Mathematic Slovaca

Vincent Šoltés

Comparison and oscillation theorems for second order differential equations

Mathematica Slovaca, Vol. 46 (1996), No. 1, 63--70

Persistent URL: http://dml.cz/dmlcz/136664

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMPARISON AND OSCILLATION THEOREMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS

Vincent Šoltés
(Communicated by Milan Medved')

Abstract

Our aim in this paper is to present comparison theorems for nonlinear differential equations of the form $$
\begin{equation*} \left(r(t) u^{\prime}(t)\right)^{\prime}+p(t) f(u(g(t)))=0 . \tag{*} \end{equation*}
$$

We present sufficient conditions for (*) to be oscillatory.

We consider the second order functional differential equation with deviating argument

$$
\begin{equation*}
\left(r(t) u^{\prime}(t)\right)^{\prime}+p(t) f(u(g(t)))=0 \tag{1}
\end{equation*}
$$

where $r, p, g \in C\left(\left[t_{0}, \infty\right)\right)$ are positive, $f \in C(\mathbb{R}), f(x) x>0$ for $x \neq 0$, and $g(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Our attention is restricted to those solutions of (1) that satisfy $\sup \{|u(t)|$: $t \geq T\}>0$. We make a standing hypothesis that (1) does possess such solutions. A solution of (1) is called oscillatory if the set of its zeros is unbounded. Otherwise, it is said to be nonoscillatory. An equation itself is called oscillatory if all its solutions are oscillatory.

In this paper, we have been motivated by the observation that there are many papers that reduce the problem of oscillation of higher order differential equations to the oscillation of a set of second order differential equations (see, e.g., $[2],[6]$ and [9]). Thus it is desirable to have criteria for oscillation of the second order equations and the comparison method is one of the important methods in oscillation theory of second order equations.

We are interested in comparing the oscillatory behavior of (1) with that of the equation

$$
\begin{equation*}
\left(l(t) u^{\prime}(t)\right)^{\prime}+z(t) h(u(w(t)))=0 \tag{2}
\end{equation*}
$$

AMS Subject Classification (1991): Primary 34C10.
Key words: canonical (noncanonical) equation, comparison theorem.

VINCENT ŠOLTÉS

where $l, z, w \in C\left(\left[t_{0}, \infty\right)\right)$ are positive, $h \in C(\mathbb{R}), h(x) x>0$ for $x \neq 0$ and $w(t) \rightarrow \infty$ as $t \rightarrow \infty$.

We say that (1) is in a canonical form if

$$
\int^{\infty} \frac{\mathrm{d} s}{r(s)}=\infty
$$

On the other hand, if

$$
\int^{\infty} \frac{\mathrm{d} s}{r(s)}<\infty
$$

then (1) is said to be in a noncanonical form.
We make use of the following functions in the remainder of this paper:

$$
R(t)=\int_{t_{0}}^{t} \frac{\mathrm{~d} s}{r(s)}, \quad \text { and } \quad L(t)=\int_{t_{0}}^{t} \frac{\mathrm{~d} s}{l(s)}, \quad t \geq t_{0}
$$

for the canonical case of (1) and (2), and

$$
\rho(t)=\int_{t}^{\infty} \frac{\mathrm{d} s}{r(s)}, \quad \text { and } \quad \lambda(t)=\int_{t}^{\infty} \frac{\mathrm{d} s}{l(s)}, \quad t \geq t_{0}
$$

for the noncanonical case of (1) and (2). Let $R^{-1}, L^{-1}, \rho^{-1}$, and λ^{-1} be the inverse functions to R, L, ρ and λ, respectively.

THEOREM 1. A function $u(t)$ is a solution of the noncanonical equation (1) on $\left[t_{0}, \infty\right)$ if and only if the function $y(s)=s u\left(\rho^{-1}(1 / s)\right)$ is a solution of the canonical equation

$$
\begin{equation*}
y^{\prime \prime}(s)+p_{1}(s) f\left(\frac{y\left(g_{1}(s)\right)}{g_{1}(s)}\right)=0, \quad s \geq s_{0}=1 / \rho\left(t_{0}\right) \tag{3}
\end{equation*}
$$

where

$$
p_{1}(s)=\frac{p\left(\rho^{-1}(1 / s)\right) r\left(\rho^{-1}(1 / s)\right)}{s^{3}} \quad \text { and } \quad g_{1}(s)=\frac{1}{\rho\left(g\left(\rho^{-1}(1 / s)\right)\right)}
$$

Proof. Differentiating the relation $u(t)=\rho(t) y(1 / \rho(t))$ and considering $\rho^{\prime}(t)=-1 / r(t)$, we conclude that

$$
\begin{equation*}
r(t) u^{\prime}(t)=-y(1 / \rho(t))+\frac{1}{\rho(t)} y^{\prime}(1 / \rho(t)) \tag{4}
\end{equation*}
$$

Differentiating again, we obtain

$$
\begin{equation*}
r(t)\left(r(t) u^{\prime}(t)\right)^{\prime}=\frac{1}{\rho^{3}(t)} y^{\prime \prime}(1 / \rho(t)) \tag{5}
\end{equation*}
$$

From (5) and the transformation $t=\rho^{-1}(1 / s)$, it follows that

$$
r(t)\left\{\left(r(t) u^{\prime}(t)\right)^{\prime}+p(t) f(u(g(t)))\right\}=s^{3}\left\{y^{\prime \prime}(s)+p_{1}(s) f\left(\frac{y\left(g_{1}(s)\right)}{g_{1}(s)}\right)\right\}
$$

Now we see that $u(t)$ is a solution of (1) on $\left[t_{0}, \infty\right)$ if and only if $y(s)=$ $s u\left(\rho^{-1}(1 / s)\right)$ is a solution of (3) on $\left[s_{0}, \infty\right)$. The proof is complete.

Note that Theorem 1 generalizes and extends Theorem 1 in [4].
COROLLARY 1. The noncanonical equation (1) is oscillatory if and only if (3) is oscillatory.

For the canonical form of (1) we have the following result, which is due to Ohriska [8].

THEOREM 2. The canonical equation (1) is oscillatory if and only if the equation

$$
\begin{equation*}
y^{\prime \prime}(t)+p_{2}(t) f\left(y\left(g_{2}(t)\right)\right)=0 \tag{6}
\end{equation*}
$$

is oscillatory, where

$$
p_{2}(t)=r\left(R^{-1}(t)\right) p\left(R^{-1}(t)\right), \quad \text { and } \quad g_{2}(t)=R\left(g\left(R^{-1}(t)\right)\right)
$$

Now we turn to (2) and its corresponding equations

$$
\begin{align*}
y^{\prime \prime}(t)+z_{1}(t) h\left(\frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right) & =0 \quad \text { and } \tag{7}\\
y^{\prime \prime}(t)+z_{2}(t) h\left(w_{2}(t)\right) & =0, \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
z_{1}(t) & =\frac{z\left(\lambda^{-1}(1 / t)\right) l\left(\lambda^{-1}(1 / t)\right)}{t^{3}} & \text { and } & w_{1}(t)
\end{aligned}=\frac{1}{\lambda\left(w\left(\lambda^{-1}(1 / t)\right)\right)}, ~ 子 r\left(L^{-1}\right) .
$$

For (2), (7) and (8), the results are analogous to those presented in Theorems 1 and 2.

The following comparison theorem enables us to transfer oscillation properties from (2) to (1), in case that both equations are in the canonical forms.

Theorem 3. Let (1) and (2) be in their canonical forms. Suppose that for all large t and $x \in \mathbb{R}$

$$
\begin{align*}
f(x) \operatorname{sgn} x & \geq h(x) \operatorname{sgn} x, \tag{9}\\
g_{2}(t) & \geq w_{2}(t), \tag{10}\\
p_{2}(t) & \geq z_{2}(t), \tag{11}
\end{align*}
$$

h is nondecreasing.
Then (1) is oscillatory if (2) is oscillatory.
Proof. In view of Theorem 2, it is sufficient to show that (6) is oscillatory. To obtain a contradiction, assume that $y(t)$ is a nonoscillatory solution of (6). Without loss of generality, we may assume that $y(t)$ is positive on $\left[t_{0} \infty\right)$. Since $y^{\prime \prime}(t)<0$, a generalization of a lemma of Kiguradze[5] implies that $y^{\prime}(t)>0$ for all large t, say $t \geq t_{1}$. Therefore, integrating (6) from $t\left(\geq t_{1}\right)$ to ∞. we have, in view of (9) and (11),

$$
\begin{equation*}
y^{\prime}(t) \geq \int_{t}^{\infty} p_{2}(s) f\left(y\left(g_{2}(s)\right)\right) \mathrm{d} s \geq \int_{t}^{\infty} z_{2}(s) h\left(y\left(g_{2}(s)\right)\right) \mathrm{d} s \tag{13}
\end{equation*}
$$

Consequently, noting that $y(t)$ is increasing, (10) and (12) imply

$$
y^{\prime}(t) \geq \int_{t}^{\infty} z_{2}(s) h\left(y\left(w_{2}(s)\right)\right) \mathrm{d} s, \quad t \geq t_{1}
$$

Integrating the last inequality from t_{1} to t, we have

$$
\begin{equation*}
y(t) \geq y\left(t_{1}\right)+\int_{t_{1}}^{t}\left(\int_{s_{1}}^{\infty} z_{2}(s) h\left(y\left(w_{2}(s)\right)\right) \mathrm{d} s\right) \mathrm{d} s_{1} \tag{14}
\end{equation*}
$$

Let us denote the right hand side of (14) by $u(t)$. Repeated differentiation of $u(t)$ leads to

$$
\begin{equation*}
u^{\prime \prime}(t)+z_{2}(t) h\left(y\left(w_{2}(t)\right)\right)=0 \tag{15}
\end{equation*}
$$

Since $y\left(w_{2}(t)\right) \geq u\left(w_{2}(t)\right)$ for all large t, say $t \geq t_{2}$, we see from (12) that $u(t)$ is a positive solution of the differential inequality

$$
\left\{u^{\prime \prime}(t)+z_{2}(t) h\left(u\left(w_{2}(t)\right)\right)\right\} \operatorname{sgn} u\left(w_{2}(t)\right) \leq 0, \quad t \geq t_{1}
$$

It follows from Corollary 1 of Kusano and Naito [7] that equation (8) also has a positive solution, and so, by Theorem 2, equation (2) is not oscillatory. This is a contradiction, and the proof is complete.

We can compare Theorem 3 with the following similar comparison result, which is due to Kusano and $\mathrm{Naito}[7]$, and $\mathrm{Chanturia}[1]$.

Theorem A. Let (9) and (12) be satisfied. Further assume that

$$
\begin{array}{ll}
r(t) \leq l(t), & t \geq t_{0} \tag{16}\\
g(t) \geq w(t), & t \geq t_{0} \\
p(t) \geq z(t), & t \geq t_{0}
\end{array}
$$

Then (1) is oscillatory if (2) is oscillatory.
Note that, by Theorem 3, equation (1) can inherit oscillatory behavior from (2) even if (16) is violated.

Now we turn to noncanonical equations. As Kusano and Naito have emphasized in [7], comparison theorems for canonical functional equations do not work for noncanonical functional equations. We attempt to give a comparison result for noncanonical equations (1) and (2) for which $w(t)=g(t)$.

Theorem: 4. Let (1) and (2) be noncanonical equations. Assume that (9) and (12) hold. Further assume that for all large t

$$
\begin{align*}
p_{1}(t) & \geq z_{1}(t) \tag{17}\\
w(t) & =g(t)=t \tag{18}
\end{align*}
$$

Then (1) is oscillatory if (2) is oscillatory.
Proof. By Corollary 1, it is enough to show that (3) with $g_{1}(t)=t$ is oscillatory. Let $y(t)$ be an eventually positive solution of (3). Then $y^{\prime \prime}(t)<0$, and according to a generalization of a lemma of Kiguradze [5], $y^{\prime}(t)>0$ for all large t, say $t \geq t_{1}$. Therefore, integrating (3) from $t\left(\geq t_{1}\right)$ to ∞ and applying (9), (17) and (18), we have

$$
y^{\prime}(t) \geq \int_{t}^{\infty} p_{1}(s) f\left(\frac{y(s)}{s}\right) \mathrm{d} s \geq \int_{t}^{\infty} z_{1}(s) h\left(\frac{y(s)}{s}\right) \mathrm{d} s .
$$

Integrating the last inequality from t_{1} to t, we have

$$
\begin{equation*}
y(t) \geq y\left(t_{1}\right)+\int_{t_{1}}^{t}\left(\int_{s_{1}}^{\infty} z_{1}(s) h\left(\frac{y(s)}{s}\right) \mathrm{d} s\right) \mathrm{d} s_{1} \tag{19}
\end{equation*}
$$

If we denote the right hand side of (19) by $u(t)$, then

$$
\begin{equation*}
u^{\prime \prime}(t)+z_{1}(t) h\left(\frac{y(t)}{t}\right)=0 . \tag{20}
\end{equation*}
$$

Since $y(t) \geq u(t)$ for all $t \geq t_{1}$, from (12), we see that $u(t)$ is a positive solution of the differential inequality

$$
\left\{u^{\prime \prime}(t)+z_{1}(t) h\left(\frac{u(t)}{t}\right)\right\} \operatorname{sgn} u(t) \leq 0 .
$$

VINCENT ŠOLTÉS

It follows from Corollary 1 of Kusano and Naito [7] that (7) has also a positive solution, and so, by Corollary 1, equation (2) is not oscillatory. This is a contradiction, and the proof is complete.

Next, we relax condition (18) in Theorem 4 and provide a comparison theorem between noncanonical equations (1) and (2) with different deviating arguments. However, the further assumptions on the function $h(x)$ are needed.

Theorem 5. Let (1) and (2) be noncanonical equations. Assume that (9) and (12) hold. Further assume that for all large t

$$
\begin{array}{rlrl}
g_{1}(t) & \geq w_{1}(t), & \\
N p_{1}(t) h\left(\frac{w_{1}(t)}{g_{1}(t)}\right) & \geq z_{1}(t), & & N \text { is a positive constant } \\
-h(-x y) \geq h(x y) & \geq N h(x) h(y) & & \text { for } x>0 \text { and } y>0 \tag{23}
\end{array}
$$

Then (1) is oscillatory if (2) is oscillatory.
Proof. The proof runs similarly as proofs of Theorems 3 and 4. To obtain a contradiction, assume that $y(t)$ is an eventually positive solution of (3). Then again $y^{\prime}(t)>0$ and

$$
\begin{equation*}
y^{\prime}(t) \geq \int_{t}^{\infty} p_{1}(s) f\left(\frac{y\left(g_{1}(s)\right)}{g_{1}(s)}\right) \mathrm{d} s \geq \int_{t}^{\infty} p_{1}(s) h\left(\frac{y\left(g_{1}(s)\right)}{g_{1}(s)}\right) \mathrm{d} s \tag{24}
\end{equation*}
$$

Since $y(t)$ is increasing, we have, in view of (12), (21) and (23),

$$
\begin{aligned}
h\left(\frac{y\left(g_{1}(t)\right)}{g_{1}(t)}\right) & \geq h\left(\frac{y\left(w_{1}(t)\right)}{g_{1}(t)}\right)=h\left(\frac{w_{1}(t)}{g_{1}(t)} \frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right) \\
& \geq N h\left(\frac{w_{1}(t)}{g_{1}(t)}\right) h\left(\frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right)
\end{aligned}
$$

Combining the last inequality with (24) and (23) we obtain

$$
\begin{equation*}
y^{\prime}(t) \geq \int_{t}^{\infty} z_{1}(s) h\left(\frac{y\left(w_{1}(s)\right)}{w_{1}(s)}\right) \mathrm{d} s \tag{25}
\end{equation*}
$$

Integrating the last inequality from t_{1} to t, we have

$$
\begin{equation*}
y(t) \geq y\left(t_{1}\right)+\int_{t_{1}}^{t}\left(\int_{s_{1}}^{\infty} z_{1}(s) h\left(\frac{y\left(w_{1}(s)\right)}{w_{1}(s)}\right) \mathrm{d} s\right) \mathrm{d} s_{1} \tag{26}
\end{equation*}
$$

If we denote the right hand side of (26) by $u(t)$, then

$$
\begin{equation*}
u^{\prime \prime}(t)+z_{1}(t) h\left(\frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right)=0 \tag{27}
\end{equation*}
$$

Since $y\left(w_{1}(t)\right) \geq u\left(w_{1}(t)\right)$ for all large t, say $t \geq t_{2}$, we see from (12) that $u(t)$ is a positive solution of the differential inequality

$$
\left\{u^{\prime \prime}(t)+z_{1}(t) h\left(\frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right)\right\} \operatorname{sgn} u\left(w_{1}(t)\right) \leq 0
$$

Using the same arguments as those used in the proof of Theorem 4, we can see that (2) is not oscillatory. This contradiction completes the proof of the theorem.

The following two theorems are intended to show that a canonical equation can inherit oscillatory behavior from that of a noncanonical equation and conversely.

THEOREM 6. Let (1) be a canonical equation and (2) be a noncanonical equation. Assume that (9), (12) and (23) hold. Further assume that for all large t

$$
\begin{align*}
g_{2}(t) & \geq w_{1}(t), \tag{28}\\
N p_{2}(t) h\left(w_{1}(t)\right) & \geq z_{1}(t), \quad N \text { is a positive constant } . \tag{29}
\end{align*}
$$

Then (1) is oscillatory if (2) is oscillatory.
Proof. It is sufficient to show that (6) is oscillatory. Assume that $y(t)$ is an eventually positive solution of (6). Then again $y^{\prime}(t)>0$ on $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$, and

$$
\begin{equation*}
y^{\prime}(t) \geq \int_{t}^{\infty} p_{2}(s) f\left(y\left(g_{2}(s)\right)\right) \mathrm{d} s \geq \int_{t}^{\infty} p_{2}(s) h\left(y\left(g_{2}(s)\right)\right) \mathrm{d} s \tag{30}
\end{equation*}
$$

Since $y(t)$ is increasing, (12), (28) and (23) imply

$$
\begin{aligned}
h\left(y\left(g_{2}(t)\right)\right) & \geq h\left(y\left(w_{1}(t)\right)\right)=h\left(w_{1}(t) \frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right) \\
& \geq N h\left(w_{1}(t)\right) h\left(\frac{y\left(w_{1}(t)\right)}{w_{1}(t)}\right)
\end{aligned}
$$

Combining the last inequality with (30) and (29) we obtain (27). Then repeating the same arguments as in the proof of Theorem 5, we can see that (2) is not oscillatory, and this completes the proof of the theorem.

VINCENT ŠOLTÉS

THEOREM 7. Let (1) be a noncanonical equation and (2) be a canonical equiltion. Assume that (9), (12) and (25) hold. Further assume that for all large t

$$
\begin{align*}
g_{1}(t) & \geq w_{2}(t) \tag{31}\\
N p_{1}(t) h\left(\frac{1}{g_{1}(t)}\right) & \geq z_{2}(t), \quad N \text { is a positive constant. } \tag{3:2}
\end{align*}
$$

Then (1) is oscillatory if (2) is oscillatory.
Proof. The proof runs exactly as the proof of Theorem 5, and so details are left to the reader. The main tool in proving this theorem is the following inequality which holds for a positive increasing solution of (3)

$$
h\left(y\left(g_{1}(t)\right)\right) \geq h\left(\frac{1}{g_{1}(t)} y\left(w_{2}(t)\right)\right) \geq N h\left(\frac{1}{g_{1}(t)}\right) h\left(y\left(w_{2}(t)\right)\right)
$$

REFERENCES

[1] CHANTURIA, T. A.: Some comparison theorems for higher order ordinary differential equations (Russian), Bull. Acad. Polon. Sci. 256 (1977), 749-756.
[2] DŽURINA, J.: The oscillation of a differential equations of second order with deviating argument, Mat. Slovaca 42 (1992), 317-324.
[3] DŽURINA, J.: Comparison theorems for differential equations with deviating argument, Mat. Slovaca 45 (1995), 79-89.
[4] DŽURINA, J-OHRISKA, J.: Asymptotic and oscillatory properties of differential equations with deviating argument, Hiroshima Math. J. 40 (1992), 561-571.
[5] KIGURADZE, I. T.: On the oscillation of solutions of the equation $\mathrm{d}^{m} u / \mathrm{d} t^{m}+$ $a(t)|u|^{n} \operatorname{sign} u=0$ (Russian), Mat. Sb. 65 (1964), 172-187.
[6] KUSANO, T.-NAITO, M. : Oscillation criteria for general linear ordinary differential equations, Pacific J. Math. 92 (1981), 345-355.
[7] KUSANO, T.-NAITO, M.: Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan 3 (1981), 509-532.
[8] OHRISKA, J.: Oscillation of differential equations and v-derivatives, Czechoslovak Math. J. 39 (1989), 24-44.
[9] TANAKA, K. : Asymptotic analysis of odd order ordinary differential equations, Hiroshima Math. J. 10 (1980), 391-408.

Received November 4, 1993
Revised April 6, 1994

Department of Mathematics
Faculty of Mechanical Engineering
Technical University
Letná 9
SK-04154 Kos̆ice
SLOVAKIA

