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ON THE SEQUENTIAL ORDER 

ROMAN FRIC*) — JANOS GERLITS**) 

ABSTRACT. We show that the sequential order in some distinguished conver
gence groups and convergence rings is u>\ . 

A topological space is said to be sequential if each of its sequentially closed 
subsets is closed. In fact, every sequential space is the topological modification 
of a sequential convergence space, i.e., of a set X equipped with a convergence 
of sequences and the associated sequential closure, operator cl assigning each 
subset A of X the set cl A of all limits of all convergent sequences ranging in 
A. In order to guarantee the usual properties of a closure it suffices to assume 
that each constant sequence (x) converges to x and if a sequence converges to 
some point, then each of its subsequences converges to this point as well. For 
every ordinal number a and for every subset A define a — c\A as follows: 

0 - c l _ 4 = A, 
a - c l A = c l ( / ? - c l A ) if a = /J + l , 
a — cl A = | J ft — cl A if a is a limit ordinal. 

P<a 
Then each a — cl is a closure operator for X and since for each subset A of X 
we have cl (uo\ — cl A) = UJ\ — cl A, UJ\ — cl is idempotent and hence topological. 
The least ordinal number a ( a _ UJ\ ) such that a — cl A is sequentially closed 
for all subsets A of X is said to be the sequential order of X. 

The sequential order in the realm of sequential convergence spaces has been 
investigated b y J . N o v a k in [18], where an example of a countable space (with 
unique limits) having the sequential order UJ\ can be found (cf. Example Ls )• 
The literature on the sequential order in the realm of topological spaces is much 
more extensive and the sequential order within the theory of ordinal invariants 
has been thoroughly investigated in [13]. An often cited example by A . V . 
A r h a n g e l ' s k i l and S . P . F r a n k l i n of a countable zero-dimensional 
Hausdorff homogeneous space, the sequential order of which is u>\ , has been 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54A20, 54H99. 
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given in [1]. G . H . G r e c o in [12] proved that the space known as the ratio
nal plane Q2 with the cross topology has (besides other nice properties) the 
sequential order UJ\ , too. 

The aim of the present paper is to prove that each of the sets Q, Q/Z , and K 
can be equipped with a distinguished sequential convergence with unique limits 
so that it is compatible with the group (ring) structure and the sequential order 
of the resulting space is uj\ . In particular, the rational torus Q/Z becomes a 
countable sequentially compact convergence group with unique limits and the 
sequential order uj\ . 

The proof by G . H . G r e c o and our proof are via transfinite induction 
and, as we point out, th y follow tl e same schem b sed on the fact tl at for a 
certain clas of diago 1 equenc s eith r all subsequences converge tc tl an e 
point or no sub equen e com erg s at all. Thi in fact provide a contiol ( r th 
clo ure of countable unions of cert in inductiv ly defined et 

1. By a convergence group we under tand a group equipp d with a FL USH-co -
vergence of sequences (beside the axioms on con tant sequences and sub 
quences we as ume unique limit , the Urysohn axiom and the sequential conti 
nuity of the algebraic operations). We say that a convergence group is coarse if 
the underlying group admits no strictly co rser (i.e. larger) FLUSH convergence. 
Con ergence rings and coarse convergence r'ngs are defined analogously. Usin 
the Zorn-Kuratowski lemma, it can be shown that each group (ring) ccirvtigenet 
can be enlarged to a coarse one. For further information on coar e gioups an 1 
rings the reader is referred to [10], [5] and [6]. 

Denote by Qc the group of rational numbers equipped with a coarse group 
convergence coarser than the usual metric one. It is known (cf. [5]) that Qc is 
complete (every Cauchy sequence conv rges) and, even though the sequential 
limits are unique, no two points of Qc can be separated by disjoint neighbour
hoods (neither by (uj\ — cl)-neighbourhoods nor by cl-neighbourhoods) In fact, 
for each q G Q and for each interval I = {x E Q; a ^ x ^ b} , a, 6 £ Q, a < b, 
there is a one-to-one sequence (xn) in I converging in Qc to q . From the latter 
property it follows that the equential order of Qc is greater than one ([5]). We 
shall prove that the sequential order of Qc is actually UJ\ (mentioned in [5] as 
a remark added in the proof). 

In the proof of the next theorem we shall use the following convention: by an 
interval we mean a set of the form {x G Q; a ^ x ^ b} , a, b E Q, a < b, and 
if q G Q and (In) is a sequence of intervals, then by (In) -> q we mean that 
for each a G Q, a > 0, we have In C {x G Q; q - a _ x _ q + a) for all but 
finitely many n , n = 1,2.. . (observe that if qn G In , then (qn) converges in 
the usual metric to a) . 

THEOREM 1.1. The sequential order of Qc w ^i • 

506 



ON THE SEQUENTIAL ORDER 

P r o o f . Clearly, it suffices to prove that for each ordinal number a, 
a < UJ\ , the following proposition P(o:) holds true: 

P(cv) For each p G Q and for each interval I there is a set A C I such that 
a - clA C I\{p} and (a + 1) - cl A = {p} U a - c l A . 

Let p G Q and let 7 be an interval. We proceed by transfinite induction. 

1. Let a = 0 . As mentioned before (cf. condition (c) on page 476 in [5]), in 
/ there is a one-to-one sequence (xn) converging in Qc to p. It suffices to put 
A = {xn ; n = 1,2,... } \ {p} . Now, let a > 0 and assume that P(/?) holds for 
all ordinal numbers (3 , fl < a . 

2. Let a = /? + 1 . Choose a G J, q ^ p, disjoint intervals Jn C / , p ^ i"n , 
n = 0 ,1 , . . . , such that (Jn) —> q and a one-to-one sequence (pn) in 70 converg
ing in Qc t o p . By the inductive assumption, for each n , n = 1, 2 , . . . , choose a 
set An C Jn such that {3-c\An C In\{Pn} and ( /?+l ) -c l An = {pn}U/?-cl.An . 

oo 

It suffices to put A = {q} U | j An . 
n = l 

3. Let a be a limit ordinal number. Let (an) be an increasing sequence of 
ordinal numbers converging to a. Choose </, (In) and (pn) as in the case of 
a = /3 + 1. By the inductive assumption, for each n , n = 1, 2 , . . . , choose a set 
An C In such that an — c\An C In\{Pn} and (an+l) — c\An = {pn}Uan — c\An. 

oo 

It suffices to put A = {q} U | j An . This completes the proof. 
n = l 

Let Q/Z be the rational torus and let d be the usual metric for Q/Z . Denote 
by (Q/Z) c the rational torus equipped with a coarse group convergence coarser 
than the usual metric one. 

THEOREM 1.2. 

(i) (Q/-^)c w sequentially compact. 
(ii) For each p, q G Q/Z and /or each positive real number e there is in 

Q/Z a sequence (qn) such that (qn) converges in (Q/Z) c to p and 
d(q, Qn) < e, n = 1,2,.. . . 

(iii) No two points of (Q/Z) c can be separated by disjoint neighbourhoods. 
(iv) The sequential order of (Q/Z) c is ui . 

P r o o f . 

(i) Let (pn) be a sequence of points of Q / Z . Then there is a subsequence 
(qn) of (pn) which is Cauchy in the metric d. Since the convergence in 
is coarser than that induced by cl, (qn) is also a Cauchy sequence in 
By Proposition 3.1 in [5], (Q/Z) c is complete. Thus (qn) converges in 

Proposition (ii) can be proved virtually in the same way as condition (c) on 
page 476 in [5]. 
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Proposition (iii) follows immediately from (ii). 

Using (ii), proposition (iv) can be proved exactly in the same way as Theo
rem 1.1. This completes the proof of the theorem. 

Denote by Q r the ring of rational numbers equipped with a coarse ring 
convergence, coarser than the usual metric one. Basic properties of Q r have 
been described in [6]. E.g., no Cauchy sequence of rational numbers converging 
in the real line to an algebraic number does converge in Q r and hence the 
convergence in Q r fails to be a coarse group convergence for Q. Further, Qr 

does not have a ring completion. Even though the convergence in Q r is finer 
than that in Qc , it follows from the proof of Proposition 6 in [6] that for each 
p, q G Q and for each positive real number e there is a sequence (qn) in Q such 
that (qn) converges in Q r to p and \q — qn\ < £, n = 1,2, . . . . Consequently, 
the proof of Theorem 1.1 yields the following result: 

COROLLARY 1.3. The sequential order of Qr is uj\ . 

R e m a r k 1.4. The nontrivial part (a > 0) of the proof of Theorem 1.1 
can be summarized as follows. 

Let X be a set equipped with a sequential convergence. Assume that for each 
point p 6 X , each "admissible" set I C X and each nondecreasing sequence 
(an) of isolated ordinal numbers an < uj\ there are: 

(ai) A one-to-one sequence (pn) of points of X , pn ^ p, n = 1, 2, . . . ; 
(3,2) A sequence (In) of disjoint "admissible" sets In C I, p £ In , 

n= 1,2,. . . ; 
(a3) A sequence (An) of sets An C In , n = 1,2,. . . ; 
(a.i) A point q E X , q ^ p; 

such that 

(bi) The sequence (pn) converges to p; 
(b2) « n - Cl An C In \ {Pn}, («n + 1) ~ cl An = {pn} U an - d An , 

n = 1,2,. . . ; 
(bs) Each sequence (qn) of points qn G In , n = 1, 2 , . . . , converges in X 

to q. 
oo 

Then the sequential order of X is u\ . Indeed, the set A = {q}U \J An satisfies 
n=\ 

condition P(a ) both for isolated a (with o.„ + l = a , n = l , 2 , . . . ) and limit 
a (with a = l i m a n ) . 

It is easy to verify that if we leave out condition (a4) and replace condition 
(b3) by 

(b3) No diagon, 1 sequence (qn), qn G In , n = 1,2,.. . , has a convergent 
subsequence; 
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oo 

then the sequential order of X is LO\ , too. Now, the set A = (J An does the 
n = l 

trick. 
This modified scheme generalizes the proof of Theorem in [12], asserting that 

the sequential order of Q2 equipped with the cross topology is u\ . The role of 
the "admissible" sets In is played there by the discs On "tangent at xn ( = pn ) 
to the line through x ( = p) and points xn ". We shall use the latter scheme in 
the next section to prove that both the group categorical completion of Q and 
the ring categorical completion of Q have the sequential order LO\ . 

2. There are striking differences between the completion theories of topological 
groups (rings) and convergence groups (rings). Every abelian convergence group 
has a completion and it can have several nonhomeomorphic ones ([19], [7]), 
whereas there are convergence groups having no two-sided completion ([9]). As 
shown in [14] (see also [15]), if a convergence group has a completion, then it has 
the categorical one, yielding the epireflection into the subcategory of complete 
groups. The categorical completion, also called the Novak completion, has been 
explicitly constructed for abelian sequential convergence groups in [19] (see also 
[8]). The necessary and sufficient condition for the Novak completion of a Frechet 
abelian group to be Frechet has been given in [16] and a nontrivial example of a 
Frechet abelian group the Novak completion of which is Frechet has been given 
in [4]. As shown in [3], a sequential convergence commutative ring need not have 
a completion, but in special cases, e.g. for Q equipped with the usual metric 
convergence, the categorical ring completion has been constructed in [17]. We 
shall prove that both the group categorical completion v Q of Q and the ring 
categorical completion g Q of Q have the sequential order LO\ . 

The Novak completion ivQ of Q can be briefly described as follows (cf. 
[19]). The underlying group of i/Q is the group R of real numbers and the 
convergence in v Q is the Urysohn modification of the convergence in which a 
sequence (zn) converges to z if and only if there is a Cauchy sequence (qn) of 
rational numbers such that zn = qn — q + z, where q is the real number to which 
(qn) converges in the real line. Thus, the sequence (n/n) does not converge in 
i/Q to 0 (since n/n — 7r/m is not a rational number for n ^ m) and, in fact, 
the following proposition holds ([19]). 

PROPOSITION 2.1. Let (qn) be a sequence of real numbers such that Zn—Zm is 
not a rational number whenever n ^ m. Then no subsequence of (zn) converges 
in i /Q. 

THEOREM 2.2. The sequential order of uQ is LV\ . 

P r o o f . Let H be a set of irrational numbers such that {1} U H is a Hamel 
basis of R over Q . Given an infinite countable set B C. H and r G R , define 
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k 

I(B, r) to be the set of all real numbers of the form r + ^ (bi — qt), where k is 
i = l 

a natural number (k ^ 0) , qi G Q, bi € B, bi ^ bj for i ^ j , i,j = l,...,k] 
each set I(B, r) will be called admissible. 

Clearly, it suffices to prove that for each ordinal number a, a < <J0\ , the 
following proposition R(a) holds true: 

R(a) For each p G R and for each admissible set I(B, p) there is a set 
A C I(B, p) such that a - cl A C I (B , p) \ {p} and (a + 1) - cl_4 = 
{p} U a - cl A. 

Let p G R and let I(B, p) be an admissible set. We proceed by transfinite 
induction. 

1. Let a = 0 . Choose 6 G B and let (an) be a one-to-one sequence of rational 
numbers converging in t/Q to b. It suffices to put A = {p -\- (b — qn); n = 
1, 2, . . . } . Now, let a > 0 and assume that R(/5) holds for all ordinal numbers 
/?, / 3 < a . 

2. Let a > 0. Assume c\ = /? + 1. There is a finite sub et Bp C H such that 
p is a Q-linear combination of elements of { l } U B p . Choose b G B\Bp . Let 
(an) be a one-to-one sequence of rational numbers such that \b — qn\ < l/100n , 
n = 1 ,2 , . . . . Put pn = p + 1/n + b - qn , n = 1 ,2 , . . . . Let B \ ({&} U Bp) be 
the union of disjoint infinite sets Bn , n = 1, 2 , . . . . Consider the admissible sets 
I(Bn, pn). Then I(Bn, pn) H I(Bm, pm) = 0 whenever n ^ ra, I(Bn, pn) C 
I(B, p) \ {p} and pn (£ I(Bn, pn) for each n , n = 1,2,. . . , and no diagonal 
sequence (xn), xn G I(Bn,pn), n = 1,2,... , has a convergent subsequence. By 
the inductive assumption, for each n , n = 1, 2 , . . . , choose a set A'n C I(Bn, pn) 
such that /? - c\A'n C I(Bn, pn) \ {pn} = I(Bn, pn) and (/? + 1) - cl A'n = 
{pn}U/3-clA' n . It suffices to put An = A n H ( p + l / n - l / 1 0 n , p + l / n + l / 1 0 n ) 

oo 

and A = | J An (cf. Remark 1.4). 
n = l 

For a limit ordinal number a the assertion R(a) can be proved analogously. 
We omit the details. This completes the proof. 

The categorical ring completion DQ of Q equipped with the usual metric 
convergence has R as the underlying ring and the convergence in QQ is the 
Urysohn modification of the convergence in which a sequence (zn) converges to 
z if and only if there are a natural number k, real numbers a; and Cauchy 
sequences (qin) of rational numbers, i = \,...,k, such that for each n, n = 

k k 

1,2,. . . , we have zn = Y^ Vin^i and z = ^2 qi<ii, where qi is the limit of (qin) 
i = l i = l 

in the real line. Observe that a convergent sequence (zn) in OQ is in some finite 
dimensional subspace of the vector space R over the scalar field Q . Clearly, if 
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a sequence converges to a point in v Q, then it converges to the same point in 
g Q as well. 

THEOREM 2.3. The sequential order of Q is u\ . 

P r o o f . The proof is analogous to that of Theorem 2.2. Indeed, the sequence 
converges to a point in g Q whenever it does in v Q and no subsequence of any 
diagonal sequence (xn), xn G I(Bn, p n ) , n = 1,2,. . . , does converge in gQ. 
Thus, for all ordinal numbers a, a < LV\ , the assertion R(«) holds in gQ, too. 

R e m a r k 2.4. It is known that if X is a group (ring, vector space, e t c ) 
equipped with a compatible sequential convergence, then the first countable 
filter modification functor 7 yields a filter convergence compatible with the 
algebraic operations of X (cf. [2]). The resulting filter convergence space has 
the same closure operator and hence all propositions concerning the sequential 
order proved in the present paper remain valid when applying the functor 7 . 
For interesting applications of 7 see [2], [9], [6], [11], [17]. 
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