.10. Lemma. Let the assumptions of 6.7 be fulfilled and let card Con M; = 2
for each i€ l. For any congruence relation ® on M = I1(M,: i€l) there exists a
filter F on I such that © = O(F).

Proof. Let ®eCon M. Then O = sup{©(a,,b,): Le A}, where {(a,;,b,):
AeA}={(a,b)eM x M: a>=b, aOb}. Let F be the filter generated by
{I(a;,b,): Le A}. To prove @ = O(F ), we need to show that u@v is equivalent
to I(u,v) e & . We can suppose that u, v are comparable elements, e.g. u > v. If
uBv, then u = a,, v = b, for some Ae A. Hence I(u,v) = I(a;,b,)e #. Let con-
versely I(u,v)e #. Then there exist 4,, ..., 4,€ A such that I(u,v) 2 I(a,, b, ) 0
N...nI(a,,b,). Define uy, uy, ..., u,€ M as follows:

Uy =,

o {u(z‘) if i¢l(a,b,),
4O = i) if i€, by );
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_ _{u(i) if i¢1(a;,b,) 0 (a,,b,),
D) =) if iel(ay,b,) 0 Kay,by);

{u(z’) if i¢l(a,,b,)0...01a,,b;),

WO = Vu, () i 1€ 1(@,b3) O e 0 1@ by).

Then v = 4yO(a,, b, ) u,O(a,, b, ) u, ... u,_,0(a, ,b; ) u, = u, hence uOv.

6.11. Lemma. Let M, ..., M, _, be finite directed multilattices with two-ele-
ment lattices of congruence relations and let (M;: i€ I) be a nonempty family of
directed multilattices such that for every iel M; is one of My,....M,_,. If
Ae H{II(M;: ie )}, then there is je{0,...,n — 1} such that M;e H{A}.

Proof. Denote M =I1(M;: iel). If Ae H{M}, then by 4.5 A4 is isomor-
phic to M/® for some @€ Con M. Since the assumptions of 6.10 are obviously
fulfilled, there exists a filter & on I such that ® = @(F ). Let % be an ultrafilter
on [ with #=2%. Then O(#%)= O(¥) and using 4.6 we obtain that

M,(M;: iel) = M/©(%) is isomorphic to (M/O(F ))/(O@)|O(F)). By 6.3
IL,(M;: iel)is isomorphic to M, for someje{0, ...,n — 1}. We conclude that M,
is isomorphic to A/(@(%)/@(%’)) which means M € H{A}.

6.12. Theorem. Let M, ..., M, be finite directed multilattices pairwise noniso-
morphic that are not lattices, have only trivial congruence relations and do not have
proper subalgebras which are not lattices. Then the variety ¥| generated by
{M,,....M,_\} is a proper subclass of the variety v, generated by
{My,...M,_\,M,}.

Proof. It is obvious that ¥] < ¥;. We W111 show that M,e?; — ¥{. As-
sume that M,e¥]. Then M, e HSP{M,,...,M,_\}, i.e. M, is a homomorphlc
image of a subalgebra A of a direct product H (M ieI), where for every iel
M e{M,,... _1}. In view of 6.4 and 6.5 there are distinct elements u, v, a,
be A as in Fig. 3, whose images (under the given homomorphism ¢ of 4 onto
M,) are also distinct and as in Fig. 3. Let B be the subalgebra of IT(M;: iel)
generated by {u,v,a,b}. By 6.6 B is isomorphic to II(M;: jeJ), where
M;e{M,,...,M, _,} for every je J. Since ¢(B) is a subalgebra of M, that is not
a lattice, we have ¢(B) = M,. Using the preceding lemma we obtain M,e H{M,}
for some /€{0, ...,n — 1}, a contradiction.

In Fig. 4 and Fig. 5 there are shown multilattices fulfilling conditions of the
preceding theorem. Multilattices in Fig. 4 are distributive, while those in Fig. 5
are modular but not distributive.

119



SR YW

Fig. 4 Fig. 5

Using distributive multilattices shown in Fig. 4, by 6.12 we can construct an
infinite chain of varieties of distributive directed multilattices. Hence we have:

6.13. Corollary. In the lattice of varieties of directed multilattices there are
infinite chains of distributive varieties.

6.14. Theorem. Let M be a finite distributive directed multilattice that is not
a lattice, has only trivial congruence relations and does not have proper subalge-
bras which are not lattices. Then the smallest variety containing M covers the
variety 9 of all distributive lattices in the lattice of varieties of directed multilat-
tices.
Proof. Let M fulfil the stated conditions. Denote by ¥~ the smallest variety
containing M. Evidently 2 < ¥”. Suppose that ¥{ is a variety of directed
multilattices satisfying 2 < ¥] < ¥". We will show that ¥] = ¥". Take any
Ce¥] — 9. Then Cis not a lattice, because all lattices of #] are distributive and
hence belong to 2. If we show M e HSP{C}, then M e ¥; and ¥ < ¥]. To prove
Me HSP{C} we reason analogously as in the proof of 6.12. Since
Ce¥, = v = HSP{M]}, there exists a homomorphism ¢ of a subalgebra 4 of
a direct product IT1(M,: iel) onto C, with M; = M for every ie . Lemmas 6.4
and 6.5 ensure the existence of distinct elements u, v, a, be 4 as in Fig. 3, whose
images @(u), o(v), ¢(a), p(b) are also distinct and as in Fig.3. Let B be the
subalgebra of IT(M;: ie I) generated by {u,v,a,b}. By 6.6 B is isomorphic to
I1M;: jeJ) with M, = M for every jeJ. In view of 6.11 we have M e H{p(B)}
and since @(B) is a subalgebra of C, we conclude M e HS{C}.

There are two varieties of lattices that cover the variety of all distributive
lattices in the lattice of varieties of lattices. In contrast with this we have:

6.15. Corollary. There are infinitely many varieties of distributive directed
multilattices covering the variety of all distributive lattices in the lattice of varieties
' of directed multilattices.
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Proof. To verify this it is sufficient to show that if M,, M, are any non-
isomorphic multilattices of Fig.4, then HSP{M} # HSP{M,}. This follows
immediately from 6.12.
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KOHI'PYOHUUHU M1 MHOI'OOBPA35 MYJIbTUPEIETOK

Judita Lihova—Karol Repasky

Pe3tome

B cTaTbe U3Y4arOTCd KOHIPYIHUMHU HA HANIPABJICHHbIX MYJIbTUPELIETKAX. nOJ’Iy‘lCHHblC peE3yib-
TATbl HCTIOJIB3YKOTCS NMPU HUCCJICAOBAHHMH HEKOTOPBLIX BONPOCOB, KACAKOLIUXCA MHOl'OO6pa3Hﬁ Ha-

NpaBJI€HHBIX MYJbTUPELIECTOK.
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