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CONTINUOUS SOLUTIONS OF NONLINEAR 
BOUNDARY VALUE PROBLEMS 

FOR ODEs ON UNBOUNDED INTERVALS 

MARIA KECKEMETYOVA 

ABSTRACT. The existence of a continuous solution defined on non-compact 
interval for a system of nonlinear differential equations with linear boundary 
conditions (BP) is proved. 

Introduction 

The aim of this paper is to prove the existence of a continuous solution for 
the system 

x(t)-A(t)x(t) = f(t,x(t)) (BP) 

Tx = r 

on non-compact interval (a; oo). The existence of a bounded solution of this 
system defined on the right open interval (a; 6) (—oo < a < b < +oo) , for 
the Banach space of all bounded continuous functions, has been studied by 
M . C e c c h i , M . M a r i n i , P . L . Z e z z a [1]. This method, that we shall 
use is to transform the system (BP) into the form of the equation 

Lx = Nx, (OE) 

where L is a linear operator, N is generally non-linear. The existence of a 
bounded continuous solution for (BP) follows from the theorems of 
P . L . Z e z z a about equivalence between the set of solutions for (OE) and 
the set of fixed points of operator M defined by (1.9) and the continuation 
theorem [7]. 

The case that L is a Fredholm operator is studied by J . M a w h i n . By this 
method this system is reduced to the operator equation (OE) which is solved by 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34B15. 
K e y w o r d s : Boundary value problem, Fixed point. 
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the local degree theory of Leray-Schauder. For the applications of this me thod 
see J . M a w h i n - R . G a i n e s [5]. 

In this paper we shall prove the existence of a continuous solution bounded 
by a certain un-bounded function which is determined by the solutions of the 
associated linear system 

y(t)-A(t)y(t) = 0. 

If the fundamental mat r ix of this linear system is bounded on (a; oo) , then 
tha t problem is reduced to the problem which is s tudied by M . C e c c h i , 
M . M a r i n i , P . L . Z e z z a o n the interval (a; oo) . 

1 . Let C = C((a, o o ) , R n ) be a vector space of continuous functions from (a, oo) 

into R n , ip £ C ( ( a , o o ) , R ) is a positive function on (a, oo ) . The space 

f \\x(t)\\ 1 
C^= {x(t)eC: sup i L 7 7 ^ ! I < + o o L 

I <£<a,oo) W(t) J 

where || • || is a norm in R n , is a Banach space with respect to the no rm 

| |x |L = sup ——— for each x E C^ . 
te(a,oo) W\t) 

In this paper we shall investigate the existence of a solution for the system 

x(t)-A(t)x(t) = f(t,x(t)), (1.1) 

which satisfies the boundary conditions: 

Tx = r r G R m (1 < m < n) , (1.2) 

where A(t) is a n x n matr ix , continuous on (a, oo) . 

Let D be a space of all continuous solutions of the linear system 

y(t)-A(t)y(t)=0. (1.3) 

Let \(t) be the smallest eigenvalue and A(t) the largest eigenvalue of the 
hermi t ian symmetr ic mat r ix 

AH(t) = ±[A(t) + A*(t)], 

where if A(t) = (aij(t))i = 1 , then A*(t) = (a>ji(t))i =1 is the hermi t ian adjoint 

ma t r ix of A(t). It means tha t : A(r), A(r) are solutions of the equat ion 

det[AH(t)-\E] = 0 . 
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These conditions assure tha t the Wazewski inequality 

| |x(a) | | exp ( J \{s)ds\ < \\x{t)\\ < \\x{a)\\exp( J A{s)ds) (1.4) 

holds for all solutions x(t) of the system (1.3), [3]. Let 

V>(*)=ex P f jA{s)ds), (1.5) 

then tp(t) > 0 for each t G (a, oo) and xp(t) G C((a,oo),R). Consequently, the 

space ( C ^ ; || • ||-/>) with the weight function tp defined by (1.5) is a Baiicich space. 

R e m a r k 1.1. If ip(t) is bounded on (a, oo) , then C^ need not be equal to 
the space of all bounded continuous functions. The equality of bo th spaces will 
be a t t a ined if tp(t) satisfies 0 < k < ip(t) < K on (a; oo) with some positive 
constants k < K. This case was solved in [1]. 

Fur ther , let T : d o m T C C^ —> R m , ( 1 < m < n ) be a linear continuous 
opera tor , it means tha t : 

||Ta,|| < | |T| | • | |x| |0 for each x G d o m T . (1.6) 

Let us assume tha t T satisfies the condition 

D C d o m T , T(D)=Rm. (1.7) 

R e m a r k 1.2. These conditions assure tha t the linear problem associated 
to (1 .1 ) - (1 .2 ) for f(t,x) = 0 has a solution for each r G R m . 

Let 

L: domL C C^ -+ C x R m 

be the linear opera tor defined by the relation: 

x ( - ) ^ ( i ( . ) - A ( . ) x ( . ) ; T x ) , 

where d o m L = C J ( ( a , o o ) , R n ) D d o m T and let / : (a, oo) x R n - • R n be a 
continuous function, 

281 



MARIA KECKEMETYOVA 

N: domN = Cxi,->CxRm 

be the opera tor which is determined by the relation: 

* ( • ) - > ( / ( • , x ( . ) ) ; r ) . 

T h e n the system (1 .1) - (1 .2) is equivalent to the equation of the form 

Lx = Nx. (1.8) 

Now we int roduce some theorems to be used later. 

T H E O R E M 1 .1 . ([1]; p . 270). Let X, Y be linear spaces. Let L be a linear 
operator, 

L: d o m l C l - ^ y , 

let N be an operator, possibly nonlinear, 

N: domN CX -+Y. 

Then the equation (1.8) is equivalent to 

x = Mx x e A , (1.9) 

where 

A = {xeX: NxelmL} = N-l(lmL)^®, 

M : x i-> Px + KpNx , 

P: X —* k e r L is a projection onto ker L, Xj-p = lm(I — P) and 

KP= ( i | d o m i n X / _ p ) • 

If A = 0 , then the problems (1.8) and (1.9) have no solution. 

T H E O R E M 1.2. ([1]; p . 271). Suppose that: X is a Banach space, 

d i m ( k e r L ) is finite, the operator M is completely continuous. If O is an open, 

bounded neighbourhood o / O G i , 0 C d o m M , such that 

X G 9 0 , A G (0,1) => Lx ^ XNx 

or (1.10) 

x edtt , A <E (0,1) ==> x ^ \KpNx , 

then the operator M has at least one fixed point in SI. 

T h e theorems 1.1, 1.2 imply tha t the equation (1.8) has at least one solution 

in iQ . 

282 



CONTINUOUS SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS . . . 

2. In this section we shall prove some existence theorems for the continuous 
solutions of the system (1.1)-(1.2) in C^ . First, we shall express the operator 
M. 

Let k = dim(ker L) = n — m (k ^ 0 if m < n). Let ip\;...; cpk be a basis 
of ker L. Let us extend it to obtain a basis of D: 

¥>-;•-•;¥>*;<Pk+i;...\<pn <p>i e C^. 

Letting X(t) = (ipi(t);...; ipn(t)) we get a fundamental matrix for the equation 
(1.5). Since the inequality (1.4) holds for each solution of the system (1.3), there 
exists H > 0 such that 

»up ra<„, ( a i ) 
«E<a,oo) </>(*) 

where || • || is a matrix norm which is compatible with a vector norm [2]. 

Under the hypotheses of section 1 there exists a topological projection 
P: Cxjj —* ker L C D. Then it is possible to express the space C-/, as a topolog
ical direct sum 

Cj, = kerL® (CV,)/_P , 

where / : C^ —> C-/, is the identity mapping, kerL = ImP = (C^)p and 
(C*)I-P = kevP. 

If we denote by J the immersion of Rm into Rn 

J(ri;...;rm) = ( 0 ; . . . ; 0 ; r i ; . . . ; r m ) , r = (r1;...;rm) 6 R m 

and 

T0 = (T(pk+i\...]T<pn), 

then the operator 

KP: ImL->domLn(Q,)/-P, KP = (L\AomL n (CV)/-/J 

is defined by the relation 

KP: (b(t),r) »X(t)JT0-
x (r ~A J X(t)X-l(s)b(s)ds\ j 

t 

+ JX(t)X-\s)b(s)ds (b(t),r) 6 ImX-
a 
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R e m a r k 2.1. ([1]; p. 274) The operator Kp defined in (2.2) depends on 
P, because the choice of the fundamental matrix X(t) is related to the form of 
P. If m = n, the matrix TX(t) is invertible, hence: 

KP(b(t),r)=X(t)(TX(t)) l[r-T[ \ X(t)X~\s)b(s) ds I 1 

+ í X(t)X-\s)b(s)ds. (2.3) 

Let, in addition to the hypotheses of section 1, the following hold: 
there are two functions p(r), q(t) G C((O, co), R) , non-negative integrable on 
(a, oo) such that 

0) 
Ü U CXJ 

/ p(t) át = Г < +cxэ , / q(t) át = A< +cx>, 

(H) mu-^mt^w < P(t)\\u\\+q(t)m 
for each t G (a,oc) and for each u £ Rn . 

R e m a r k 2.2. ([1], p. 275) With respect to (2.2), the operator M is defined 
on the set: 

t 

A=l geC^: f X(t)X-1(s)f(s,g(s)) ds G d o m F j . 

LEMMA 2.2. Under the hypotheses if domT = C^ . then the operator M is 
defined on C^ and is continuous. 

P r o o f . From definitions of the operators L and N, we have: 
if g G C^ , then N# = (/(• ,#(•)),r) G ImL if and only if there exists a 
solution x G dom T of the system 

(a) i(t)-A(t)x(t) = f(t,g(t)) 

(b) Tx = r. ( ' ' 

Let g € Cy,, we shall prove that there exists x(t) satisfying (2.4). Let x(t) be 
a solution of (2.4)(a), 

x(t)=y(t)+ j X(t)X'1(s)f(s,g(s))ds a < t < +00 , 
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where y(t) is a solution of (1.3) such that y(a) = x(a). 
Since y G dom T, x G dom T if and only if 

t 

f X(t)X-l(s)f(s,g(s)) ds G domT = Q,. (2.5) 

a 

Using (i), (ii) we obtain: 

t t 

^JX(t)X-\s)f(s,g(s))ds < \\X(t)\\J\\X-\s)f(s,g(s))\\ds 
a a 

< \\X(t)\\ ( JP(s)^^ ds + J q(s) ds\ , (2.6) 

l 

SUP 77̂ 11 fx(t)X(s)-1f(s,g(s))ds\\ (2.7) 
te(a,oo) w(t)\\J II 

a 

S,eS,-™(/^W^ + / ' W d ^ " ( r | l * + A ) ^ 
x a a / 

The last inequality implies (2.5). Let 

T( fx(t)X-\s)f(s,g(s))ds) =r0 , 

then it is always possible to choose y G D such that Ty = r — To and so Tx = r . 
Therefore for each g G C-/,, Ng G Im L, .A = dom M = C^,. 

Now we shall prove the continuity of M = P + KpN . Since P is a continuous 
projection, it is sufficient to prove the continuity of KpN. Let {XJ}JL1 be a 
sequence of functions from C^ such that it is converging to x in C-/, . Let 
us prove that {KpNxj}(?Ll converges to KpNx in C^. According to (2.2) it 
suffices to show that 

t 

X(t)Jx-\s)[f{s,Xj(s))-f(s,x(s))]ds j€N (2.8) 
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converges to 0 in C^. Since the function / is continuous on 
(a, oo) X W1, the sequence 

pointwise 

X-\t)[f(t,Xj(t))-f(t,x(t)})} >0 as j - > o o , (2.9) 

X(t) is bounded in C^ and there holds: 

l l^-1(*)[/(*,^>(*))-/(*^(*))] | | < ||^-1(<)/(<,ar>(*))|j-h||J^-1(^)/(*^(*))H 

<p(t)(2\\x\\xl} + e)+2q(t) for each j > j e . (2.10) 

Hence the sequence (2.8) converges pointwise to 0 by the Lebesgue dominated 
convergence theorem. 

Now let us prove the convergence of (2.8) in C-/,. We shall use the following 
assertion, [4]: 

Let the following conditions hold: 

(a) the sequence {fn(t)}neN converges pointwise to 0 on (a, oo) as 
n —> oo , 

(b) inhere exists lim fn(t) = fn for each n £ N, 
t—•oo 

(c) lim /„ = 0, 
n—• oo 

(d) {/n(0}nGN w equi continuous on each compact interval of 
(a,co), 

.(e) Ve > 0 3K(e) > 0 such that for \/t > K(e) Vn G N ; 

l l / n ( * ) - / n | | < e , 

then {/n(0} uniformly converges to 0 on (a,oo). 

Since sup ' ^'' < H, it is sufficient to verify (b), (c), (d), (e) for 
te(a, oo) Vv) 

Let j be an arbitrary but fixed natural number, by (2.10) the integral 

oo 

JX-1(s)[f(s,xj(s)) - f(s,x(s))]ds (2.11) 

a 
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is absolutely convergent, therefore the condition (b) is satisfied. 
Condition (c) follows from (2.9), (2.10) by the Lebesgue dominated conver

gence theorem. 
To prove (d) let t\, t2 € (a, 00); t\ < £2 - then it holds: 

jX-\s)[f(s,Xj(s)) - f{s,x(s))]dsj 

<2 ti <2 

Ip{s) (rtffi+Jii(f) ds+12q(s) ds * 2j(Qp{s)+q{s)) ds 

t 

< 

since {xJ(t)}^?=1 converges in dj,, it is uniformly bounded on (a, 00), i. e. 

3a > 0 such that: 

Vt€(a,oo) V j€N: ^ # - < a . 

Now let us verify (e): 

00 00 

UX~1(s)[f(s,xj(s)) - f(s,x(s))} d J < 2 y"(ap(5) + q(s)) ds . 
t t 

By the preceding assertion (2.8) converges in C^ . 

LEMMA 2.3. Under the preceding hypotheses, the operator 

M: dom M = C^ —> C^ 

transforms bounded sets into sets which are bounded in C^ and equicontinuous 
on each compact interval of (a, 00). 

P r o o f . Since P is a linear continuous operator and dim(ImP) < +00 

(hence P is compact), it is sufficient to prove the statement for the operator 

KPN. 

Let ft be a bounded set in C^ , i. e. there exists ft > 0 such that: 

if a; e f t , then \\x\\j, < fi. (2.12) 
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Let r G (a;oo) be an arbitrary but fixed number. Then we have: 

\\KpNx(r)\\ < X(т)JT^ (r-тj X(t)X~x (s)f(s, x(s)) ds 

a 

т 

Ąx(т) Jx-Ҷs)f(s,x(s))ds 

(2.13) 

^llx^miJTo-1!! r + Tjx(t)X-1(s)f(s,x(s))ds 
a 

T 

+ \\X(T)\\J\\X-\s)f(s,x(s))\\ds. 

On the basis of the last result we get: 

II r- isi ll \\KPNX(T)\\ ApNa:!^ = sup — 
r€(a,oo) W(T) 

t 

< s u p ^^\\JT0-^\(\\r\\ + \\T\\\\ íX(t)X-\s)f(s,x(s))ds 

rG(a,co) W\T) \ \\J 

T 

J \\X-\s)f(s,x(s))\\ds rЄ<a,oo) Ф(T) 

(2.14) 

<H\\JT~'\\ [||r|| + \\T\\H(T\\x\U + A)] + H(T\\x\U + A) 

<H\\ JTi11| [||r|| + \\T\\H(Tfx + A)} + H(T^ + A) = v 

for each x E fi. Therefore M(£l) is bounded in C$ . It remains to prove the 
equicontinuity of M(Cl) in C^ . 

Let <i, <2 G (a, oo) ; t\ < t2 . Putting 

£(*,£) = X~1(s)f(s,x(s))ds, a < r < + o o , 

a 

7 = JTo-Hr-TA-CO^*,-:)), 
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using (1.6), (2.6), (2.7), (2.13), (2.14) we obtain: 

\KPNx(t2) KPNx(ti)\ 

Ф(h) Ф(U) 

* < « V + 4^*.,.)-íMv-3!!k.1..-)| 

< 

< 

Ф(h) Ф(tг) 

X(t2) X(tг) 

Ф(tг) Ф(П) 

0(<i) *l>(h) 

\X(U) (\\V\\ + \\S(t2,x)\\) + | | | ^ i | | • jj X~\s)f(s,x(s)) ds 

Ф(h) Ф(U) 

t2 

< 
Ф(t2) Ф(U 

< 

*(**) X(*i)\\ r | | J T - . | | (\\r\\ + jTJx(t)X-i(s)f(S,x(S))ds 
a 

ť2 

+ yX~l(s)f(s,x(s)) ds j + l l ^ l l J \\X'\s)f(s,x(s)) || As 
a t\ 

x(t2) x(t^j |((JT_1(( [||r(| + mH{nxU + A)] + {TMi> + A ) | 
Í2 <2 

+ H(\\xUjp(t)dt + Jq(t)dt) 
í i «i 

x(t2) ^ 0 | | | | | J T ( r l | | [ | | r | | + | | T | | j ř í ( r A t + A ) ] + ( r / x + A ) | 

Í2 í 2 N 

+ J í U ip(t)dt+ íq(t)dt 

Ф(h) Ф(U) 

T h e preceding inequality finishes the proof. 

Firs t , we are going to s ta te some existence theorems for ( 1 . 1 ) - ( 1 . 2 ) in a 

special case. Let 

C^l = ^xeCi>: ^ m ^ = /x | | / x | | < + o o } , 

CVJ C Cxi, - We s n a - - u s e the following lemma: 

L E M M A 2.4 . Suppose that, for the system (1 .1)-(1 .2) the following hypotheses 

hold: 

(2.15) A(t) is a real valued nxn matrix, defined and continuous on (a, o o ) , 

289 



MARIA KECKEMETYOVA 

X(t) is a fundamental matrix of (1.3) and H > 0 such that: 

te(a,oo) W) 

(2.16) lim — ^ = IV, i.e. D C C^,/-, 
<-+oo ^( f) 

(2.17) / E C({a,oo) x R n , E n ) such that 

m\\X-\t)f(^)\\<p(t)\\u\\-^q(t) 

for each t G ( a , o o ) , u G R n , where p(t), q(t) G C ( ( a , o o ) , R ) are 

non-negative, integrable functions such that: 

O O OC 

íp(t)dt = Г< +oo; / T < + c o ; / </(*) dt = A < + o o , 

a 

(2.18) T w a bounded linear operator, T: d o m T = C^j —> R m ana7 2he 

matrix TX(t) has rank m. 

Then the operator M is defined on C^ . its range is contained in t7</,,/ and it is 

completely continuous. 

P r o o f . From the proof of Lemma 2.1 we have: 

x(t)x~l(s)f(s,x(s)) ds e cv Vx e Q, 
/ 

and from (2.16) and (2.17) this integral is absolutely convergent on 

(a, o o ) , it means t h a t 

t 

J X(t)X~\s)f(s,x(s))ds G C^i = d o m T ; A = domM = Cv . 

a 

Since I m P = k e r L C D C C-/,,/, I m M C C-/,,/. Project ion P is completely 

continuous, from L e m m a 2.2 the continuity of M follows, therefore it suffices to 

prove t h a t t h e operator KpN transforms bounded sets into relatively compact 

sets. Recall t h a t Q C C^j is relatively compact if and only if it is: 

(1) b o u n d e d 

(2) equicontinuous 

(3) uniformly convergent, in the following sense: 

Ve > 0 3K > 0 such t h a t \/t > K Vg G ft: Ш _; < є. 
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The equicontinuity and the boundedness of KpN(£l) in C^ have been al
ready proved in Lemma 2.3. Now let us prove the uniform convergence. 

Let ft C domM be bounded, i.e., if x £ ft then ||x||^ < //. 

(2.13), (2.14), (2.16) imply: 

KPNx(t) KpNx(t) 

ф(t) <-oo ф(t) 

< 
X(t) 
m~'° JT-ҶГ 

t 

Tjx(t)X-\s)f(s,x(s))ds 

t 

- lim I H ^ o " 1 ( r -Tjx(t)X~\s)f(s,x(s)) ds) 

a 

t t 

J X-\s)f(s, x(s)) ds - hm | ^ J X-' (s)f(s, x(s)) ds Ш 
Ф(t) 

< 
X(t) 
ф(t) 

-w|{||JT0-Ч|[||r|| + Я||Г||(/xГ + Л)]} 

+ 
X(t) 
ф(t) 

l OO 

f X~1(s)f(s,x(s)) ds-W f X-\s)f(s,x(s)) ds 

But there holds: 

X(t) 

< 

< 

ф(t) 
( 

X(t) 

t OO 

f X-\s)f(s,x(s))ds-W í X-\s)f(s,x(s))ds 

ф(t) 

X(t) 

w 
OO 

\J\\X-\s)f(s, x(s))\\ds + \Ш\ 
I m I 

OO 

J\\X-l(s)f(s,x(s))\\ds 

ф(t) 

OO OO 

-WUTfi + A)+ HU fp(s)ds+ f q(s)ds), (2.19) 
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hence 

KpNxji) _ KPNx(t) | 
ф(t) ť-.oo ф(t) 

\X(t) 
< 

ф(t) -w {\\JT0-i\\[Wr\\+H\\T\\(ЏT + A)]+Гц + A} 

O O CX) 

+ н(џ íp(s)ds+ í q(s)ds), 

from which the validity of (3) follows. M : domM = C-/, —> C-/,,/ is completely 
continuous. 

THEOREM 2 . 1 . If the system (1.1) -(1.2) satisfies conditions (2.15), (2.16), 
(2.17), (2.18) and 

H2||JT0-
1||.||T||rexp(Hr)<l, 

then the operator M has at least one fixed point in C^j . 

(2.20) 

P r o o f . The complete continuity of the operator M: C^j —> C^,/ follows 
from Lemma 2.4. According to Theorem 1.2 it is sufficient to show that there 
exists an open, bounded neighbourhood $7 C C^,/ of 0 such that 

x^XKpNx V x e S f t , AG (0,1). (2.21) 

Let fi = {x G Ctpj: ||x||^, < g) , D will be specified later. Let x\ = XKpNx\ 
for any A G (0,1), then for each t G (a, too) we have: 

IIMOII < jIMOII = ll-->AMOII 

< ll*(OII • ll-r-Tl^MI + ^T J X(t)X-\s)f(s,xx(s)) ds ) 
a 

t 

+ jjx(t)X-\s)f(s,xx(s))ds 
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From (2 .6) , (2 .7) , (2.14) there follows: 

||sA(*)|| \\KPNxx(t)\\ 

-^m'11 JTo~lW[\H + l|T||if ( r i M , + A)] 

, ii-y(on(/nr.JM^)iir1,. / , . , \ +iw{Jp{s)~Hsrds+Jqis)ds 

x a a / 

^[IIJT^IKIHI + IITH/J^+A] 
t 

+ tf 2|| JT"11| • ||T||r • Ĥ IU + H Jp(s)Ji^ii ds 
a 

and applying Gronwall's lemma 

- - ^ - - < {.ff|| JTo"11| [||r|| + ||T||tf (ril^Hv, + A)] + +HA} exp(HT), 

IIXAIU < H'WJT^W • \\T\\T- \\xx\\«,exP(HT) 

+ 7J[||JT0-1||(||r|| + \\T\\HA) + A] exp(Jjr), 

[1 - ^'H^To-1!! • ||T||rexp(flT)] ||xx|U 

< H[\\ Jr0->||(||r|| + ||T||.ff A) + A] exp(HT). 

By (2.20) [1-ff21| JT0
-11| •HTHrexp(itr)] > 0. If we choose Q sufficiently large, 

IItll^p-'lKllHI + \\T\\HA) + A] exp(gr) 
9 [l-H-HJTo-'IIIITIirexp^r)] ' K' ' 

then (2.21) is satisfied and from Theorem 1.2 there exists at least one fixed point 
x of the operator M in Q, i.e. x = Mx and \\x\\^, < g. 

THEOREM 2.2. If the conditions (2.15), (2.16), (2.17), (2.18) are valid and 
if 

H21| JT~X ||||T||r + HT < 1, (2.23) 
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then the operator M has at least one fixed point in C^j . 

P r o o f . Similarly as in the proof of Theorem 2.1 , let 

Q, = {x G Ci/,,/ : ||:r||-/, < g} , 

let x\ = XKpNx\ for any A G ( 0 , 1 ) , then using (2.14) we obta in: 

I M * = \\XKpNx\U < \\KpNxxh 

< HUJT-* || [||r|| + tf||T||(r||zA||„ + A)] + H(T\\x\U + A), 

[1 - (H*\\JT0-i\\ • \\T\\r + HT)] • \\x\U < ^[HJT^IKIHI +H\\T\\A) + A] 
and by (2.23): 

II[ii<Ivii(H+IIimiA) + A] 
FAIIV < 

[l-^-HJTo-'llliriir + OT)] ' 
If we choose g sufficiently large, then (2.21) is satisfied and the theorem is 

proved . 

We can now consider a more general case: the existence of solutions for the 
system ( 1 . 1 ) - ( 1 . 2 ) in C-/, (omitt ing the hypothesis (2 .16)) . Let us suppose tha t 
d o m T = C^ and tha t tp(t) > k on (a; oo) with a constant k > 0 . If the function 
(1.5) does not fulfil this hypothesis, then we consider ip\(t) = •'max (ip(t),k), 

m te(a;oo) 
k is some real number and we again write ip(t) instead of ip\(t). 

By L e m m a 2.2 M maps C^ into C^. 

T h e existence of a fixed point for the operator M shall be proved using 
Theorem 2.1 , or Theorem 2.2 and a diagonal process . 

Let {ai}i£jy be an increasing sequence of real numbers such tha t 
a\ = a, lim ai = o o . Let 7, = (a,at) and 

i—i•oo 

C^(It,R
n) = ig(t) e C(It,R

n): sup M ^ < °°) ' 

(C-7,(/--,En) is isomorphic to C(Ii,Rn)). Let g(t) G C^Ii,^1), g(t) is the 

following extension of g(t): 

git) = / 9{t) f ° r t e II 

\ g(ai) for t G (ai,oo). 

Let us denote by Ei the set of all such g(t). 

Ei is a Banach space with respect to the norm 

<6(a,oo) V>\t) 

moreover Ei is isomorphic to C^(Ii,Rn). The following l emma holds: 
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LEMMA 2.5. Let the system (1.1)-(1.2) satisfy the conditions (2.15), (2.17) 
and 

(2.24) T is a bounded, linear operator from domT = C^ onto Rm and the 

matrix TX(t) has rank m. 

//, moreover, the condition (2.20) is satisfied, then the operator 

Mi: dom Mi C E{ -> E{ 

defined by 

Mn g(t)-+x(t), 

where x(t) = (Mg)(t), t G / , g G £-/,(/,•, R n ) , x G C^a; oo) ;R n ) , has at least 
one fixed point in Ei. 

P r o o f . The complete continuity of the operator Mi can be shown in a 
similar way as it was done for M in Lemma 2.4. If we consider the bounded 
neighbourhood fij C Ei of 0, A, = -Eiflft, then from Theorem 2.1. there exists 
at least one fixed point of the operator Mi in Cti. 

We can show that a solution of the system (1.1)-(1.2) exists in C^ . 

THEOREM 2.3 . If the conditions (2.15), (2.17), (2.20), (2.24) are satisfied, 
then the system (1.1)-(1.2) has at least one solution in C^ . 

P r o o f . Using Lemma 2.5 we obtain a sequence {.z,}ie/v, Xi G Ei such 
that x~i = MiXi. From the definition of Mi it follows: 

Xi(t) = (MiXi)(t) = Mxi(t) t e l i . (2.25) 

The sequence {x^}j^^ is uniformly bounded and locally equicontinuous in 
C^(I\,Rn). The uniformly boundedness follows from the proof of Theorem 2.1 
and local equicontinuity in the same way as in Lemma 2.3. Hence, according to 
the Ascoli-Arzela theorem, there exists a subsequence {a:J(0}«GN that converges 
uniformly to zx(t) G C,/,(.Ii,Rn), i.e. 

lim 
i—>oo 

x\(t) Zl(t) 
ф(t) ф(t) 

= 0 uniformly in I\ 

Analogously, there exists a subsequence {^?(0}*€N of {ZJ (£)} ; 6 N that converges 
to z2(t) in Crp(I2,R

n) such that z2(t) = zx(t) \/t G h • We can repeat this 
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reasoning for each i G N . In this way we obtain a family of subsequences of 
{^i}iGN-

Let {#-(r)}iEN be the subsequence of {#i(£)}i€N obtained by the diagonal 

f-?•(*) 1 process. Since the sequence < ' , > converges uniformly on each compact 
I 1p(t) > i6N 

interval of (a,oo), there exists z(t) G C( (a, oo),Rn) such that: 

13(0 *(0 lim 
i—>oo 

= 0 (2.26) 
W) iKO1 

uniformly on each compact interval of (a, oo). 
Moreover, z(t) G C^((a, oo),Rn) because {-cj(£)}ieN -s uniformly bounded , 
H îll < Q Vi G N where g satisfies (2.22). It remains to prove that z(t) is a 
solution of our problem. Let 

y(t) = Mz(t) = Pz(t) + KPNz(t). 

For fixed c G (a, oo), for each t G (a,c) and for i sufficiently large from (2.14), 
(2.26) we obtain: 

3(0 У(0 
ф(t) ф(t) 

Mx\(t) y(t) 

<\\P\\-

<\\P\\-

V>(0 <K0 
x\(t) z(t) 

x\(t) z(t) 

+ 
KPNx\(t) KPNz(t) 

+ íř(iř||JT0-
1||.||T|| + l). 

oo 

• J\\X-\s)[f(s,x\(s)) - f(s,z(s))} || cU. 
a 

From (2.26) and from the proof of Lemma 2.2 we can infer: 

13(0 y(0 lim 
i—>oo 

= 0 tЄ(a,c). 
v(o m I 

Comparing (2.26) and (2.27) we can conclude 

y(t) = z(t) = Mz(t) t G (a,c). 

Since c is arbitrary, 
z(t) = Mz(t) t G (a,oo). 

The theorem is proved. 

We can state a theorem similar to Theorem 2.3. 

(2.27) 
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THEOREM 2.4. If the conditions (2.15), (2.17), (2.23) and (2.24) are satis-
fiedy then the system (1.1)-(1.2) has at least one solution in C-/,. 

The proof is similar to the proof of the preceding theorem. 
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