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PRINCIPAL CONGRUENCE RELATIONS
AND PRINCIPAL TOLERANCES ON VARIETIES
OF LATTICES

JAROMIR DUDA

The symbol @(a, b) (T (a, b)) denotes the principal congruence relation
(tolerance) generated by the pair {a, b), i.e. the least congruence relation
(tolerance, respectively) containing {a, b). As shown in [2], [5], the equality @(a,
b) = T (a, b) holds on any distributive lattice. The aim of this note is to prove
that this relation equality characterizes the variety of all distributive lattices.
Using this fact we present a single lattice term describing the principal con-
gruence relations on distributive lattices.

Theorem 1. Let V be a variety of lattices. The following conditions are equiv-
alent:

(1) Vs the variety of distributive lattices; .

(2) the equality relation @(a, b) = T (a, b) holds for any a, be Le V.

Proof. (1)=(2): As remarked previously, this part of the proof can be
found in [2] or in [5].

(2) = (1): Suppose to the contrary that the variety of lattices V contains a
nondistributive member. Then, by the well-known Birkhoff criterion, V con-
tains either the diamond M, or the pentagon N;, i.e. the five-element lattices
depicted in Figure 1.

M3 Ns

Fig. 1

Since Vs closed under products and sublattices we infer that at least one of the
lattices M, @ 1, N5 @ 1, see Figure 2, belongs to V.
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Fig. 2

Consider these two cases separately:
Case 1. Suppose that M,® le V. Then one can easily verify that
O(y, 1) # T(y, 1), as Figure 3 illustrates.

o) | Tty.1)

Fig. 3

Case 2. If Ny@® 1€V, then it is a routine to verify that ©(z, 1) # T(z, 1),
see Figure 4.

T(z,1)

Fig. 4

Altogether we conclude that the equality @(a, b) = T (a, b) does not hold on V
in any case. The proof is complete.
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Many properties of a given variety can be derived from the form of its principal
congruence relations. For these reasons every description of principal con-
gruence relations is of some interest. From [3; Ex. 2.6] we quote the following
description of principal congruence relations on distributive lattices:

(¢, d>eB(a, b) iff

¢ = p()(bs a, C, d)

po(a. a, ¢, d) = p(a, a, ¢, d)

pl (b9 a, ¢, d) = pz(b» a, C,d)

pz(a, a, C,d) = p}(a' a, ¢, d)

d=psb, a,cd),
where

Po(x)5 X5 X3, Xg) = [(x) A X3) Vv X3] A (%3 VX)),

Py (x), X3 X3, Xg) = (X) V X5 V X3) A (X3 VX)),

Po(xX), X5, X3, X)) = [(X, V X35) A X5] VX,

P (X, X3 X3, Xg) = (X A Xy A X3) VX
Making use of the equality @(a, b) = T'(a, b) from Theorem 1 we state that one
(sexenary) lattice term is enough for the description of congruence relations on
distributive lattices.

Theorem 2. Let V be a variety of lattices. The following conditions are equiv-
alent:

(1) Vs the variety of distributive lattices;

(2) for any a, b, ¢, de Le V there holds

e, d>eO(a, b) iff
c=p(a,b,a,b,cd
d=pb,a,a b, c,d),
where
P(x), X3, X3, Xg0 X5, Xg) = Q(F(Xy, X5 X3, X4y X5, Xg),

r(x29 xl9 x}y x4s xSa x6)9 xSa xb)y
q(x), X5 X3, Xg) = (X, V X3) A (X3 V Xy),
r(xy, Xy X3, X4 X5, Xg) = [(X) A Xg) V (3 A X3) V (X5 A Xg)] A (X5 V X).

Proof. (1)=(2):(1)) Suppose that {c,d >e ®(a, b) holds for a, b, c,
de Le V. Then

(%) anbarcec=anbnrd,
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(*%) avbve=avbvd,

see [4; Thm 3, p. 74]. We want to prove that these equalities together with the
assumption of distributivity give ¢ = p(a, b, a, b, c,d) and d = p(b, a, a, b, c,d).
To do this compute:

r(a, b,a b, c,d) =
=[larnbyvibrayvicand)a(cvd)y=lanb)vicad)]a(cvd)=
=[@anb)A(cvd)vVvicnad)n (cv d)], by distributivity,
=(@nrbarc)yvianbnad)v(cnd), by distributivity,
=(anbAac)v(cad),by(*),
= [(a A b) v d] A ¢, by distributivity .

(Clearly the last result can be expressed also in the form
r(a, b,a, b,c,dy=[@anb)vclnad).
Further

rtb,a,a, b, c,d)=
=[bab)yva@arnaviicndncvd)=llavbyvicnand]a(cvd)=
=[avbvec)n(avbvd)na (cvd),by distributivity,
=(avbvec)a(cvd),by (xx),
=[avbvc)acviavbvd) ad, by distributivity,
=cvd.

Then
pa,b,a b, c,d)y=q((anb)vdlrc cvdcd)=

=[llarnb)vdlrnclveallcvd vdl =
=C/\(CVd)=C,

and
pb,a,a,b,c,d)=q(cvdarb)vcadcd=
=lcvd)veallllanb)yvead vdl=
=(cvd)rd=d,
as claimed.

(ii) The converse implication is trivial since
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{p(a, b, a, b, c, d), p(b, a, a, b, c,d))e O(a, b) holds for any lattice term p
applied to the elements a, b, c, d.

(2) = (1): Since {p(a, b, a, b, c,d), p(b,a, a, b, c,d)) € T (a, b) we have verified
the inclusion ©(a, b) < T (a, b). Theorem 1 completes the proof.
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I'JTABHBIE KOHI'PYOHUUU U T'JIABHBIE TOJIEPAHUIUH
B MHOI'OOBPA3UAX PEHIETOK
Jaromir Duda
Pe3ome

ITokxa3aHo, 4TO IJIaBHbIE KOHIDYJHIIMH U IJIaBHbIE TOJIEPAHLIMH COBNAAAIOT TOJLKO BCIyvae
MHOroo6pa3us IHCTPHOYTHBHBIX PELIETOK.
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