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A NONLINEAR DIFFUSION EQUATION WITH
NONLINEAR BOUNDARY CONDITIONS:
METHOD OF LINES

JAN FILO

1. Introduction

In this paper we investigate the existence and some properties of solutions of
the initial-boundary value problem

B@W), —Au=f(x,t,u) xeD,t>0
(L1) —g—‘i+g(x, fu) =0 cel 150
v

u(x, 0) = uy(x) xeD,

where B(u) = |u|™sign u for some positive parameter m, D < R" is a smoothly
bounded domain with boundary I', 0u/0v denotes the outward directed normal
derivative of u on I, f and g are functions satisfying some smoothness and
growth conditions to be detailed later, nevertheles, g is nondecreasing in 4 and
the initial function u, is allowed to change the sign.

The equation in (1.1) appears in various physical, chemical and biological
models and without the reaction term f'it is for 0 < m < 1 well known as the
porous medium or slow diffusion equation, for m = 1 as the heat conduction
equation and for m > 1 as the plasma or fast diffusion equation. Many results
are known in the case m = 1 and therefore we are primarily interested in the case
m # 1. For these values of m, however, a “degeneracy’ or ‘“singularity”’ may
occur. To see this let us rewrite the equation in (1.1) putting v = f(«) into a more
familiar form

v, — A(Jv|*signv) = f, a=1/m

and one can see that the diffusion coefficient D(v) = a|v|*~' tends to zero
(0 < m < 1) or to infinity (m > 1) when v tends to zero. Therefore it is necessary
to be careful and consider a suitable class of weak solutions (see, e.g., [13] for
0 <m<1 and [14] for m > 1).
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The present paper is organized as follows. In Section 2 we prove the existence
of the solution to Problem (1.1) for 0 < m < 1 using the method of lines. This
method was applied to the nondegenerate parabolic equations with the non-
linear boundary conditions by Chzhou Yui-Lin in [2], Kacur in [§], and in
general it was intensively studied in [7]. As concerns the nonlinear diffusion
problems, this method was used to treat the slow diffusion equation with
homogeneous Dirichlet boundary conditions by Jerome in [6]. Here we improve
his procedure using a more suitable inequality to estimate the time derivative.
By means of that also the restriction on the sign of initial functions is removed
and the L™ estimate is not necessary. Further, a certain type of the smoothing
effect is established, namely, starting with the initial function u,e L™ * (D) it is
shown that the weak solution u of Problem (1.1) is actually in L"*'(D)n
~ H'(D) at any later time (see also [12]).

In Section 3 some sufficient conditions for L* solvability are presented and
a type of the “maximum’ principle is derived. The case of the fast diffusion is
briefly considered in Section 4. We are able to introduce the uniqueness and
comparison theorem for Problem (1.1) only for the L™ solutions, and for its
proof the method discussed in [1] is adopted. In the end also a local existence
theorem is stated.

In the sequel we shall adopt the following notations: Let I = (0, T), Q; =
=Dx1,S;=Ix1, Q. r=Dx(¢g T), S, r analogously and let |D| denote the
Lebesgue measure of the set D. The norms in the spaces L?(D), W' (D)
(W' = H'") are denoted by ||, ||, , | <p < oo and in LX(I) by ||,  (the
function spaces we use are rather familiar and we omit the definitions, see, e.g.,
[10]). C or C(n)indicates various constants (even in the same discusion) depend-
ing on n and other known constants and set, suppressing integration variables,
r

u(t)o(t) = j u(x, t)o(x, t)dx,
D D

"~

g(t, u(t) o(t) = f gX, 1, u(X, )X, 1)dS
r r

and

m

Sfw)o =JJ S(x, t, u(x, D) o(x, t)dxdt.
Qy (o}

Y

We shall frequently use Young’s inequality, i.e. ub < ga” + &*b‘, where a, b > 0,
-1

p>1,p " +q ' =1,e*=((pe)'’q)", and denote y(u) = |u["* " sign u.
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2. The case of slow diffusion

This part of the paper is concerned with the existence and some properties of
solutions to Problem (1.1) for 0 < m < 1 assuming the following:

(H,) uye L"* (D) with no restriction on the sign of u,.

(H,) feC(Q;xR), where T is an arbitrarily fixed positive time, and there
exists a constant K(= K(T))e R* such that

LfCx, 8, 1) — f(x, 5, 0) < K(1t = 5| (1 + [B@)) + 1BG) — B
for all (x, t), (x, s)eQr, u, veR.
(H,) ge C(S;x R) and there exists a constant L(= L(T))e R* such that
lg(x, 1, u) — g(x, s, V)l < L(t — s| (1 + u]) + |u —v])

for all (x, t), (x, s)eSt, u, veR.
(H,) g(x, t, u) is nondecreasing in u for all (x, t)e Sy.
We shall refer to these hypotheses collectively as (H). The assumption of

continuity of f and g in the space variable may be relaxed but we omit such
generalization for the sake of convenience.

The main result of this section reads then as follows.

Theorem 1. Let (H) hold, and suppose that 0 < m < 1. Then Problem (1.1)
admits a solution u in the following sense :

2.1 ue L*(I; L™ (D)) n L*(I; H'(D)), t"uelL*(; H‘(D));

t'"?u,e L’(I; L"* (D)), t"*(y(w),e L*(Qy),
and

2.2) L Bu(®) o (1) — JL (B o, — VuVo + f(1) 0) +

+ JL g o= LB(%)‘P(O)

for all teI and 9 H'(Qy).
If, in addition to (H), uye H'(D), then instead of (2.1) we have

(2.3) ue L™(I; H'(D)), u,eL*(l; L"*'(D)), (y(w).€ L (Qy),
and if we take f(x, t, u) = f(x, u) and g(x, t, u) = g(x, u) only, then

(2.4) _Am_ J j (r(); + J(u(1)) < J(u(s))
(m+ 1)2 s JD
forall0 < s <t < T, where
(2.5) Jw)=1 J Vul? +f f g(r)dr —J j f(n)ar.
D rJo p Jo
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Inequality (2.4) is an energy inequality.

Remark. It is not difficult to see that (2.1) ((2.3)) implies that ue C((0, T];
L"*'(D)), Y()e C((0, T]; L*(D)) (ueC([0, T]; L"*'(D)), y(m)e C([0, TT;
L*(D)), respectively).

We now prove a series of assertions, which contain most of the essential
elements for the proof of Theorem 1. Because in Section 4 the case of the fast
diffusion (m > 1) will be considered, we shall treat, where it is possible, also this
value of parameter .

Suppose now that an integer » is specified and set h = T/n. Fori= 1,2, ..., n
consider the sequence of semilinear elliptic problems obtained formally by
applying to (1.1) an implicit time discretization formula

—Au,+ b (B(w) — B(u_ ) = f(x, = Dhyu_)  in D,
(2.6) Ou, + g(x, ith, u) =0 on I,
ov

where u, is given by (H,). At the end of this section we prove the following result
concerning weak solutions of Problem (2.6).

Proposition 1. Suppose that 0 < m < oo and set V = H' (D) n L™+ '(D). Then
Sfor given Fe L™ *Y™(D), ¢ > 0 and G(x, v) satisfying (H;)—(H,), the semilinear
elliptic problem,

2.7 J'D (VoVo + (¢B(v) — F)o) + J Gw)o =0 forall o¢eV,

has a unique solution ve V.
Using Proposition 1 one can immediately obtain the existence of the unique
weak solution u; to Problem (2.6) forany i= 1, 2, ..., n.

Consider the sequence of step functions i, defined by
i,(x, 0) = uy(x),
(2.8) ’
i,(x, t) = u(x), for(i—Dh<t<ih, i=1,2,..,n

We start with

Lemma 1. Suppose that (H) holds, and let 0 < m < co. Then the sequence {u,}
is bounded in the space L*(I; H'(D)) and for any n, 0 < n < min(1, h™"), the
estimate

2.9) [, (Dl 41 < (ol 41 + C) exp (1 + B) (K + m)/(1 — nh)m)
holds for all tel. For the nonnegative constant

C=C(N, D, L, K, m, 1, 1g(0, )\, 1, 1/(0, 0l + 1ym)
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see (2.17) below. Moreover, there exist a subsequence of {ii,} (let us denote it again
by {@,}) and a function u such that

@,—~u in L*I; H(D)), asn- .

Remark. If, in addition to (H), we suppose that g(x, ¢, uyyu =0 and
f(x, t, u) = f(x, u), then the constant C in (2.9) may be evaluated as

C = (2/(m + 1)+ D (£ O 1 1ym/ M'™.

Proof. Putting F = f(x, i — V) h,u;_ ) + h"'B(u;_,), c = h~' and G(x, u) =
= g(x, ih, u), (2.7) as a weak formulation of (2.6) yields for ¢ = y;:

(2.10)
L (ul™*" + h|Vu ) = L(B(ui_ D+ A (G — Dh, u;_)u) — th(ih, u)u;.

It might be noted that our hypotheses imply
|f(x7 t’ u)l < If(x7 ta O)l + Klulm (by (HZ))9

@2.11)
—g(x, t, u)u < |g(x, t, 0)| |u| (by (Ha)),

and

(2.12) J lg(z, 0)| |ul < TIJ Vul? + EJ lul"*' + C,(n) for any n,
r D 2 Jp :

0 < n < o0, where

C(D C(m, N, D o+ m
Ci(n) = —(n—) 18(t, O+ —‘7——) 18z, O)t V.

For m > 1, (2.12) follows from Hélder’s inequality, the embedding H'(D) into
L*(I) and Young’s inequality. To obtain (2.12) for 0 <m < 1 we need to
estimate the L? norm by the L™ * ' norm. For this purpose we introduce a special
case of the Nirenberg—Gagliardo inequality (see [4, Theorem 10.1, p. 27]) in the
form

2.13)  Ioly < Celolf 5 loln34, a= (1 —m)N/2N — (N —2)(m + 1)),

and (2.12) follows then by routine calculations if we use Young’s inequality.
Now, using (2.11—12), from (2.10) we get

(2.14) (1 - nh)j ™"+ h(1 — n)f IVl < (1 + Kh)f lu; _o|" |u;) + Cyh,
D D D

where C, = C,(n) + n* f |f((i — 1) A, 0)|+Dm Choosing n sufficiently small
D
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we have further
J lul™ ' < (1 4+ &h) L [u; " |lwl + hCy /(1 — nh), &= (K+ n)/(1 — nh),
D

and applying Young’s inequality

2.15) f "t < (14 z;h)("'“”mj "+ hGy, = DG
b D m(1 — nh)
From (2.15) we obtain succesively
j ]uilm+l < (1 + gh)i(mﬂ-l)/m(J‘ luolm+l + I’IC3 ),
D D ((1 + 5,1)(m+l)/m _ 1)
but as h/((1 + ER)™ D" — 1) < 1, we get
(2.16) [t 41 < (ol 41+ (C3/8)10"+ D) eéim,

Now let ze I be arbitrary but fix and for each n let k be such that te((k — 1) A,
kh]. Using the notation (2.8), (2.16) for i = k yields

(t+ h)(K+ n)>

@17) 18O+ 1 < (Wt 11 + (1 + 1) Cyfmm) e+ e"p( m(1 — k)

hence (2.9).
To get the boundedness of {i,} in L*(I; H'(D)), let us add up (2.14) for
i=1,2, ..., n and we obtain

(1- ﬂ)zhj Vil + (1 — nh) 3 Jluil'"“ <GT+
i=1 Jp i=1Jp

w=a) $ | il + a4 m S [

As the right hand side of the above inequality may be estimated by Young’s and
Holder’s inequalities, we have further

(1— n)zhf qu.-HQ:—'ﬁ’)—”ff i+ sﬂ’—‘—'—’”)—ﬂf g™+ +
i=1 Jp m+1 D m+ 1 D

+CGT+(K+1n) .zlhlui.—lm+llui|m+]v,

and the proof of Lemma 1 is completed by (2.16).
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Lemma 2. Under the same hypotheses as in Lemma 1 there exists a nonnegative
constant C such that the estimate

(2.18) tj \Va,o))>< C

holds for all (sufficiently large) n and 0 < t < T, i.e. t'?d, (1), , < C for all
0 < t < T. If, in addition to (H), uye H'(D), then

j Vi, ()P < C
D

forallnand 0 <t < T.

Proof. Analogously to the proof of Lemma 1, (2.6) for ¢ = i(u; — u;_,),
i = 2 yields

ij (B(u) — Blu;— 1)) (; — u;_y) + ih Lvuiv(ui —u_)+

+ ihj g(ih, u) (u; — u;_y) = ihjf((i = D hyu;_ ) (u;— u;_y).
r D

If we use the notation

(2.19) Yi(w) = j

r

j g(ih, r)dr,

0

(H,) implies the obvious inequality

W) — ¥i(u_ ) < j\ g(ih, u) (u; — u;_,),

and we have further

ij (Bu) — B~ ) (w; — u; _y) + ih2™! (J |Vui|2 - J’ [Vu, _ llz> +
D D D

2200+ ih(¥() — W) < ,-hj

D

J” f((i— 1) h, r)ydr +

u,

+ ihj‘ (j ’ S(G—=Dh u_)—f(i—=1)h, r))dr)-

i-1

Now, the last term on the right-hand side of (2.20) may be estimated using (H,)
by »

ih_[ IKJ'

i —

|B;— ) — B(n)ldr| < ihKL(B(ui) =B ) (4 — u;_y),
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and if we add up (2.20) for i = 2, 3, ..., k and perform recognizable calculations,
we obtain

x k-1
(1 — Kh) Z‘,”' D(B(”i) = Blu_ ) (; —w; ) + l‘(ﬁ j IVukIZ f IV, |2

k—1

+ kh'¥, (1) — h'¥, (u,) — Z h'¥(u) + Z th('F,_ (u;_ ) — Wi, ) <
i=1 i=2

(2.21)

k=1

Skhf J -f((k— Dh, rydr— 3, hj J f((G—= V) h, r)ydr +
D JO i=1 D JO

+ i th J (f(G—2)h, r) — f((i — 1) h, r))dr.
i=2 D JO

Both the last term on the left-hand side and the last term on the right hand side
of (2.21) may be estimated using (H,_;) and Lemma 1 by Ckh, where the
nonnegative constant C does not depend on k. If we choose 4 sufficiently small,
(2.21), yields

ki "
’ J Vi + kh ¥, (u) < Chh + kh J f f(k = V) h, rydr +

k—1

+ Z h(J~ |Vu,-|2+‘P,-(u,-)—J J'f((i— 1) A, r)dr>+h‘l’|(u,).
D D Jo

=
As by (H,) we have
(2.22) frg(kh, 0) v, < Wi (1),
(2.12), (H,_;) and Lemma 1 gives

kh L Vu, > < Cikh + C,,

where the nonnegative constants C,, C, do not depend on k. Suppose now that
tel ranks among ((k — 1) h, kh], then

ff Vi, ()P < C
D

where C does not depend on ¢, hence‘(2.18).
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If uoeH (D), let us multiply (2.20) by 1/i and add up such inequalities for
i=1,2, ..., k. We obtain

(1 —kh) Yl h~ J (Blu) — By _ 1)) (w; — ;) + %L |Vuk|2 +
+ W () — f j Sk — D) h, r)dr < %j Vo + Wy () —
(2.23) P ?

“0 k
_J f S, r)dr + Z Wi, ) =¥ () +

JIJ | fGh, r) — f(G = 1) h, r)|dr]|.

l—l

Now, by virtue of (2.22), (2.12), (H,_,) and Lemma 1, we arrive at

J V> < C
D

where the constant C does not depend on ., hence the conclusion.
As regards an a priori estimate for the time derivative, we begin with the
proposition giving the inequality, which plays a key role in our considerations.
Proposition 2. Let 0 < m < o0 and y(x) = |x|™* "2sign x for xe R. Then the
inequality

(2.24) () —y()) < Bx) = BON (x — )

4m
(m+ 1)
holds for any x, yeR.
Proof. If signx # signy, (2.24) may be verified by direct computations

and we omit the details.
If signx = sign y, it is sufficient to verify the inequality

o ”Jﬂﬂ—nz(ma—n@—n for z > 1,

assumingm > 1 (asfor0 <m < 1 weputm’ = m~' > 1, z’ = B(2)), which may
be rewritten into

B — 2 < 1;2 (v —=1? forz>1.

Putting A = ﬁ, it is not difficult to demonstrate that the function
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S =Tl (7 =) = A - )

is nonnegative for A > 1, hence the conclusion.
Let us now consider the sequence of piecewise linear functions {U,}, defined
by

(225 Uyt 1) = 70010 + (100 — 10 () L= E= DA

for(i—Dh<t<ihi=12,..,n,
and {u,}, constructed analogously to {U,} by means of ;.. Then we have the
following assertions.

Lemma 3. Let the hypotheses of Lemma I be satisfied. Then the sequence
{t'2(U,),} is bounded in the space L*(Q7).

If, in addition to (H), uye H'(D), then (U,), is uniformly (with regard to n)
bounded in L*(Q7).

Proof. If we take into account the proof of Lemma 2, (2.21) yields

(I — Kh)z":' iL(B(“.‘) — B ) —u; ) < C,

where the constant C does not depend on n. Now, with the assistance of
Lemma 1 and (2.24), the above inequality gives

fj t(Un)rZ < i if (y(u) — v(u; )’ <C,
0r i=1 Jp

hence the first conclusion.
If u,e H'(D), the assertion follows from (2.23) analogously as above.
Lemma 4. Suppose that (H) holds, and let 0 < m < 1. Then the sequence

{t' ¥(u,),} is bounded in the space L*(I; L"*'(D)), and

(i) u,—»u inC(e T]; L"*'(D)),
(2.26) ..
(i) a,»u  in L& T; L"*' (D)), as n— o0,

forany &,0 < € < T (through a subsequence depending on €). Moreover, u satisfies

(2.27) (Ol 11 < (|l 1 + C()) exp (K + 1) t/m)

for all tel and 0 < n < 1, where the constant C(n) is from (2.17).
If, in addition to (H), uye H'(D), then {(u,),} is bounded in L*(I; L™ *'(D)) and
£ =0 is allowed in (2.26).
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Corollary 1. Let the hypotheses of Lemma 4 be satisfied, then there exists a
subsequence of {n} such that, by relabelling, we have:

(1) For tel let k = k, be such positive integer that
(k — 1)h<t<kh. Then
u,(kh) — u(t) in L"*'(D),

(1) Bu,(kh)) — B(u(1) in L™ *Y"(D),
(2.28) (iii) @,(- + h) - u in L"*(Q, ),
(iv) B, (- — h)) - B(u) in L"*Y"(Q, 1), and
V) (U), = (y(w), in LX(Q, 1), as n— oo,

Jorany &, 0 < & < T (in (iii) for simplicity we put ii,(t + h) = u, for te (T — h, T].
If uye H'(D), then t = 0 is allowed in (i—ii) and € = 0 is allowed in (iii-—v).
Moreover, the function u satisfies (2.1). If, however, uye H'(D), then (2.5) is

satisfied.
Proof of Lemma 4. We start with the calculation:

f OB = S| = )h <

i=1J(@i—-1h

) Z (lu IE;T:IU/Z + Iu,_ I(m+ I)/2)2(I —m)[(m+1),

i=1

(2.29) (

ih
f ;
G -1h

Now, taking into account Lemmas 1 and 3, we have the first assertion of
Lemma 4. As for any ¢, 0 < £ < T it holds that

y(u) — y(u;_ )|

p dt < C(m, i, <. L’"*'(D)))J. 11(U) 3 dt.
h 1

2

T .
f )i < C and |G, ,<C  forall tele, T],

using a standard argument (see e.g. [7, Lemma 1.3.13, p. 25]) we arrive at
(2.26) (i). (2.26) (ii) follows from (2.26) (i) and the estimate

T
(2.30) J i, — u,l%,, < Ch*  (see (2.29)).

The estimate (2.27) is a simple consequence of (2.9) and (2.26) (i), and the
conclusion for uye H'(D) follows from the corresponding part of Lemma 3.
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Proof of Corollary 1. As
(2‘31) |u,,(f) - l‘ﬂ(s)llll+| < lj I(un)llm + l] s C(E)It - S|l 21

for t, sele, T], € > 0, (i) follows easily from (2.26) (1).

m+ 1

To prove (ii), let us note that f, = |B(w,(kh)) — B(u(t))[—'"- tends to zero a.e.

in D (through a subsequence). Because ‘[ |£.12"* " are uniformly bounded by
Lemma 2, we see that P

. - 2
J\jl < Iﬁl: (m + I)|B|“ ") .
B

Hence, the hypotheses of Vitali’s theorem.are satisfied (see, e.g., [10, Theorem
2.1.4, p. 60]) and we can conclude that

fﬁ -0 as n — oo, hence (2.28) (ii).
D

The assertion (iii) follows from (2.30—31) and (2.26) (i).

The assertion (iv) can be proved analogously to (ii).

To prove (v) let us note that Lemma 3 implies (U,), — £in LX(Q,. 1) as n — o0,
and that by the same way as in (ii) we obtain that U, — y(u) in L*(Q, ;), hence
&= v(u).

Now let us show that ¢'*(y(u)),€ L*(Q;). First by Lemma 3 we have that
t'*(U,),— 9 in L}(Q;) and by (2.28)(v) that ¢'*(U,), — " *(y(w)), in LXQ, 1),
hence 3 = t'*(y(u)), a.e. in Q. The rest of the proof is not difficult and is
omitted.

Consider now that the test function ¢ is from C*'(Q;, ;) and set

i+ hh
0;(x) = /l j o(x, s)ds fori=0,1, ..., n.
1 Jih

By means of ¢, we can construct the sequences of functions {¢,} and {®,}
analogously to {u,} and {i,} as above. Then we have the following lemma, the
proof of which is left to the reader.

Lemma 5. Let the function @, ¢, and ¢, be as above and for fixed t€ I let k = k,
be such that (k — 1)h < t < kh. Then

0, (kh) - o(1), ¢,(h) > 0(0) in L”(D),
(2.32)  (0), =0, 9,(- +h) > ¢ in L(Qy),

0,0 in L*(I; H'(D)), as n —» .
After these preparations it is now easy to prove Theorem 1.
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Proof of Theorem 1. Putting ¢, into a weak formulation of (2.6) and

adding up such identities for i =1, 2, ..., k we obtain, after recognizable
arrangements:

kh kh
Lﬁ(un(kh)) @, (kh) — J Lﬁ(ﬁn(' — h)(9,), + L LVI?,.VQ, -

h

(k—1h kh
(2.33) - j; Lﬁ(ﬁn) ¢,(- +h) + J; Lgn(ﬁn) 9, =

= L B(uo) @, (h) + h Lf (0, uy) @, (),

where
8n(x, t, u) = g(x, ih, u) . .
j':(x, t, u) =f(x, lh, u) for (l bt l)h <t S lh.

Now, letting n — oo in (2.33), with the help of Lemmas 1 and 4, Corollary 1,
(H,_,) and Lemma 5, we obtain

(2.34)
LB(u(t))tp(t) - j L B @, — VuVo + f(u) ) + ”S X0 = LB(uo)cp(O),

where ye L*(S;) is such that g,(i,) = y in L*(S,) as n — oo (through a subse-
quence). We still have to show that y = g(x, ¢, u). To that purpose let us first
note that (2.34) yields

(2.35)

LB(u(t))w(t) - j L(B(u)fp, — VuVo + f(u) o) + J thp = L B(u(s)) o(s)

for0 < s < t < T, and that this identity continues to hold also for ¢ = u. In fact,
we have already shown above that ue W""*'(Q, ;) forany ,0 <e< T,so u
can be approximated by smooth functions and the assertion follows easily.
Now let 0 <s <t < T be arbitrary and let /=1, k =k, be such that
(!—1h<s<lhand (k — 1)h < t < kh. Then, by the same way as in (2.33), we

obtain
kh kh kh
J. J‘ g-n(an) an = f J\ B(ﬁn( - h)) (un)l - J‘ f IVanlz +
th r th D Ih D

(k—-1h
+ f( Lﬁ @) a,(- +h) + L B(u,(Ih)) u,(th) — L B(u, (kh)) u, (kh).

I—1)h

t

By Lemmas 1 and 4, (H,) and Corollary 1 we have further
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n— o

lim sup f Jg"(an) i, < f f(B(u)u,—IVu|2+f(u)u)+
(2.36) o or s P

+ L B(u(s)) u(s) — L Bu()) u(1).

Next, considering (H;_4) and taking Lemma 1 into account, we obtain

t

0 < lim sup f f @) — &,(0) (@, — w) =

= lim sup f f &,(a,) i, — J fxw~f f g0w) (u — w),
n— K r s r K r

which holds for all we L*(S,). So, if we estimate the first term on the right-hand
side of (2.37) by (2.36) and apply (2.35), it can be seen that

(2.37)

0< j J (x—gw)(u—w) for all we L*(S;).
K r

Now, by standard arguments we may conclude that y = g(x, ¢, u) a.e. on S;.
To prove the energy inequality (2.4), let us note (2.23), which with the help
of (2.24) yields

(1 — Kh)4m

kh
(m + 1) L L(U")r + J(@,(1) < J(up)

and the assertion follows easily from (2.28) (v), Lemmas 2 and 4, (H, _,) and the
weak lower semicontinuity of a norm. The proof of Theorem 1 is complete.
Proof of Proposition 1. Put

I(w) = J GIVW) + c(m+ D)7 'w|" ! — Fw) + J j G(r)dr for weV.
D r Jo

We merely show that I is a continuous, strictly convex and coercive functional
over V. The existence of the unique solution v of Problem (2.7) then follows
immediately if the classical results concerning the minimization of I, namely the
existence and the characterization of the solution, are taken into account (see
e.g. [5, Theorem 26.8]). Due to the assumptions (H;) and (2.13), the continuity
of Iin ¥ with the norm |-|, ,if 0 <m < lor |[V-|, + -], ., if m > 1 is evident.
The convexity of I is guaranteed by (H,) and strong convexity by the term |- |71 ].

To show the coercivity let us note that (H,_,) and (2.12) implies

” G(’)d’>fG(O)W> - n(f ti|2+f IwI”’“)—C(TI).
rJo r D D

Choosing 7 sufficiently small, we arrive at
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I(w) > C<j Vw|* + J lw|™* ') - C,
D D

hence the conclusion.

3. L” solvability

In this section we shall discuss Problem (1.1) providing that the initial
function u, is bounded. The question arises whether the solution u would be
bounded for any later time under our hypothesis (H). To answer this question
it seems to be necessary (for our way of proof) to add an additional condition
on the function g. Therefore, let us assume instead of (H):

H)* u,e L*(D).

(H,_,) as in Section 2.

(Hs)  there exists a function re L*(Sy) such that

g(x, t, r(x, t)) =0 on S;.
We shall refer to these hypotheses as (H)*.
Now we can state the main result of this section.
Lemma 6. Suppose that (H)* holds, and let 0 < m < co. Then the estimate

1, (Dl < (tolo + 171l xgs, ,  + € NSO, , )™

3.1
-exp (K + &) (¢t + h)/m(1 — &h))

holds for any t, 0 < t < Tande, 0 <e<h™\.
As the simple consequence of Lemma 6 we have

Corollary 2. Suppose that (H)* holds, and let 0 < m < 1. Then the solution u
of Problem (1.1) satisfies

K
(B2 [ule < gy, + 171l sy + (€7 £ (0] 1o(op)"™) €XP <( _r:g) t)

forall 0 <t<Tand 0 < &< 0.

Proof of Lemma 6. First we have to show that u,e L*(D) for any i =
=1, 2, ..., n. To prove this, it is sufficient to demonstrate that ve L*(D)
whenever Fe L*(D) and g satisfies (H, _ ;) (see Proposition 1). We shall follow -
the idea from Kacur’s paper [9].

Suppose the contrary, i.e. there exist a sequence {c}, ¢; < ¢; 4, ¢;— 0 as
J— oo and a sequence of sets K; = {xe D: |[v(x)| > ¢} such that |K| > 0. Put

0(x) = {v(x) xeD\K;
/ ¢;signv  xek
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We obtain the contradiction by showing that I(v;) < I(v) for sufficiently large j,
which contradicts the minimum property of v. In fact, ve H'(D) implies that
v;e H'(D) too and we can compute

(o™ +' — cj""“') —-J. Flv—c)+
K; K.

J 7

I(v) — I(v) = c(m + 1)"j

 signv

+f f G(r)drz(Ccf—lme(lvl—cj)>0
I Jc KJ

for sufficiently large j, as J - G(x, 1, §)dE =0 if ¢; = ||r|l s, hence the
conclusion. G eene

Now we can proceed to deriving the estimate (3.1). Putting ¢ = |u,|*signu;
into a weak formulation of (2.6), where the positive integer k is arbitrarily large,
we obtain

J |ui|k+m + khj |ui|k - |Vui|2 + hj g(ih, u) Iuilk signuy, =
D D r

= hJ (G = Db, u; ) + BB ) |l signu;.

Now, the last term on the left-hand side of the equality above can be estimated
using (H, _) as follows:

- J (g(ih, u) signu) luf* < — J g(ih, 0) |r(ih)l,

and using (H,) we obtain further

(3.3) Lluil’wm < (1 + Kh) Lluil"m + | f((i = 1)h, 0)'°°hj;,|“"lk "
+ |g(lhs O)Ioo Flnn— 1 |r(lh)lk

Next, due to Young’s inequality, (3.3) yields
G4 (- eh)j " < (1 — eh) (1 + nh)_[ | _ " + C
D D

where n = (K + ¢)/(1 — ¢h) and

k kim
C. = ih,O . L km + m ( > D 0 (k®+m)/m.
1 = 18(Gh, O, P11,y P llz=gs, , i \em 15 IDI | F(O)IIz<g)
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Again, using Young’s inequality in (3.4), we arrive at

f " < (1 + nh)‘“"”""J o ftm Gy, G = RG
? D m(l — eh)
from which we obtain successively

_ hC
ulf < (1 + h’("’“‘”’"(J Ul 4+ 2 >’
J‘D| I ( n ) D‘ Ol ((1 + 7Ih)(m+k)/m _ 1)

and further (see (2.16))

(3.3 J lu ™ < (1 + nM“’"*"”"’(j lugl + ™ + C2/3>'
D D
Now, taking the (k + m)-th root of (3.5) and letting k — oo, we obtain

il < (14 0h)™ (gl + 7l =5, , ) + €7 1AON 120"

and then (3.1), as t < ih < t + h, proving Lemma 6.

4. The case of fast diffusion

We start this section by stating its result.

Theorem 2. Let m > 1 and suppose that (H)* holds. Then Problem (1.1) admits
a unique solution u such that

ue L(I; H'(D)) n L*(Qy), t"ueL*(I; H'(D)),
t'2(y(w),€ L(Qy),

the equation is satisfied in the sense that

4.1

4.2) J ((B(0)))w + Vu(t)Vw — f(t, u(t)) w) + J g(t, u(®))w=0
D r

for any we H'(D) and a.e. on I, and u satisfies the “maximum’ principle (3.2).-
If, in addition to (H)*, uye H'(D), then

4.3) ue L*(I; H'(D)) n L™(Q1), (y(w),e LA(QY),

and if we consider f(x, t, u) = f(x, u), g(x, t, u) = g(x, u) only, then the energy
inequality (2.4) remains to hold.
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The development of the proof which we present here is closely related to the
one in Section 2. As this proof is even easier, we shall proceed briefly (see also
[3], where the problem with homogeneous Dirichlet boundary conditions is
discussed). First, let us recall that Proposition 1 and Lemmas 1—3 yield the
following.

Corollary. 3. Under the hypotheses of Theorem 2 there exists the function u
such that i, — u in L*(I; H'(D)) as n — oo, t'"?|i,(1)|,., < Cforall0 < t < T and
the sequence {t'*(U,)} is bounded in L*(Qy).

Next, similar arguments as in Lemma 4 prove (with the assistance of Lem-
ma 6 and Corollary 3)

Lemma 7. Let m > 1, and suppose that (H)* holds. Then for any £,0 < e< T
there exists a subsequence of {n} such that, by relabelling, we have

U,»U  inC(s T1; LAD)),
4.4) 0,-»U in LXQ.. 1),
), —~ U, in LA(Q, 1), as n — oo,
and by the monotonicity argument U = y(u). Moreover, also
W, - Bu) in C([e, T1; L(D)),
4.5 W, - B(u) in L*(Q,, r) and
(W), = (B@w),  in LXQ, 1), as n — o,

where W,, W, are constructed analogously to u,, i, (see (2.8), (2.25)) by means

of B(u).
Proof of Theorem 2. To prove (4.2), let us note that using our nota-
tions, (2.7) may be rewritten in the form

f (W, ()W + Vi, () Vw — f(t = h, @,(t — k) w) + J &t u,())w =0
D r

where reI and n is sufficiently large. Multiplying this identity by ge L”(I) and
integrating over (& T) we obtain, after letting n — oo,

fj (Bw),w + VuVw — f(u) w)q + -[j

Qe, T Ss.

xwg =0,
T

where x € L*(S;) is such that g, (i7,) — x in L?(S,). The fact thaty = g(x, t, u) a.e.
on S can be demonstrated by the same way as the corresponding part in
Section 2. So we arrive at (4.2). The rest of the proof follows easily and we omit
further details.
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5. Comparison, continuous dependence and local existence

We begin by proving the comparison principle and the continuous depen-
dence of solutions of (1.1) on initial data. For this purpose we will make the
following assumptions:

(A)) feC(Qrx R) and for any M e R* there exists a constant K = K(T, M)e

e R* such that

lf(x’ f u) —f(xa Z U)l < KlB(ll) - B(v)l

fbr a”_(x9 I)EQTa Iuls 'Ul < M.
(A, ge C(SxR), nondecreasing in u, and for any MeR* there exists a
constant L = L(T, M)e R™ such that

lg(x, t, u) — g(x, t, v)| < Llu — v|
for all (x, t)eSr, lul, lv] < M.

Definition 1. By a weak solution of Problem (1.1) on I we mean a function
ue L*(I; H'(D)) n L*(Q,) such that

(5.1)
L B(u(2)) o(2) — fL (B(w) o, — VuVeo + f(u) ) + JL gu) o = LB(uo)(P(O)

for all 9 C*'(Q,) and each tel.

A function u is a weak subsolution (supersolution) if < (=) replaces the
equality in (5.1) whenever ¢ > 0.

Clearly, the solution u of (1.1) in the sense of Theorem 1 or 2, provided that
(H)* holds, is also a weak solution of (1.1).

Theorem 3. Suppose that (A,) and (A,) are satisfied, and u,, vye L*(D).

(1) Let u, v be weak solutions of Problem (1.1) with initial data u,, v,, respec-
tively. Put M = max ([lull =g, [0ll.x,)- Then

(5-2) IB(u(1)) — B, < IB(uy) — Bo)ls exp (K1),  tel.

(i1) Let u be a subsolution and v a supersolution of Problem (1.1) with initial
data u, and vy, respectively. Then u, < v, implies that u < v a.e. on Qr.

Proof. We consider two cases. First suppose that B~' is locally Lipschitz
continuous (0 < m < 1).

We start with (ii). For u and v, (5.1) gives

(5:3) L(B(u(t)) — Be@)e®) — IL (B(w) — B() (9, + aho) +
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+ JJ (u—v) (bq’ + a—(p> < J (B(ug) — B(vo)) 0(0) + jj (f() —f) o
S, ov D Q,

where 0 < 7 < T'is arbitrary but now fixed, a(= a(x, 1)) = (u — v)/(B(u) — B(v))

and b(= b(x, t)) = (g(x, t, u) — g(x, t, v))/(u — v). It is not difficult to see that

both functions @ and b are non-negative and bounded. Now we choose a

sequence a, of smooth functions such that

<ay < lal e, + 1, G=9
= ®n = L*(Qp) n’ \/;n

(see [1]), and for arbitrary & 0 < & < 1 we choose a function b,, say b.e C*(S;)
such that

(5.5) 0 < b S Hb”Lx(S,) + 1, ”bg - b"L2(s’) < E&.

(5.4)

-0 in LX(Q;) as n— o

S | -

Next, let ¢, be a solution of the backward problem

(), +a,Ap,= A9, xeD,sel0,1), A>0,

x, t) = y(x xeD,

(5.6) 9,(x, 1) = x(x)
O | pg =0 xer, sel0, 1),
1%

where y(x)e C;° (D), 0 < x < 1. Putting s = ¢t — 7, one can obtain the following
result:
(i) Problem (5.6) has an unique solution ¢,€ C*'(Q))
forany n=1,2, ... (see [11, Theorem 7.4, p. 560]).
(i) 0 < @,(x,5) <exp(—A(t—s)onD,0<s<t
(see [11, Theorem 7.3, p. 556]).

(iii) f f a,(Ae, < Ce, x) foralln=1,2, ....
9,

4.7

To prove (5.7) (ii1) we multiply the equation in (5.6) by A, and integrate it over
Q,, and one can then find that

IL

!

(a,(Ag,)* + AVo,P) + ” Ab.} + %f Vo, (0)f = %J VIl +
S, D D
(5.8)

+ %L(bg(t) 03(t) — b,(0) 92(0)) — %J L 0X(b,), .

As the left hand side of (5.8) is a sum of positive terms and with the help of
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(5.7) (ii), the right-hand side may be estimated indepedently of n, (5.7)(iii)
follows.
Now, if we put ¢ = ¢, into (5.3), we obtain

L(B(u(t)) — BN x < L (B(ug) — B(1o)) 9, (0) + {L —v)(b;—b)o, +

+ fj B@) — B)(a — a,) Ao, + fj (f(w) — f(v) + AB @) — B(©)) 0,
() 2,

Next, with the assistance of (5.4), (5.7) (ii), (iii), and letting n — oo, we arrive at

L (Bu(r)) — B x < L (B(uo) — B(vo)™ exp(—4r) +
4.9
+ JL () — f(v) + AB) — B@))* exp(A(s — 1)) + Cllb — bl s,

where £* = max (&, 0) and the constant C does not depend on n. As the last term
on the right-hand side of (5.9) may be arbitrarily small by the choice of b,
(c.f. (5.5)), it can be omitted.

The proof of our assertions now may proceed by the same way as in the
corresponding part of [1] and we leave it out here. The case of m > 1 (see [3])
is similar and is left to the reader.

From now on, let us take f(x, ¢, u) = f(u) and g(x, ¢, u) = g(u) only so that
the problem is

B@w)), = Au + f(u) xeD, t>0
(5.10) g%+g(u)=0 xel,t>0

u(x, 0) = uy(x)e L*(D).

Define F(u) = f(B~'(v)).

We will use the following hypothesis:

(B) F, ge C'(R), g(-) is nondecreasing on R and there exists re R such that

g(r) = 0. |

The following theorem is a relatively simple consequence of the results discussed
above, but may be useful in the study of (5.10).

Theorem 4. Let (B) be satisfied, and suppose that 0 < m < oo and u,e L* (D).
Then there exists a time t,,, 0 < t.,, < o such that Problem (5.10) has a unique
weak solution (in the sense of Definition 1) on any [0, T],0 < T < t,,. Moreover,

t'"?ue L*(0, T; H'(D)), t"(y(u)),€ L*(Q7)
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and the energy inequality (2.4) remains to hold for all 0 < s < t < t,,,,. In the case
Imax < 00 We have
.11 lim |u(t)|, = + o0.

[And 'l;al

Besides, if f satisfies
(5.12) (f(u) — f(0)) signu < K|B(u)] for all ueR,

where K is a nonnegative constant, then t,,,, = o, i.e. there exists a global solution
of (5.10).

Remarks. (i) The preceding theorem can be easily extended to the case
when the functions fand g depend also on x,

(ii) We shall denote the solution u of Problem (5.10) with the initial function
u, at time t by u(z, u,).

The proof of Theorem 4 proceeds in a standard way: Put M =
= |ugl,. + r+ (f(0))' " and define

_ ffw) for jul < M + 1,
Juu) = {f(M +1) otherwise.

Then Problem (5.10) with f replaced by f), has a unique global solution u,,
(Theorem 1—2, Corollary 2), and it satisfies

lur (2, ug)l,, < M exp((K+ 1)t/m) forall 0 <t < oo,

m
+ 1
that u,,(t, u,) is a solution of the original Problem (5.10) on [0, #,]. By using the
continuation procedure we obtain 7,,,, 0 < t,,,, < ¢ so that (5.10) has a unique
maximally defined solution u(z, 1) on [0, 1.,,).

To prove the energy inequality (2.4) for all 0 <s << t,,,, let now 0 <
<s<t<t,, bearbitrary but fixed. We have already evidenced that u(s, uy) e
€ H'(D) n L*(D) and denote i, = u(s, t;). By Theorems 1 and 2 we immediately
obtain

1
where K = max F'(B(r)). Now we take ¢, = In <l + H) and one can see
<M+

J | J (ru(-, @) + J(u(t — s, &) < J(i),
0 D

but as u(r, u(s, uy)) = u(r + s, u,) for all 0 < 1<t — s, the energy inequality
(2.4) follows easily.
Now let 7., < 2. First, we show that

(5.13) lim sup |u(t, uy)|, = «.

1= Imax
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If it does not hold, then |u(t, uy)|,, < C for all 0 < < t,,, and (2.4) yields
I f (y(u))? < C for fixed 0 < sy < f,,. S0 we have [y(u(?)) — y(u(s))l, <
S0 D

< C|t — s|'? for all ¢, s€[s,, lna,), Which implies that lim y(u(?, u,)) exists in

1= tax

L¥(D). Let us denote it by V. Next, (2.4) gives that u(t, u)) = v in H'(D) as
t— t,,jax and from the monotonicity of vy, that V' = y(v). Then we have ve
e H'(D) n L*(D) contradicting the maximality of ¢,,,. Now suppose that (5.11)
does not hold. Then there exists a sequence {t,}, , =t @S n— o0 with
lu(t,, uy)l,, < C. Let K be a Lipschitz constant of fon [0, M + 1], where M =

= C + r + (f(0))"". Then for all n we have by (3.2)
lu(t, + t, up)l,. = lu(t, u(z,, up))l,, < M exp(K + 1)t/m)

for 0 <t <t* where Mexp(K+ 1)t*/m)=M+ 1. So |u(t,+t, uy)l, <
< M + 1foralln, 0 <t < t*. But for sufficiently large n we have ¢,,,, < 1, + t*,
therefore |u(z, uy)|,. < M + 1 for ¢, < 7 < t,,,, which contradicts (5.13).

Now let f satisfy (5.12). Define

+7. _ Jmax (f(0), 0) + Ku™ foru>=0 +r0_ 20 foruz=r
/) = {max (f(0), 0) foru<o’ & ®=Vgu) foru<r 2™
_,~ _ fmin(f(0), 0) — K(—w)" foru<0 - { g(u) foru>
S = {min ((0), 0) forus0 & O= foru<r’

Then Problem (5.10) with f, g and u, replaced byf*, g* and u;" (= max (y,, 0)),
respectively, has a unique global solution u* (Theorem 1—2, Corollary 2), and
it is not difficult to check that it satisfies

0 <u*(t, ug) < (lupl, + 7+ (F(0)") exp (K + 1) 1/m)
for all 0 < ¢ < o0, and analogously,
— (gl + 1+ (SO)"™) exp (K + 1) t/m) Su™(1, ug) < O

for all 0 < ¢ < 0o0. Now, it can be seen from the construction of f*, g+ and
f~, g~ above that u™* is a supersolution and u~ is a subsolution of Problem
(5.10). Hence

u= (1, ug ) < u(t, u)) < ut(t, ug)

and the solution u exists globally.
The proof of Theorem 4 is complete.
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HEJUHENHOE JAW®Y3HOE YPABHEHWE C HEJIMHEWMHBIMU
KPAEBBIMU VYCJIOBUAMMU: METO/ MPAMBIX

Jan Filo
Pe3romMe

B pabGoTe paccMaTpuBaeTCst BO3MYILIEHHOE YpaBHEHUE THITA HECTAIIMOHAPXOH GUILTpalluu rasa
U BO3MYILUEHHOE YpaBHEHHE THMA ObICTpOH IU(Yy3UH ¢ MHOTHMH MPOCTPAHCTBEHHBIMH NEPEMCH-
HBIMH B OrpaHH4yeHOH 00.1aCTH ¢ HE.IMHEHHBIMH TPAHUYHBIMH yC10BUSMH (1.1).

B cTaThe 10Ka3aHO CyLECTBOBAHHE. €MHCTBEHHOCTb U HEKOTOpbIE O0COOEHHOCTH 000O6IIEH-
HBILX PeLUeHHN.
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