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(Communicated by Ladislav Misik) 

A B S T R A C T . In this paper quasicontinuous selection theorems for multifunctions 
F: X —• Y with compac t values in special metric spaces are presented. T h e 
method used here enables us to work with an arbitrary topological space X . 

1. Introduction 

The research in selection theory was started by M i c h a e 1 in 1956 (see for 
example [6, 7]) by proving several continuous selection theorems. Then, the prob
lem of the existence of selections of various types (measurable, Caratheodory, 
Darboux, etc.) was studied in many papers. The first paper dealing with the 
problem of existence of quasicontinuous selections for multifunctions was the 
paper o f M a t e j d e s published in 1987 ([5]). The paper gives some conditions 
for the existence of quasicontinuous selections for multifunctions F: X —• Y 
with compact values, where X is a Baire space and Y is a compact metric 
space. Quasicontinuous selection theorems for one-to-finite multifunctions are 
proved in [2]. 

In this paper we prove some quasicontinuous selection theorems for multi-
functions with compact values. Our method is different from that of Matejdes. 
We show, how to find a quasicontinuous selection when the space X is an arbi
trary topological one. Assuming nothing about our space X we must suppose 
more about F than Matejdes did. Our results offer some new contribution for 
the theory of selections in hyperspaces, too. 

2. Preliminaries 

Let X and Y be two sets; let P(Y) denote the set of all nonempty subsets 
of Y. A multifunction from X to Y is a function F from X to P(Y). We 
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write F: X —> Y. A selection for a multifunction F : X —• y is a function 
f:X—*Y such that for each x m X f(x) is an element of F(x). 

In what follows X and y will be topological spaces. A multifunction F 
from X to y is called lower (upper) semicontinuous - briefly Ls.c (u.s.c) 
- if for each open subset G of Y the set F~(G) = {x; F(x) n G ^ 0} 
(F+(G) = {x ; F(x) C G}) is an open subset of X . 

A subset S of X is said to be semiopen if there exists an open set G such 
that G c B C c l G or, which is equivalent, B C c l ( in tB) ([4]). i n t 5 and clB 
denote the interior and the closure of the set B respectively. We will use the 
following properties of semiopen sets ([4]): 

1. The union of any family of semiopen sets is semiopen. 
2. The intersection of an open set and a semiopen one is semiopen. 

We say that a set S is a semineighbourhood of a point x if there exists a 
semiopen set A such that x G A C S holds. 

A function f:X—>Y is said to be quasicontinuous at x G X if for each 
open G CY such that f(x) G G the set f~(G) is a semineighbourhood of x. 
A function / : X —> Y is quasicontinuous at x G X if and only if for any open 
set V such that f(x) G V and any open set U such that x G U, there exists 
a nonempty open set W C U such that f(W) C V. ([1, 4, 10]). 

By [9] a multifunction F: X —» Y is said to be upper quasicontinuous -
briefly u-quasicontinuous or u.q.c (lower quasicontinuous - briefly 1-quasicon-
tinuous or l.q.c) at a point x G X if for any open set V containing F(x) 
(for any point z from F(x) and for any open set V containing z) and any 
neighbourhood U of x , there exists a nonempty open set W C U such that 
F(t)cV ( F ( t ) H T 7 ^ 0 ) for every teW. 

3. Results 

Let (X, p) be a metric space. In what follows we denote d(x, A) = inf {p (x, a); 
a € A} for x G X and A C X . A metric space will be called "b-space" if 
every bounded closed subset of this space is compact. It will be called "convex" 
(analogically to concepts mentioned in [12 p. 5 and 114]) if 

(*) for every a, 6 G X VA G (0,1) 3 c G X such that p(a,c) = X-p(a, b) 
and p(b, c) = (1 — A) • p(a, 6) holds. 

LEMMA 1. Let X be a topological space, (Y, p) a metric space. Let F: X —> Y 
be a l.q.c. multifunction. Then for every r > 0 there exist an open dense sub
set U of X and a function f:U—>Y continuous on U such that Vu G U 
d(f(u),F(u))<r. 
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P r o o f . Let 

Z = {(g, D); D is a nonempty open subset of X and g: D —• Y is 

continuous and such that Vt G D d(g(t), F(t)) < r } . 

The set Z is nonempty. It suffices to take an arbitrary x G X and an y G P"(x) 
and to define a function g on the set G = int F~ (B(y, | ) ) by g(t) = y Vt G O . 
Then ( # , G ) e Z holds. 

Define a partial order on Z as follows: (ft, A) < (g, B) if and only if A C B 
and Va G A h(a) = g(a). Let L be a linearly ordered subset of Z. We will 
show that Z has an upper bound in Z. Let us define an ordered pair (p, P) as 
follows: 

P = \J D and p: P -+Y is a function such that Vx € P p(x) = ^f(x) 
(g,D)GL 

holds for every g such that there exists (g, D) G L and x E D. From definition 
of p it follows: p is continuous and Vx G P d(p(x), -F(x)) < r . Therefore 
(p, P) € Z and we see that (p, P) is an upper bound of L in Z . 

By Zorn's lemma the set Z has at least one maximal element. Let us denote 
one of these maximal elements by (m, M ) . We will show that M is dense 
in X. Suppose, to the contrary, that cl M 7-- X. Then W = X — cl M is a 
nonempty open set. Let us choose an x G W and an y G F(x). We denote 
O = int (F~(B(y, ^)) D W) . O is an interior of a nonempty semiopen set. 
Let us define ft: O -> y ; ft(£) = y Vt e O. Then (ft,0) G Z . Next define 
a pair (v, V) G Z as follows: let V = O U M and i;(.z) = m(x) if x G M , 
v(x) = ft(x) if x G O . Then (v, V) > (m, M) holds and this is a contradiction 
to the maximality of (m, M ) . Therefore M is dense in X and m : X —> y 
satisfies the assertion of our lemma. 

LEMMA 2. Let X be a topological space. Let (Y,p) be a convex metric space 
and a b-space. Let F: X —• Y be an u.q.c. (u.s.c.) multifunction with compact 
values. Let r > 0 . Then a multifunction P: X —• y defined as follows: 

WxeX P(x) = B(F(x),r)={teY; 3y e F(x) p(t,y)<r} 

is u.q.c. (u.s.c), too. 

P r o o f . We will consider the case when F is u .q.c . Let x G X , let W C Y 
be an open set such that P(x) C W. Since P(x) is a compact set, there exists 
t > 0 such that V = B(P(x),t) C W. F is u.q.c , so there exists a semiopen 
set, S such that x G S and Vs G S F(s) C B(F(x), | ) holds. From the 
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convexity of Y it follows that Vs G S P(s) = B(F(s),r) C B(F(x), f + r) 

C B(B(F(x),r),t) = B(P(x),t) CW. P is proved to be u.q.c . 

E x a m p l e 1. We will show that without the convexity of Y Lemma 2 
need not be true. Let X = (0,1), Y = (0,1) U (2,3) be two spaces with the 
natural metric derived from the absolute value. Let F: X —• Y be defined as 
follows: 

F(x) = {x} V x G X . 

Let us define P(x) = B(F(x),2) VX G X. Then P(0) = (0,1) and for every 
x ^ 0 P(x) = (0,1) U (2,2 + x). The multifunction F is u.s.c. but P is not 
u.q.c. in the point 0. 

THEOREM 1. Let X be a topological space. Let (Y,p) be a convex metric space 
and a b-space. Let F: X —>Y be a l.q.c. and u.q.c. multifunction with compact 
values. Then Vr > 0 there exists an f:X—*Y quasicontinuous and such that 
d(f(x),F(x)) <r \/xeX. 

P r o o f . By Lemma 1 there exist an open dense set U C X and a continuous 
function g: U —• Y such that Vx G U d(g(x), F(x)) < | . Let us define 
a multifunction P : X -> Y as follows: Vx G X P(x) = B(F(x),%). By 
Lemma 2 P is u.q.c . Since P has compact values and V u E t / g(u) G P(u) 
holds: By [2] (or by Lemma 2.3 in [3]) there exists a quasicontinuous extension 
/ : X —» Y of g such that / is a selection of P . From the definition of P it 
follows that \/x G X d(f(x), F(x)) < \ < r holds. 

LEMMA 3. ([3]) Let X be a topological space, Y a normal topological space. 
Let F: X —> Y be an u.s.c. multifunction with closed values, H: X —• Y an 
u.q.c. multifunction with closed values. Let Vx G X F(x) D H(x) ^ 0 . Then 
the multifunction P(x) = H(x) fl F(x) is u.q.c. 

P r o o f , (according to [3]): Let x G X. Let V C Y be open and let 
P(x) C V. We have to show that there exists a semiopen set O such that 
x G O and P(0) C V holds. From the normality of Y we obtain that there 
exist two open disjoint sets U\ and U2 in Y such that F(x) — V C Ui and 
H(x) - V C U2 holds. So F(x) C Ui U V and H(x) C U2 U V holds. Since 
P is u.s.c. and H is u.q.c, there exist an open set 0\ and a semiopen set 
O2 such that x G O = 0\ fl 0 2 and for each point z from 0\ (resp. (92) 
F(z) C V U Ui (resp. H(x) C F U U2) takes place. Therefore for each z G O 
P(z) = F(z) H H(z) C y holds. 

LEMMA 4. Le£ X be a topological space. Let (Y, p) be a convex metric space. 
Let F: X —> Y" be a l.s.c. multifunction. Let r > 0 be a rea/ number and 
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g: X —• Y a quasicontinuous function such that Vx G X d(g(x), F(x)) < r 
holds. Then there exist an open dense subset O C X and a continuous function 
f: O -> Y such that Vx G O d(f(x), F(x)) < \ and d(g(x), f(x)) < § . 

P r o o f . We will show that for every open nonempty set U C X there 
exist an open set W C U and a continuous function h: W —• Y such that 
Vx G W d(F(x), h(x)) < \ and d(g(x), F(x)) < § . Let us take an arbitrary 
point u e U. Then there exists a point y G F(u) such that d(y,g(u)) < r . 
Denote v = d(y,g(u)) . From the convexity of Y we obtain that there exists a 
point t in Y such that d(y,t) = f < § and d(t,g(u)) = \ . Let c > 0 be such 
that c + | < | . F is l.s.c. so there exists an open neighbourhood 0(u) of u 
such that Vx G 0(u) F(x) fl B(y, c) ^ 0 holds. From the quasicontinuity of 
g we obtain that there exists a semiopen set 5 such that u G 5 and Vx G 5 
<j(x) G B(g(u), c) . Let us denote TV = int(£/"nO(u)nS) . IV is a nonempty open 
subset of U and Vx G TV d(^(x) , i ) < d(^(x),^(u)) - f r f ^ W ^ ) < § h o l d s -
Analogously d(.F(x),£) < | holds. Now, let us define a function h: W —> F 
such that V w G .W /i(w) = t. 

We omit the rest of the proof. It is analogous to the proof of Lemma 1 - it 
suffices to use Zorn's lemma for an appropriate system Z; the couple (h, W) 
will be one of its elements. 

LEMMA 5. Let X be a topological space. Let (Y,p) be a convex metric space 
and a b-space. Let F: X —• F be a l.s.c. and u.s.c. multifunction with compact 
values. Let r > 0 . Let f': X —• Y be a quasicontinuous function such that 
Vx G X d(f(x), F(x)) < r. Then there exists a quasicontinuous function 
g: X - • Y such that Vx 6 I d(f(x),g(x)) < § and d(g(x), F(x)) < \ 
holds. 

P r o o f . Let us define multifunctions P: X —• Y and H: X —• Y as fol
lows: Vx G X P(x) = B(F(x), §) and H(x) = B(f(x), § ) . By Lemma 2 P 
is u.s.c. and H is u.q.c. ( / being quasicontinuous, so u.q.c) . By Lemma 3 the 
multifunction D: X - • Y defined by D(x) = H(x) n P(x) Vx G X; is u .q.c . 
F and / fulfill the assumptions of Lemma 4. Hence there exist an open dense set 
U C X and a continuous function h: U —*Y such that V u G f / h(u) G D(u) 
holds. The function h is a continuous selection of D on the set U. By [2] the 
multifunction D has an quasicontinuous selection g: X —• Y. From the def
inition of D we obtain:Vx G X d(f(x),g(x)) < ^ and d(g(x), F(x)) < ^ 
holds. 

E x a m p l e 2. Let X = N = { 1 , 2 , . . . } be a topological space with the 
topology T = {A; A C N, N - A is a finite set } U {N, 0 } . Let us define a 
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multifunction F: X —> R as follows: 

F(1) = {1}, F(2) = {2}, F(n) = {1,2} if n > 3 . 

The multifunction F is l.s.c and it is not u.s.c only in the points 1 and 2 . 
All other assumptions of Lemma 5 are satisfied. Let us consider the constant 
function / : X -> R defined by f(n) = 1.5 for every n G N. Then Vn G N 
d(f(n), F(n)) < 0.8 holds but there is no quasicontinuous function g: X —> R 
satisfying d(g(n), F(n)) < 0.4 Vn E N. It is easy.to see, because all quasicon
tinuous functions from (K ,T) to R are constant. 

We are ready to prove our main result now. 

THEOREM 2. Let X be an arbitrary topological space. Let (Y,d) be a com
plete metric space, convex and a b-space. Let Z be a closed subset of Y. Let 
F: X —> Z be a l.s.c. and u.s.c. multifunction with compact values. Then F has 
a quasicontinuous selection. 

P r o o f . F can be considered as a multifunction from X to Y. By The
orem 1 there exists a quasicontinuous function g: X —> Y such that Vx G X 
d(F(x),g(x)) < | holds. Let us denote f\=g- Using Lemma 5 we can construct 
by induction a sequence { / n } ^ ! of quasicontinuous functions fn: X —• Y such 
that f\= g and V n > 2 the following two inequalities hold: 

(a) V i e l d(fn(x), / „ _ ! ( * ) ) < ( f ) \ 

(b) V x e l d(fn(x), F(x)) < ( § ) " . 

Hence the sequence {fn}n°=i ls a fundamental sequence of quasicontinuous func
tions, it converges by Proposition 2.35 of [11] to a quasicontinuous function 
/ : X —> Y. It follows from (b) and from the definition of / that / is a quasi-
continuous selection of our multifunction F . 

E x a m p l e 3. We show that the assumption " F is u.s .c" in the Theorem 2 
cannot be omitted. 

Let X = {a, 6, c } , let (X, T) be a topological space with the topology 
T = {0} U {{a}, {c,a}, {6, a} , X} . Define F : X -> R as follows: 

F(a) = {1 ,2} , F(6) = {1}, F(c) = {2} 

F is a l.s.c. multifunction with compact values and F has no quasicontinuous 
selection. 

It is well known that there is no continuous selection for the hyperspace of 
compact subsets of Rn (see e.g. [8] - also for more about Hausdorff metric). 
However, Theorem 2 gives us the following result: 
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COROLLARY 1. Let n G N. Let Z C Rn be a closed set. Let Z be the hy-
perspace of compact subsets of Z equipped with Hausdorff metric. Then Z ad
mits a quasicontinuous selection, i.e. the "identical" multifunction F: Z —> Z, 
(F(A) = A C Z for every point A G Z) has a quasicontinuous selection. 

A d d e n d u m . The author wishes to thank the referee for his help to make this 
paper more reader-friendly. The referee has brought to our attention the possi
bility of generalization of some results. For example, it is possible to reformulate 
Lemma 1 using open covers to describe the closeness of functions. In such a case 
a Moore space Y or a uniform one could be appropriate. But Lemma 2 shows 
that - using the methods of the paper - the assumption of the convexity of Y 
is necessary to obtain Theorems 1 and 2. 
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