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GEODETIC LINE, MIDDLE AND TOTAL GRAPHS 
JERZY TOPP 

1. In the note presented by a graph we mean an undirected, finite graph 
without loops and multiple edges. By Kn we denote the complete graph on n 
vertices. A star, a cycle, and a path having n edges is denoted by K{ n9 Cn9 and 
Pn9 respectively. Let G be a graph with the vertex set V(G) and the edge 
set£,(G). The distance dG(v9u) between the vertices v9ue V(G) is the length of 
the shortest path between v and u in G; if v and u are not joined in G9 we define 
dG(v9u) = oo. The diameter d(G) of G is defined by d(G) = max{dG(v9u): 
:v9ueV(G)}. 

A graph G is said to be weakly geodetic if every two vertices v and u of G with 
distance dG(v, u) = 2 are joined by exactly one shortest path. A graph G is 
geodetic if for any two vertices v and u of G there exists at most one shortest path 
between them. A graph G is called to be strongly geodetic if and only if every 
two vertices of G are joined by at most one path of length less than or equal to 
the diameter of G. Evidently, every strongly geodetic graph is geodetic, and 
every geodetic graph is weakly geodetic. Note that a graph G is weakly geodetic 
if and only if G contains no induced subgraph isomorphic to C4 or K4 — e in 
Fig. 1. It is obvious that a graph G is geodetic if and only if each block of G is 
geodetic. A forest is a unique disconnected strongly geodetic graph. Moreover, 
it is easy to observe that if a strongly geodetic graph G contains a triangle, then 
G is a complete graph. The problem of characterizing geodetic graphs was first 
raised in [9] and is still open. We refer the reader to [5, 6, 10, 11] for surveys of 
results and open problems concerning geodetic graphs. 

A question discussed in [3] is the following: For a graphical property A9 what 
property must a graph G possess for the line graph L(G) to have property Al 
This note answers that question in the case where A is the property that a graph 
is weakly geodetic, geodetic, and strongly geodetic, respectively. Additionally, 
we characterize all graphs G whose middle graphs M(G) (total graphs T(G)9 

resp.) are weakly geodetic, geodetic, and strongly geodetic, respectively. 
Let us recall that the line (total, resp.) graph L(G) (T(G)9 resp.) of a graph 

G is the graph whose set of vertices is in one-to-one correspondence with the set 
of edges (edges and vertices, resp.) of the graph G9 with two vertices of L(G) 
(T(G)9 resp.) being adjacent if and only if the corresponding edges (elements, 
resp.) of G are adjacent (adjacent or incident, resp.). For and edge e of G9 let e 



denote the vertex of L{G) (T(G), resp.) corresponding to the edge e. The middle 
graph of G, denoted M(G), is the intersection graph £1{F) on the set V{G) of 
the family F= {{x}:xe V{G)}KJ E{G). M{G) may also be defined as the line 
graph L{G o Kx) (see [1,8]), where G o Kx is the graph obtained by taking G and 
|F(G)| copies of Kx and joining the i-th vertex of.G to the i-th copy of Kx. 

2. In this section we shall determine all graphs whose line graphs (middle 
graphs, total graphs, resp.) are weakly geodetic. 

Theorem 1. The line graph L{G) of a graph G is weakly geodetic if and only 
if G does not contain any of the graphs C4 and H4 {see Figure 1) as a subgraph. 

CA. Kt-e = L(Ht) 

Proof. Let us first observe that a graph G does not contain any of the 
graphs C4 and H4 as a subgraph if and only if L{G) does not contain any of the 
graphs C4 = L{C4) and K4 — e = L{H4) as an induced subgraph. This fact 
coupled with the observation that a graph is weakly geodetic if and only if it 
contains neither C4 nor K4 — e as an induced subgraph, implies the desired 
result. D 

Corollary 1. The middle graph M{G) of a graph G is weakly geodetic if and 
only if neither C3 nor C4 is a subgraph of G. 

Proof. Since neither C4 nor C3 is a subgraph of G if and only if neither 
C4 nor H4 is a subgraph of G o Kx, the result follows from Theorem 1 and the fact 
that M(G) = L(GoK,). • 

Theorem 2. The total graph T{G) of a graph G is weakly geodetic if and only 
if every connected component of G has at most one edge. 

P r o o f One implication follows from the fact that the graphs T{KX) = Kx 

and T{K2) = K3 are weakly geodetic. On the other hand, if a graph G contains 
two adjacent edges, say uv and vw, then the subgraph of T{G) induced by the 
vertices u, v, uv, vw is isomorphic to K4 — e and T{G) is not weakly geodetic. D 

3. We now turn our attention to geodetic line graphs, geodetic middle 
graphs, and geodetic total graphs. We start with two auxiliary lemmas. 

Lemma 1. If vu and wt are different vertices of the line graph L{G) ofGy then 

dnc)(w> wt) = min{dG(v9 w),dG(v, t),dG(u9 w),dG{u,t)} + 1. 



Proof. Let vu and wt be different vertices of L(G) and suppose that 

min{dG(i?, w),dG(v, t),dG(u, w),dG(u, t)} + 1 = dG(v, w) + 1 = m + 1. 

The result is obvious if m = 0. Thus assume that m > 0 and let (v = u0_J?i> •••> 
wm =j__) be any shortest y — w path in G. Then (uv, v0vx, ..., vm_xvm9 wt) is a 
m; — wt path in L(G) and therefore dL(G)(uv, wt) < m + 1. We_now claim that 
dL(G)(*^> w 0 = m + 1. Suppose to_the contrary that dL(C)(__\ wt) = k < m + 1. 
Let (xoyo = uv, xiyi, ..., xkyk = wt) be any shortest uv — wt path in L(G) and 
let z, be a unique common vertex of the edges x,y, and xi+ xyi+x in G (i = 0, 1, 
..., k — 1). Then (z0, zx, ..., zk_x) is a path joining z0e{i;, u) t o Z*- I6!147? }̂ m 

G and therefore 

min{dG(i;, w),dG(v, t),dG(u, w),dG(u, t)} + 1 = dG(v, w) + 1 < k < m + 1, 

a contradiction to m = min{dG(i;, w), dG(f, t),dG(u, w),dG(u, t)}. • 

Lemma 2. //"a graph G is nongeodetic, then its line graph L(G) is nongeodetic. 
Proof. Assume that G is a nongeodetic graph. Then G contains two ver

tices v and u joined by two different shortest paths, say, by the paths P = (x0 = v, 
xx, ..., xn = u) and Q = (y0 = v, yx, ..., yn = u). Without loss of generality, we 
may assume that the paths P and Q are internally disjoint. (For if not, then the 
vertices v, u and the paths P, Q may be replaced by the vertices x, = yi9 

xi + k = yi + k, and the paths P' = (xi9 xi+x, ..., xi + k), Q' = (yhyi+u ...,yi + k), 
respectively, where i is the smallest integer belonging to {0,1, . . . , n — 2} and such 
that xi+x # yi+1, while k is the greatest positive integer such that i + k <n and 
Xj # yj for every je{i + 1, ..., i + k — 1}.) Then we have dG(i>, w) = n, 
dc(v, yn_x) = dG(xx, u) = n- ^ ^ ( ^ y ^ - i ) > n - l_and therefore dL{G)(vxX9 

uyn-\) = n by Lemma 1. Thus (t_x_, x1;x2, ..., xw_iW, wy„_i) and (i;x1? vyx,yxy2, 
..., yn-Xu) are different shortest t>jc- — uyn_x paths in L(G), and hence L(G) is 
nongeodetic. • 

Now we are ready to prove a characterization of graphs whose line graphs 
are geodetic. 

Theorem 3. Let G be a connected graph with at least one edge. Then the line 
graph L(G) is geodetic if and only if G is a tree or an odd cycle. 

Proof. If G is an odd cycle, G = C2„ + i (n > 1), then certainly 
L(G) = C2n+X is geodetic. If G is a tree, then every block of L(G) is a complete 
graph and L(G) is geodetic. 

Conversely, suppose L(G) is geodetic. By Lemma 2, G is geodetic. We claim 
that G is an odd cycle or a tree. For if not, then let C be any shortest cycle of 
G. From the choice of C it follows that dc(v, u) = dG(v, u) for every two vertices 
v and u of C. Moreover, since G is geodetic, C has an odd length, say 2n + I. 



Let xu x2, ..., x2w + ! be the consecutive vertices of C and let x0e V(G) — V(C) 
be a vertex adjacent to a vertex of C. Without loss of generality, we may assume 
that x0 is adjacent to xx. Let us now observe that dG(xx, xn + x) = ^ ( x , , xn + 2) = 
= n, dc(x0, xw+1)>n, dG(x0, x„ + 2 ) > n , and therefore we have dL(G)(xoxi, 
*«+i** + 2) = n + 1 by Lemma 1. Thus (x0xx, xxx2, ..., ^ + 1x̂  + 2) a n d (*o*i> 
*i*2« + 1 > x2n + i*2/i5 • • •> *« + 2*/. +1) a r e different shortest xoxj — xn + xxn + 2 paths in 
L(G), and hence L(G) is nongeodetic. This contradicts our assumption. • 

Corollary 2. The middle graph M(G) of a connected graph G is geodetic if and 
only if G is a tree. 

Proof. If G is a tree, then GoKx is a tree, and therefore 
M(G) = L(GoKx) is geodetic by Theorem 3. On the other hand, if G is not a 
tree, then GoKx is neither a tree nor an odd cycle, and therefore 
M(G) = L(GoKx) is nongeodetic by Theorem 3. • 

Theorem 4. The total graph T(G) of a graph G is geodetic if and only if every 
connected component of G has at most one edge. 

The proof of Theorem 4 is similar to the proof of Theorem 2, so it will be 
omitted. We conclude this section with a necessary condition for a graph to be 
geodetic. 

Corollary 3. If a connected graph H is geodetic, then H is either a line graph 
of a tree or an odd cycle, or H contains Kx 3 as an induced subgraph and does not 
contain K4 — e as an induced subgraph. 

Proof. Assume that a graph H is connected and geodetic. Certainly, 
KA — e is not an induced subgraph of H. Hence, if H is not a line graph, then 
from Beineke's Theorem [4] it follows that KU3 is an induced subgraph of H. If 
H is a line graph, then the result follows from Theorem 3. • 

4. In this section we characterize graphs whose line graphs (middle graphs, 
total graphs, resp.) are strongly geodetic. 

Theorem 5. Let G be a nonempty graph without isolated vertices. Then the line 
graph L(G) is strongly geodetic if and only if G is either an odd cycle, or a star, 
or a family of disjoint paths. 

Proof. It is obvious that L(G) is strongly geodetic if G is either an odd 
cycle, or a star, or a family of disjoint paths. 

Conversely, suppose L(G) is strongly geodetic. If L(G) is disconnected, then 
it is a forest. From this and the fact that L(G) does not contain KX3 as an 
induced subgraph (see [4]), it follows that L(G) is a family of disjoint paths. 
Hence G is a family of disjoint paths. Now assume that L(G) is connected. Then 
G is connected and according to Theorem 3 the graph G is either an odd cycle 
or a tree. If G is a tree, then it is either a path or it contains a vertex of degree 
at least three. In the latter case L(G) contains a triangle and therefore L(G) is 



a complete graph. This combined with the assumption that G is a tree, implies 
that G is a star. D 

The next two results follow immediately from Theorem 5 and Theorem 4, 
respectively. 

Corollary 4. The middle graph M{G) of a graph G is strongly geodetic if and 
only if every connected component of G has at most one edge. D 

Corollary 5. K2 is the only nontrivial graph G such that T{G) is strongly 
geodetic D 

5. A graph H is said to be a line (middle, total, resp.) graph if H = L{G) 
{H = M{G\ H = T{G), resp.) for some graph G. Let if, Jt, 0~, if, 0, ^ , 
denote the family of all nonempty line graphs, middle graphs, total graphs, 
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weakly geodetic graphs, geodetic graphs, and strongly geodetic graphs, respec
tively. The set S£ u ST u HT can be partitioned into twelve subsets Rz, where 
R1 = JinSf, R1 = S£nSf -M, R3 = (JS? n<§) - (JIuS£\ R4 = S£ -
-(Ji\j HT\ R5 = (S£ nHT)-(JtKj <3\ R6 = J/-1fr,lRl = (J^nir)-^, 
R8 = (Ji n <g) - Sf, R9 = Hr - (S£ u #), R10 = # - (S£ u y7), Rn = Sf - S£, 
R12 = ST - (JS? u IT). It follows from Theorem 2 that ^ n (TT - JSf) = 0 and 
therefore -^ is disjoint from R9, R10, R n . Hence ST — Rxl = ST c\S£. Since 
ST c\Jt = {HA^ : n = 1, 2, ...} (see [2]), ST is disjoint from R5, R6, R7, R8, and 
hence T n S£ <z R1 u R 2 u R 3 u R 4 . For ie{l, 2, 3, 4}, let R ; = R , . n ^ and 
RJ'= R; — ^". Fig 2 shows the relationships of the classes of line graphs, middle 
graphs and total graphs to the classes of weakly geodetic, geodetic and strongly 
geodetic graphs. An example is known for every region. From the results of 
Sections 2—4 and the fact that every connected graph belonging to ST n S£ is 
isomorphic to T(KX2) or T(Kn) = L(Kn + x) (see [7]) it follows that elements of 
the regions Rj, R", R2, R2, R3, R;J can be explicitly listed. 

REFERENCES 

[1] AKIYAMA, J.—HAMADA, T.—YOSHIMURA, L: Miscellaneous properties of middle 
graphs. TRU Math., 10, 1974, 41—53. 

[2] AKIYAMA, J.—HAMADA, T.—YOSHIMURA, L: Graph equations for line graphs, total 
graphs and middle graphs. TRU Math., 12, 1976, 31—34. 

[3] BEHZAD, M.—CHARTRAND, G.—LESNIAK-FOSTER, L.: Graphs and Digraphs. 
Wadsworth, Belmont 1979. 

[4] BEINEKE, L. W.: Characterizations of derived graphs. J. Comb. Theory, 9, 1970, 129—135. 
[5] BOSÁK, J.: Geodetic graphs. In: Colloquia Math. Soc. J. Bolyai, 18, Keszthely, 1976, 

151—172. 
[6] BOSÁK, J.—KOTZIG, A.—ZNÁM, Š.: Strongly geodetic graphs. J. Comb. Theory, 5, 1968, 

170—176. 
[7] CVETKOVIĆ, D. M.—SIMIĆ, S. K.: Graph equations for line graphs and total graphs. 

Discrete Math., 13, 1975, 315—320. 
[8] HAMADA, T — YOSHIMURA, L: Traversability and connectivity of the middle graph of a 

graph. Discrete Math., 14, 1976, 247—255. 
[9] ORE, O.: Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38, 1962. 

[10] PLESNÍK, J.: Note on diametrically critical graphs. In: Recent Advances in Graph Theory. 
Academia, Prague 1975, 455—465. 

[11] PLESNÍK, J.: A construction of geodetic graphs based on pulling subgraphs homeomorphic 
to complete graphs. J. Comb. Theory Ser. B36, 1984, 284—297. 

Received Decembeг 11, 1987 Faculty of Applied Physics 
and Mathematics 
Technical Universitv of Gdansk 
11/12 Majakowskiego 
80-952 Gdansk, 
POLAND 



ГEOДEЗИЧECKИE PEБEPHЫE, CPEДHИE И TOTAЛЬHЫE ГPAФЫ 

Jeгzy T o p p 

P e з ю м e 

B cтaтьe дaëтcя xapaктepиcтикa тex гpaфoв, кoтopыx peбepныe, cpeдниe и тoтaльныe 
гpaфы являютcя cлaбo гeoдeзичecкими, гeoдeзичecкими и cтpoгo гeoдeзичecкими. 
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