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PRINCIPAL CONGRUENCE RELATIONS 
AND PRINCIPAL TOLERANCES ON VARIETIES 

OF LATTICES 

JAROMfR DUDA 

The symbol <9(a, b) (T(a, b)) denotes the principal congruence relation 
(tolerance) generated by the pair <a, b>, i.e. the least congruence relation 
(tolerance, respectively) containing <a, b>. As shown in [2], [5], the equality <9(a, 
b) = T(a9 b) holds on any distributive lattice. The aim of this note is to prove 
that this relation equality characterizes the variety of all distributive lattices. 
Using this fact we present a single lattice term describing the principal con
gruence relations on distributive lattices. 

Theorem 1. Let Vbe a variety of lattices. The following conditions are equiv
alent: 

(1) V is the variety of distributive lattices; 
(2) the equality relation 0(a, b) = T(a, b) holds for any a, beLeV 
Proof. (1)=>(2): As remarked previously, this part of the proof can be 

found in [2] or in [5]. 
(2)=>(1): Suppose to the contrary that the variety of lattices V contains a 

nondistributive member. Then, by the well-known Birkhoff criterion, V con
tains either the diamond M3 or the pentagon IV5, i.e. the five-element lattices 
depicted in Figure 1. 

Fig. 1 

Since l/is closed under products and sublattices we infer that at least one of the 
lattices Af3 © 1, IV5 © 1, see Figure 2, belongs to V 
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M3®1 Ns®1 

Fig.2 

Consider these two cases separately: 
Case 1. Suppose that My®\eV. Then one can easily verify that 

<9(y, 1) ^ T(y, 1), as Figure 3 illustrates. 

t i 
(y,1) T(У,D 

Fig. 3 

Case 2. If N5 © 1 e V, then it is a routine to verify that 0(z, 1) ^ T(z, 1), 
see Figure 4. 

6(z,1) : I = T(-'H 

Fig. 4 

Altogether we conclude that the equality 0(a, b) = T(a, b) does not hold on V 
in any case. The proof is complete. 
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Many properties of a given variety can be derived from the form of its principal 
congruence relations. For these reasons every description of principal con
gruence relations is of some interest. From [3; Ex. 2.6] we quote the following 
description of principal congruence relations on distributive lattices: 

<c, d>e<9(a, b) iff 

c = p0(b, a, c, d) 

p0(a, a, c, d) = p,(a, a, c, d) 

p,(b, a, c, d) = p2(b, a, c,d) 

p2(a, a, c,d) = p3(a, a, c, d) 

d = p3(b, a, c, d), 

where 

P0(x„ x2, x3, x4) = [(x, A x2) V x3] A (x3 V x4), 

P,(x„ x2, x3, x4) = (x, V x2 V x3) A (x3 V x4), 

P2(x„ x2, x3, x4) = [(x, V x2) A x3] V x4, 

P3(x„ x2, x3, x4) = (x, A x2 A x3) V x4. 

Making use of the equality <9(a, b) = T(a, b) from Theorem 1 we state that one 
(sexenary) lattice term is enough for the description of congruence relations on 
distributive lattices. 

Theorem 2. Let V be a variety of lattices. The following conditions are equiv
alent: 

(1) V is the variety of distributive lattices', 

(2) for any a, b, c, deLeV there holds 

<c, d>G0(a, b)iff 

c = p(a, b, a, b, c,d) 
d = p(b, a, a, b, c, d), 

where 
p(x„ x2, x3, x4, x5, x6) = cy(r(x„ x2, x3, x4, x5, x6), 

r(x2, x„ x3, x4, x5, x6), x5, x67 , 

g(x„ x2, x3, x4) = (x, V x3) A (x2 V x4), 

r(x„ x2, x3, x4, x5, x6) = [(xi A x4) V (x2 A x3) V (x5 A x6)] A (x5 V x6) . 

P r o o f (l)=>(2):(i) Suppose that <c,d >e(9(a, b) holds for a, b, c, 
deLeV. Then 

(*) aAbAc = aAbAd, 
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(**) avbvc = avbvd, 

see [4; Thm 3, p. 74]. We want to prove that these equalities together with the 
assumption of distributivity give c = p(a, b, a, b, c,d) and d = p(b, a, a, b, c,d). 
To do this compute: 

r(a, b, a, b, c, d) = 

= [(a A b) V (b A a) V (C A d)] A (c V d) = [(a A b) V (c A d)] A (c V d) = 

= [(a A b) A (c v d)] v [(c A d) A (c v d)], by distributivity, 

= (a A b A c) v (a A b A d) v (c A d), by distributivity, 

= (a A b A c) v (c A d), by (*), 

= [(a A b) v d] A c, by distributivity. 

(Clearly the last result can be expressed also in the form 

r(a, b, a, b, c, d) = [(a A b) v c] A d). 

Further 

r(b, a, a, b, c, d) = 

= [(b A b) v (a A a) v (c A d)] A (c v d) = [(a v b) v (c A d)] A (C V d) = 

= [(a v b v c) A (a v b v d)] A (C V d), by distributivity, 

= (a v b v c) A (c v d), by (**), 

= [(a v b v c) A c] v [(a v b v d) A d\, by distributivity, 

= c v d. 

Then 

p(a, b, a, b, c, d) = q([(a A b) v d] A C, C V d, c, d) = 

= [[[(a A b) v d] A C] v c] A [(c v d) v d] = 

= c A (c V d) = c , 
and 

P(b, a, a, b, c, d) = Q(C V d, [(a A b) V C] A d, c, d) = 

= [(c V d) V c] A [[[(Q A b) V c] A d] V d] = 

= (c V d) A d= d, 

as claimed. 
(ii) The converse Amplication is trivial since 
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<p(a, b, a, b, c, d), p(b, a, a, b, c,d)> G 0(a, b) holds for any lattice term p 
applied to the elements a, b, c, d. 

(2) => (1): Since <p(a, b, a, b, c,d), p(b, a, a, b, c, d)> 6 T(a, b) we have verified 
the inclusion <9(a, b) ^ T(a, b). Theorem 1 completes the proof. 
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ГЛАВНЫЕ КОНГРУЭНЦИИ И ГЛАВНЫЕ ТОЛЕРАНЦИИ 
В МНОГООБРАЗИЯХ РЕШЕТОК 

^а^от^^ О и о! а 

Резюме 

Показано, что главные конгруэнции и главные толеранции совпадают только вслучае 
многообразия дистрибутивных решеток. 
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