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PRODUCTS OF SIMPLY CONTINUOUS 

AND QUASICONTINUOUS FUNCTIONS 1 

JAN BORSIK 

(Communicated by Ladislav Misik ) 

ABSTRACT. Functions which are products of simply continuous and quasicon-
tinuous functions are characterized here. 

In [5], T. N a t k a n i e c proved that a function h: R —> R is a product of 
quasicontinuous functions if and only if h is cliquish, and each of the sets / i _ 1 (0) , 
/ i_ 1((—oo,0)), / i_ 1((0,oo)) is the union of an open set and a nowhere dense 
set. More precisely, he proved that such function is a product of 8 quasicontin
uous functions. We shall show that 3 quasicontinuous functions are sufficient. 
Moreover, we shall generalize this theorem for functions defined on a T3 second 
countable topological space. 

In what follows, X denotes a topological space. For a subset A of a topologi
cal space denote by CI A and Int A the closure and the interior of A, respectively. 
The letters N, Q and R stand for the set of natural, rational and real numbers, 
respectively. 

We recall that a function / : X —> R is quasicontinuous (cliquish) at a point 
x G X if for each e > 0 and each neighbourhood U of x there is a nonempty 
open set G C U such that \f(y) — f(x)\ < e for each y G G (\f(y) — f(z)\ < e 
for each y, z G G). A function / : X —• R is said to be quasicontinuous (cliquish) 
if it is quasicontinuous (cliquish) at each point x G X (see [6]). 

A function / : X —> R is simply continuous if / _ 1 ( V ) is a simply open set 
in X for each open set V in R. A set A is simply open if it is the union of an 
open set and a nowhere dense set (see [1]). 

By [1], the union and the intersection of two simply open sets is a simply 
open set; the complement of a simply open set is a simply open set. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 54C08. 
K e y w o r d s : quasicontinuity, simply continuity, cliquishness. 
1 Supported by Grant GA-SAV 367. 
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If T C R x is a class of functions defined on I , we denote by P(T) the 
collection of all functions which can be factored into a (finite) product of func
tions from T. Further, denote by Q, S and /C the set of all functions which are 
quasicontinuous, simply continuous and cliquish, respectively. Now, let 

H = {/: X —> R; / i s cliquish and the sets / _ 1 ( (0 ,oo ) ) and 

/_ 1((—oo,0)) are simply open} . 

It is easy to see that Q C S and Q C H. In [7], it is shown that if X is 
a Baire space, then every simply continuous function / : X —> R is cliquish. 
[4; Example 1] shows that the assumption "X is a Baire space" cannot be omit
ted. Thus, if X is a Baire space, then S C H. It is easy to see that P(K) = AC. 

LEMMA 1. For an arbitrary topological space X we have P(H) = H. 

P r o o f . Let f\, f2 G H and / = /1 • f2. Then / is cliquish because 
P(AC) = AC. Further, the sets / f 1 ( ( -00,0)) , f'1 ( ( -00 , 0)) , /1"-1((0,oc)) and 
/2~1((0,oo)) are simply open, and hence /_ 1((—oo,0)) = ( /f1 ((—00,0)) n 
/2"1((0,oc))) U ( / f 1 ( (0 ,oo)) n / 2

_ 1 ( ( -oc ,0 ) ) ) is simply open. Similarly for 
/ ^ ( ( O - o o ) ) . • 

Therefore P(Q) C H, and if X is a Baire space, then also P(S) C H. We 
recall that a 7r-base for X is a family A of open subsets of X such that every 
nonempty open subset of X contains some nonempty A £ A (see [8]). 

LEMMA 2. (see [3; Theorem 1]) Let X be a Baire second countable T3-space 
such that the family of all open connected sets is a n-base for X . Then every 
cliquish function f: X —> R is the sum of two simply continuous functions. 

LEMMA 3. Let X be as in Lemma 2. / / / : X —> R is a positive (negative) 
cliquish function, then f is the product of two simply continuous functions. 

P r o o f . Put g = | / | . Then \ng is cliquish, and, by Lemma 2, there are 
simply continuous functions g\, g2: X —+ R such that In g = gi -{- g2. The 
functions /1 = sign / • exp Gi and f2 = exp g2 are simply continuous and / = 

h-h- • 
THEOREM 1. Let X be a Baire T3 second countable space such that the family 
of all open connected sets is a n-base for X. Then P(S) = H. Further, every 
function from H is the product of two simply continuous functions. 

P r o o f . Let / e H. Put A = / - 1 ( ( 0 , o o ) ) , B = / ^ ( ( - o o , 0)) , C = 
/ _ 1 ( 0 ) . According to Lemma 3, there are simply continuous functions gug2: 
Int A -> R, /i l 5 h2 : Int B -> R such that / | i n t A = 9i'92 and / | I n t B = hx-h2. 
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N o w def ine f u n c t i o n s / i , / 2 : X 

/l(-0 = < 

>R as follows: 

Si( ж ) for x Є Int A , 

hi(x) for x Є Int B , 

m otherwise; 

92(x) for x Є Int A , 

h2(x) for x Є Int B , 

1 otherwise. 

/2W = 

Then / = /1 • / 2 . Let V be an open set in R. Since / f 1 ^ ) Hint A = 
a1~

1(V) is simply open and A, L? and C are simply open, the set /{" (V) = 

(/f1(V)nlntA)u(/f\v)nlnts)u(/f1(F)nlntC)u(/r1(F)n((A\l̂ ^ 
(43 \ Int B) U (C \ Int C))) is simply open. Similarly for f2~

X(V). • 

LEMMA 4. (see [2; Theorem]) Let X be a T 3 second countable space. Then 
t very cliquish f: X —•> R is rfee «su.m O/ 6bree quasicontinuous functions. 

LEMMA 5. Let X be as in Lemma 4. If f: X —> R is a positive (negative) 
cliquish function, then f is the product of three quasicontinuous functions. 

P r o o f . Similar as in Lemma 3. • 

LEMMA 6. (see [9; Lemma 1]) Let X be a separable metrizable space without 
isolated points. If A is a nowhere dense nonempty set in X, and B C X is an 
open set such that C\A C CI B, then there exists a family (Kn^rn)neNrn<n of 
nonempty open sets satisfying the following conditions: 

(1) C l i v n , m CB\C\A (neN, m^n), 
(2) CIK r,8 n CIKij = 0 whenever (r, s) ^ (i,j) (r,ieN, s^r,j^i), 
(3) for each x G C\A, each neighbourhood U of x and an arbitrary m 

there exists an n _• m such that CI Kn^m C U, 
(4) for each x £ X \C\A there exists a neighbourhood U of x such that 

the set {(n, m) : C/fl C\Kn^m ^ 0} has at most one element. 

LEMMA 7. Let G be an open subset of X and let f: X —> R be a cliquish 
function. Then the restrictions $\Q and f\Q\Q are cliquish functions. 

We omit the easy proof. Remark that the restriction of a cliquish function 
to an arbitrary closed set need not be cliquish. (Let C be the Cantor set and 
C = AUB, where A and B are dense disjoint in C. Then / : R —> R, f(x) = 1 
for x E A and f(x) = 0 otherwise, is cliquish, but f\(j is not cliquish.) The 
following lemma is obvious. 

LEMMA 8. Let G be an open subset of X, let f: X —> R be a function, and 
let x G C1C (x G G). If / I Q I C ( / | G ) ^S auas^con^nuous at x> then f is 
quasicontinuous at x. 
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THEOREM 2. Let X be a T3 second countable (=separable metrizable) space. 
Then P(Q) = 7i. More precisely, every function from 7i is the product of three 
quasicontinuous functions. 

P r o o f . Let f £ H. Denote by D the set of all isolated points of X. Put 
B = X\ C\D. Now denote by 

Gi = B Dint f-1 ((0,oo)) , 

G2 = B n i n t f-1 ( ( -oo,0)) , 

G3 = £ n l n t / - 1 ( 0 ) . 

Then the set 

A = B \ (Gi U G2 U G3) = B n ((CIGi \ Gx) U (C1G2 \ G2) U (C1G3 \ G3)) 

is nowhere dense and CI A C CI B. Hence, by Lemma 6, there is a family 
( I f n , m ) n e N j m < n of nonempty open sets satisfying (1), (2), (3) and (4). Put 

00 n 

n=l ra=l 

Let J G { 1 , 2 } . 
Let x G Gj \C. Then x £ C\A, and hence, by (4), there is a neighbourhood 
U of x such that {(n, ra) : U n CIi\Tn,m 7-- 0} has at most one element. Thus 
there is (r, s), r _ s such that U n C\Kn^rn = 0 for each (n, ra) ^ (r, s). Then 
Gj n U\CIi\~r,s C Gj\C is a neighbourhood of a;, and hence Gj \C is an open 
set. 

By Lemma 7, the function f\n.\(j i s cliquish, and hence, by Lemma 5, 

there are quasicontinuous functions £{, tJ
2, t\: Gj \ C —> R such that 

«^Gj \G =t\'t2't3' 

Now let j E {1, 2} , n G N and m = n. 
By Lemma 7, the function / | c i i f p g . is cliquish, and hence, by Lemma 5 

there are quasicontinuous functions gn,m,i, gn,m,2, gn,m,3: CI i\rn,m n Gj —> R 
such that 

/ | c i i f n , m n Gj = #n,m,l ' 9n,m,2 ' 9n,m,3 ' 

Evidently, gn?m^(x) + 0 for each i G {1,2,3} and each x G Cliifn,m n G j . If 
CI Kn?m n Gj 7̂  0, choose an arbitrary a3

nm G ifn,m n Gj . Let W c C l D \ L ) be 
a countable dense subset of CI D \ D. Then W = {wi : i G M}, where wr ^ ws 

for r ^ 5 and M C N. For each i E M there is a sequence (^)fc in L) converging 
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to Wi such that vl
k ̂  vr for (i, k) ^ (r, 5) . Let Q \ {0} = {q1,q2, q3, • • • } (one-

to-one sequence of all rationals different from zero). 

For each i e M let H{ = {vj, v\, v\, v | , . . . } . Now, let A;: H{ -> ( Q \ { 0 » x N 

be a bijection, and let TT: (Q \ {0}) x N -> Q \ {0}, 7r(qr, s) = qr. 

Put 
2 00 [=£*] 

i = U U U ciiv-n,3m_fc. 
k=l n=l m = l 

Similarly as for Gj\C, we can prove that G3 \ (C \ L) is open. Now define 
functions / 1 , / 2 , /3 : X —» K as follows: 

^n ,3m-fc , i r ) ' #n,3m-k ,fc+l(an,3m-k) 

Љ,Зm,lK,Зm) 

/-(*) = 4 

/-(*) 

7г(Лi(.c)) 

/(*) 

[ *{(*) 
í ^n,Зm,2(X) ' ffn,3m,l(fln,3m) 

^n,Зm-l ,2( X ) 

gn,3m-l,2(an,3m-l) 

gn,Зm-2,2(X) 

/(*) 
7г(Лi(ж)) 

0 

1 

l íJ
2(я) 

Іf X Є Gj П Cl Kn,3m-к 

( ІЄ{ l ,2} , fc€{l ,2} , 

Зm — к <. n), 

Іf X Є Gj П Cl Kn.Зm 
(ІЄ{1,2}, З m ^ n ) , 

Іf X Є G 3 П Cl Kn,3m 

(Зm <. n), 

if æ Є Я i ( ѓ є M ) , 

i f x Є A u ( C l £ > \ U --".) 
V ч ѓeлí x 

u ( G з \ ( C \ L ) ) , 

i f x Є G . , \ C ( j Є { l , 2 } ) ; 

Іf X Є Gj П Cl Kn,3m 
(jЄ{l,2},Зm$n), 

Іî X Є Gj П Cl Kn,3m-1 

0 ' Є { 1 , 2 } , З m - l ^ Ч 

Іf X Є Gj П Cl Kn.Зm-2 

(j Є{1,2}, З m - 2 < n ) , 

iîxЄЩ (ieM), 

iîxЄG3\L, 

if x Є A U (G3 П i ) U 
(C1D\ U # . ) ' 
v ІЄM ' 

i f x Є G . , \ C ( j Є { l , 2 } ) ; 
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fs(x) 

9n,Зm-2,3\X) 

9n,Зm-2,3\an,Зm-2) 

9n,Зm-k,3\X> 

ą(x) 

Іf ЖЄG i ПClK . . > з m -2 
( jє{ l ,2} , З m - 2 ^ n ) , 

if æЄG iПCl í :П iзm-fc 
(j Є {1,2}, ke {0,1}, Зm-k^ 

iîx eAuClDUGз, 

ІІXЄGJXC (jє{l,2}). 

T h e n / = / i . / 2 - / 3 . 
We shall show that f\, / 2 , /3 are quasicontinuous. Let x 0 G K. Fix £ > 0 

and a neighbourhood U of x 0 . 

a) Let x0 e A. Let m G N be such that \qm ~ f(x0)\ < ^ . According to (3), 

there is n ^ 3m such that Cli\~n53m c U. By (1), we have C\Kn^m n (Gx 

G 2 U G 3 ) ^ 0 . 
al) If CI i\~n,3m n G3 / 0, then G = i\~n?3m H G3 is an open nonempty sub et 

of U and \fi(y) - / i ( x 0 ) | = \qm ~ f(x0)\ < £ for each y G G. 
a2) If Cl iv n , 3 m n G, ^ 0 for j G {1,2}, then H - # „ n n G J C c V i 

nonempty open. Since g3
n^m is quasicontinuous at aJ

n 3 m , there is an open 
nonempty G C H such that 

\9n,3m,l\y) ~ 9n,3m,l\an,3m)\ < ^1 i lgn,3m,l \an 3, i) I 
z | a m | 

for each y G G. Hence, for each H G G we ha\e 

I _ |gn,3m,l(^) ' a m gn,3m,l (an,3m) * an 
I/1Ы-/1K n.Зm) 

9n,3m,l\an,3m) gn,3m,l ( an,3m) 
< 

аnd 

|/l(2/) " /l(*o)| ^ |/l(2/) - / l ( < 3 J | + | / l ( < 3 m ) - /l(*o)| 

< I + lam -/(-co)l < e. 

Thus /1 is quasicontinuous at x 0 G A. 

b) Let z 0 G C1F> \ D . Choose wt G (CI D \ D) n U and U^- E HtnU such 
that 

KM<4j)) -/(^o)| <e. 
Then {U^} is an open nonempty subset of U and \fi(vl

2j) - / i ( x 0 ) | < e, thus 
/1 is quasicontinuous at x 0 G CI .D \ D. 

c) Let x0 e A. According to (3), there is n G N such that C\Kn,i C U. 
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cl) If Cli\~n52 D G3 7̂  0, then G = i\Tn.2 Pi G3 is an open nonempty subset of 
U and 1/2(2/) - /2(~o) | = 0 for each y EG. 

c2) If C I K ^ n G j 7̂  0 for j G {1,2}, then there is an open nonempty 

subset G of Kn,2 nGj such that |gn?2,2(y) - gn,2,2(<2)| < e|gn,2,2(an,2)l f o r 

each y E G. Therefore for each y E G we have 

1/2(1/) - / 2 (*o) | -S 1/2(2/) - / 2 « 2 ) | + | / 2 ( < 2 ) - f2(x0)\ 

9n,2,2(!/) < 2 ; 2 « 2 ) | 
+ ! - ! < £ . 

I.Jn,2,2(
an,2) gn,2,2(<2)l 

Therefore / 2 is quasicontinuous at XQ E A. 

d) Let x0 G C1D \ D . Then there are Wi E (C\D\D)nU and v\3_x E U. 

Then {U2,-i} ls a n ° P e n nonempty subset of U and | / 2 (^ 2 j_ i ) — / 2 (^o) | = 0. 
e) Let XQ E A. Then, by (3), there is n E N such that C\Kn^ C U, and the 

quasicontinuity of f% at XQ we can prove similarly as for / 2 . 
The quasicontinuity of /1 , / 2 and /3 at other points follows from Lemma 8. 

• 
P r o b l e m 1. Can the assumption "the family of all open connected subsets 

of X is a 7r-base for X" in Theorem 1 be omitted? 

P r o b l e m 2. Is every function / from H (X as in Theorem 2) the product 
of two quasicontinuous functions? 

Evidently, a positive answer to Problem 2 implies a positive answer to Prob-
em 1. 

R e m a r k 1. The assumption UX is T3 second countable"' in Theorem 2 
cinnot be replaced by "X is normal (but not T i ) second countable". If X = R 
vith the topology T , where A E T if and only if A = 0 or A = (a, 00) (where 
a E K), then every quasicontinuous function on X is constant (see [2]) but there 
are nonconstant functions from H (e.g., f(x) = 0 for x ^ 0 and f(x) = 1 for 
x > 0). 

R e m a r k 2. If X is a Baire space, then H = H*, where 

H* = {/: X —-> R; / i s cliquish and / _ 1 ( 0 ) is simply open} . 

Evidently, H E H*. \i there is f E H* \H, then the set /~ 1 ( (0 ,oc) ) is not 
simply open. Hence there is an open nonempty set E such that E is disjoint 
from / _ 1 (0), and the sets / _ 1 ((0, 00)) and f~l ( ( - co , 0)) are dense in E. Since 

/ is cliquish, the set < x E E : f(x) > — > is nowhere dense in E for each 

n E N. Then the set 
OO CO 

E= [j{xeE: / ( z ) > l } u \j{xeE: f(x) < - 1 } 
n=l n=l 
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is of the first category, which is a contradiction. 

For an arbitrary X this equality need not hold. If Q = A U B, where A 
and B are dense disjoint in Q, A = {ai, a 2 , . . . }, B = {bi, b2,... } (one-to-one 

sequence), then the function / : Q 

71*, but it does not belong to Ji. 

*, /ы , /(M = .1_ 
n 

belongs to 
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