Mathematic Slovaca

Klaus-Dieter Denecke; Kazimierz Głazek
 M-solid varieties and Q-free clones

Mathematica Slovaca, Vol. 46 (1996), No. 5, 515--524

Persistent URL: http://dml.cz/dmlcz/136688

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

M-SOLID VARIETIES AND Q-FREE CLONES

K. Denecke* - K. Geazek**
(Communicated by Tibor Katriñák)

Abstract

A variety of algebras is called solid if every identity is satisfied as a hyperidentity. The clone of a solid variety is free with respect to itsel: M-solid varieties generalize the concept of solidity. In this paper, we describe the clone of an arbitrary M-solid variety.

Introduction

An identity $t \approx t^{\prime}$ is called a hyperidentity in a variety V if whenever the operation symbols occurring in t and t^{\prime} are replaced by any terms of the appropriate arity, the identity which results holds in V. Hyperidentities are particular sentences in a second order language and were considered at first by Belousov ([2]), Aczél ([1]), and Taylor ([19]). For a survey on these topics, see [17] and [5].

An easy example is the identity

$$
(x+x)+(y+y) \approx(x+y)+(x+y)
$$

satisfied in any abelian group. Replacing the group operation by a binary operation symbol F we get

$$
F(F(x, x), F(y, y)) \approx F(F(x, y), F(x, y))
$$

If we substitute for F any binary term $f(x, y)=a x+b y$ (a, b integers) of the varicty of all abelian groups, we get identities. The commutative law $F(x, y) \approx$

[^0]$F(y, x)$ shows that the concept of a hyperidentity is very strong since we have to take into account any mapping which assigns to the binary operation symbol F a binary term. Under these mappings, there is also the mapping with $F \mapsto r$. The resulting identity $x \approx y$ is only satisfied in a trivial variety: Therefore in [10], we generalized hyperidentities to so called M-hyperidentilies. where M is a submonoid of the monoid of all such substitutions. If every identity in the varicty V is an M-hyperidentity, then the variety V is called M-solid. or solid if $M I$ consists of all possible substitutions of n-ary terms for n-ary operation symbols.

Clones are sets of operations defined on the same set. closed under superposition, and containing all projections. Hyperidentities in the variety l correspond to identities in the clone of $V([18],[16])$. By clone (V), the clone of a variety V, we mean a heterogencous algebra with carrier sets $\mathcal{F}_{1}^{\prime \prime}(X)$ (the sets of all n-ary term operations of the V-free algebra freely generated by the n-element alphabet X_{n}) with operations describing the superposition of term operations and containing all projections e_{i}^{n}. If $\left\{f_{i} \mid i \in I\right\}$ are the operation sumbols of V, then the family $\left\{f_{i}^{\mathcal{F}_{V}(X)} \mid i \in I\right\}$ of all fundamental operations of the free algebra $\mathcal{F}_{V}(X)$ forms a generating system of clone (V). In [9], we proved that the variety V is solid if and only if the heterogeneous algebra clone(V^{\prime}) is free relative to itself. In this paper, we will generalize this result to M-solid varieties.

Preliminaries

Hyperidentities can be defined more precisely using the concept of a hypersubstitution ([7]). We fix a type $\tau=\left\{n_{i} \mid i \in I\right\}, n_{i} \geq 1$ for all $i \in I$. and operation symbols $\left\{f_{i} \mid i \in I\right\}$, where f_{i} is n_{i}-ary. Let $W_{\tau}(X)$ be the set of all terms of type τ over some fixed alphabet $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Terms in $W_{T}\left(X_{n}\right)$ with $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, n \geq 1$, are called n-ary. Let $\operatorname{Alg}(\tau)$ be the class of all algebras of type τ.

A mapping

$$
\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}(X)
$$

which assigns to every n_{i}-ary operation symbol f_{i} an n_{i}-ary term of type will be called a hypersubstitution of type τ (for short, a hypersubstitution). The mapping σ can be extended to all terms in $W_{\tau}(X)$. The result of applying a hypersubstitution σ to a term $t \in W_{\tau}(X)$ will be denoted by $\dot{\sigma}[t]$. More precisely, $\hat{\sigma}[t]$ can be defined inductively by:
(i) $\hat{\sigma}[x]:=x$ for any variable x in the alphabet X, and
(ii) $\hat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{1}}\right)\right]:=\sigma\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}\left(\hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n}\right]\right)$.

M-SOLID VARIETIES AND Q-FREE CLONES

Here, $\sigma\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}$ on the right hand side of (ii) denotes the term operation induced by the term $\sigma\left(f_{i}\right)$ on the term algebra $\mathcal{F}_{\tau}(X)=\left(W_{\tau}(X) ;\left(f_{i}^{\mathcal{F}_{\tau}(X)}\right)_{i \in I}\right)$, $f_{i}^{\mathcal{F}_{\tau}\left(X^{\prime}\right)}:\left(t_{1}, \ldots, t_{n_{i}}\right) \mapsto f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$.

Let t, t^{\prime} be terms of type τ. The identity $t \approx t^{\prime}$ is called a hyperidentity of type τ (for short, a hyperidentity) in an algebra $\mathcal{A} \in \operatorname{Alg}(\tau)$ if $\hat{\sigma}[t] \approx \hat{\sigma}\left[t^{\prime}\right]$ are identities in \mathcal{A} for every hypersubstitution σ. In this case, we say \mathcal{A} hypersatisfies the equation $t \approx t^{\prime}$. For two hypersubstitutions σ_{1}, σ_{2} of type τ the product $\sigma_{1} \circ_{h} \sigma_{2}$ defined by $\sigma_{1} \circ_{h} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ is again a hypersubstitution of type τ. It is casy to show ([10]) that all hypersubstitutions of type τ form a monoid $\left(\operatorname{Hyp}(\tau) ; \mathrm{o}_{h}, \sigma_{\mathrm{id}}\right)$, where σ_{id} is defined by $\sigma_{\mathrm{id}}\left(f_{i}\right)\left(x_{1}, \ldots, x_{n_{i}}\right)=f_{i}\left(x_{1} \ldots, x_{n_{i}}\right)$ for all $i \in I$. Let M be a submonoid of $\left(\operatorname{Hyp}(\tau) ; \circ_{h}, \sigma_{i d}\right)$. The elements of $M I$ are called M-hypersubstitutions. Then an equation $s \approx t, s, t \in W_{\tau}(X)$, is an M-hyperidentity of type τ in an algebra $\mathcal{A} \in \operatorname{Alg}(\tau)$ if $\hat{\sigma}[s] \approx \hat{\sigma}[t]$ is an identity in \mathcal{A} for every M-hypersubstitution σ. If every identity of a variety V is an M-hyperidentity in any algebra of V, then V is said to be M-soiid.

Q-free clones

A clone as a set of operations defined on the same set, closed under superposition, and containing all projections can be equipped with an algebraic structure which gives a heterogeneous (many-sorted, multibased) algebra ([12], [3])

$$
\mathcal{C}:=\left(\left(C^{(n)}\right)_{n \in \mathbb{N}^{+}} ;\left(S_{m}^{n}\right)_{m, n \in \mathbb{N}^{+}},\left(e_{i}^{n}\right)_{n \in \mathbb{N}^{+}, 1 \leq i \leq n}\right) \quad\left(\mathbb{N}^{+}:=\{1,2, \ldots\}\right),
$$

where $C^{(n)}$ is a set of n-ary operations defined on the set A, and where S_{m}^{n} are the operations defined by

$$
S_{m}^{n}:=C^{(n)} \times\left(C^{(m)}\right)^{n} \rightarrow C^{(m)}
$$

with

$$
S_{m}^{n}\left(f, g_{1}, \ldots, g_{n}\right):=f\left[g_{1}, \ldots, g_{n}\right]
$$

and $f\left[g_{1}, \ldots, g_{n}\right]\left(a_{1}, \ldots, a_{m}\right):=f\left(g_{1}\left(a_{1}, \ldots, a_{m}\right), \ldots, g_{n}\left(a_{1}, \ldots, a_{m}\right)\right)$ for all $a_{1}, \ldots, a_{m} \in A$. The $e_{i}^{n}, 1 \leq i \leq n$, are the n-ary projections with $c_{i}^{\prime \prime}\left(a_{1}, \ldots, a_{n}\right):=a_{i}$ for all $a_{1}, \ldots, a_{n} \in A$.

To every one-based algebra $\mathcal{A}=\left(A ;\left(f_{i}^{\mathcal{A}}\right)_{i \in I}\right)$ of type τ it belongs a clone, the clone of all term operations of \mathcal{A}. Let $O_{A}^{(n)}$ be the set of all n-ary operations $f^{A}: A^{\prime \prime} \rightarrow A$, and put $O_{A}:=\bigcup_{n=1}^{\infty} O_{A}^{(n)}$. We set $F^{A}:=\left\{f_{i}^{A} \mid \quad i \in I\right\}$ and $F^{\prime(n)}:=F^{A} \cap O_{A}^{(n)}$. Let \mathcal{O}_{A} be the heterogeneous clone where the carrier sets are the sets $O_{A}^{(n)}$ for every $n \in \mathbb{N}^{+}$. Then the clone $\mathcal{T}(\mathcal{A})$ of all term operations of \mathcal{A}

K. DENECKE - K. GLAZEK

is the subclone of \mathcal{O}_{A} generated by $\left(F^{A(n)}\right)_{n \in \mathbb{N}^{+}}: \mathcal{T}(\mathcal{A}):=\left\langle\left(F^{\mathcal{A}(n)}\right)_{n \in \mathbb{N}^{+}}\right\rangle_{\mathcal{O}_{+}}$. The carrier sets of $\mathcal{T}(\mathcal{A})$ are the sets $T^{(n)}(\mathcal{A})$ of all n-ary term operations of $\mathcal{A}(n \geq 1)$. For $\mathcal{A}=\mathcal{F}_{\tau}(X)$ (the absolutely free algebra of type τ, for short written as \mathcal{F}_{τ}), instead of $\mathcal{T}(\mathcal{A})$, we will write clone (τ), and if $\mathcal{F}_{\mathrm{V}}(X)$ is the free algebra with respect to V, we write clone (V) instead of $\mathcal{T}\left(\mathcal{F}_{\mathrm{V}^{\prime}}(X)\right)$.

We remark further that all clones are elements of the variety K_{0} of heterogeneous algebras which is defined by the following identities ([18]).

$$
\begin{align*}
\text { (C1) } & S_{m}^{p}\left(z, S_{m}^{n}\left(y_{1}, x_{1}, \ldots, x_{n}\right), \ldots, S_{m}^{n}\left(y_{p}, x_{1}, \ldots, x_{n}\right)\right) \tag{C1}\\
& \approx S_{m}^{n}\left(S_{n}^{p}\left(z, y_{1}, \ldots, y_{p}\right), x_{1}, \ldots, x_{n}\right) \quad\left(m, n, p \in \mathbb{N}^{+}\right), \\
\text {(C2) } & S_{m}^{n}\left(e_{i}^{n}, x_{1}, \ldots, x_{n}\right) \approx x_{i} \quad\left(m \in \mathbb{N}^{+}, 1 \leq i \leq n\right) \\
\text { (C3) } & S_{n}^{n}\left(y, e_{1}^{n}, \ldots, e_{n}^{n}\right) \approx y \quad\left(n \in \mathbb{N}^{+}\right)
\end{align*}
$$

(here S_{m}^{n}, e_{i}^{n} are operation symbols corresponding to the type of clone (τ)).
An arbitrary element of the variety K_{0} is called an abstract clone. It should be pointed out that every abstract clone is isomorphic to a clone of operations. i.e., to a concrete one. Note that a concrete clone is the dual category of an algebraic theory in the sense of F. W. Law vere ([14]).

Definition 3.1. Let $\mathcal{C}:=\left(\left(C^{(n)}\right)_{n \in \mathbb{N}^{+}} ;\left(S_{m}^{n}\right)_{m, n \in \mathbb{N}^{+}},\left(e_{i}^{n}\right)_{n \in \mathbb{N}^{+} .1 \leq i \leq n}\right)$ be a clone, and let $\left(X_{n}\right)_{n \in \mathbb{N}^{+}}, X_{n} \subseteq C^{(n)}$, be a generating system of the clone \mathcal{C}. Then a system $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}^{+}}$of mappings $\varphi_{n}: X_{n} \rightarrow C^{(n)}$ with $\varphi_{n}\left(e_{i}^{n}\right)=\epsilon_{1}^{\prime \prime}$. $n \in \mathbb{N}^{+}$, for projections is called a clone substitution. By Subst $\left\langle_{\left.\left\langle\mathrm{X}_{n}\right)_{n \epsilon}+\right\rangle}\right.$. We denote the set of all clone substitutions.

DEFINITION 3.2. ([15]) A set $I:=\left(I_{n}\right)_{n \in \mathbb{N}^{+}}, I_{n} \subseteq C^{(n)}$ for every $n \in \mathbb{N}^{+}$. is said to be independent with respect to a family Q of mappings $u^{\prime}=\left(\imath_{n}\right)_{n \in X}$. $\underline{\psi}_{n}: I_{n} \rightarrow C^{(n)},(Q$-independent $)$ if every ψ can be extended to a homomorphisma $\bar{\psi}^{n}$ of the subclone $\langle I\rangle_{C}$ of \mathcal{C} generated by I into \mathcal{C}, i.e., $\bar{\psi}:\langle I\rangle_{\mathcal{C}} \rightarrow \mathcal{C}$.

Properties of Q-independent sets are discussed in [11].
 is a generating system of \mathcal{C}. Then \mathcal{C} is called Q-free with respect to itself if $\left(X_{n}\right)_{n \in \mathbb{N}^{+}}$is Q-independent (i.e., $\left(X_{n}\right)_{n \in N^{+}}$is a Q-basis, see [11]).

If $Q=\operatorname{Subst}_{\left\langle\left(X_{n}\right)_{n \in 1^{+}}\right\rangle}$, we have the usual concept of freeness with respect to itself.

The extensions $\hat{\varphi}$ of elements $\varphi \in \operatorname{Subst}_{\left\langle\left(X_{n}\right)_{n \in: ~}\right\rangle}$ to arbitrary elements of $\left(C^{(n)}\right)_{n \in \mathbb{N}^{+}}$are defined in the usual inductive way. If $\varphi_{1}, \varphi_{2} \in \operatorname{Subst}_{\left\langle\left(X_{n}\right)_{n \in}\right.}$. we define a product $\varphi_{1} \circ_{s} \varphi_{2}$ of substitutions by $\hat{\varphi}_{1} \circ \varphi_{2}$. This is again a sub)stitution from Subst ${ }_{\left\langle\left(X_{n}\right)_{n e+}+\right\rangle}$. Since this product is associative. and since the identity $\varphi_{\text {id }}$ belongs to $\left.\operatorname{Subst}_{\left\langle\left(X_{n}\right)_{n \in+}\right\rangle}\right\rangle$, we obtain a monoid.

Proposition 3.4.

(i) There is a bijection between the set $\operatorname{Hyp}(\tau)$ of all hypersubstitutions of type τ, and the set $\operatorname{Subst}_{\left\langle\left(F^{\mathcal{F}_{\tau}(n)}\right)_{n \in \|^{\prime}}\right\rangle}$ of all clone substitutions of clone (τ).
(ii) For every variety V of type τ every hypersubstitution of type τ defines a clone homomorphism clone $(\tau) \rightarrow$ clone (V).

Proof.
(i): Let $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}(X)$ be a hypersubstitution of type τ. We put $F:=\left\{f_{i} \mid i \in I\right\}$, and let $F^{(n)}$ be the set of all n-ary operation symbols from F. Then σ defines a family $\sigma:=\left(\sigma_{n}\right)_{n \in \mathbb{N}^{+}}$of mappings such that $\sigma_{n}: F^{(n)} \rightarrow W_{\tau}\left(X_{n}\right)$.

Note that clone (τ) is generated by $\left(F^{\mathcal{F}_{\tau}(n)}\right)_{n \in \mathbb{N}^{+}}$.
For every $\sigma:=\left(\sigma_{n_{\imath}}\right)_{n_{i} \in \mathbb{N}^{+}}$we define a family $\varphi:=\left(\varphi_{n_{i}}\right)_{n_{i} \in \mathbb{N}^{+}}$of mappings $\varphi_{n_{2}}: F^{\mathcal{F}_{\tau}\left(n_{i}\right)} \rightarrow$ clone $^{\left(n_{i}\right)}(\tau)$ (here clone ${ }^{\left(n_{i}\right)}(\tau)$ is the n_{i} th carrier set of clone $(\tau))^{2}$ by

$$
\varphi_{n_{i}}\left(f_{i}^{\mathcal{F}_{\tau}(X)}\right)=\sigma_{n_{\imath}}\left(f_{i}^{\mathcal{F}_{\tau}(X)}\right) .
$$

Note that $\sigma_{n_{2}}\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}$ is the term operation of $\mathcal{F}_{\tau}(X)$ induced by the term $\sigma\left(f_{i}\right)$, i.e., $\sigma_{n_{i}}\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}$ is an element of clone ${ }^{\left(n_{i}\right)}(\tau)$. Remember that any n-ary term of $W_{\tau}\left(X_{n}\right)$ induces an n-ary element of clone ${ }^{(n)}(\tau)$ in the following inductive way:
(1) if x_{i} is an element of X_{n}, (an n-ary variable), then $x_{i}^{\mathcal{F}_{\tau}(X)}:=e_{i}^{n, \mathcal{F}} \in$ clone ${ }^{(n)}(\tau)$,
(2) if $f_{i}\left(t_{1}, \ldots, t_{n_{\imath}}\right)$ is a composed term, and if $t_{i}^{\mathcal{F}_{\tau}(X)}, i=1, \ldots, n_{i}$ are the n-ary term operations induced by t_{i}, then we define

$$
\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]^{\mathcal{F}_{\tau}(X)}=S_{n}^{n_{i}}\left(f_{i}^{\mathcal{F}_{\tau}(X)}, t_{1}^{\mathcal{F}_{\tau}(X)}, \ldots, t_{n_{i}}^{\mathcal{F}_{\tau}(X)}\right) \in \text { clone }^{(n)}(\tau)
$$

Therefore $\varphi: F^{\mathcal{F}_{\tau}(X)} \rightarrow \operatorname{clone}(\tau)$ is really a clone substitution. By definition, σ defines φ uniquely.

Conversely, assume that $\varphi: F^{\mathcal{F}_{\tau}(X)} \rightarrow \operatorname{clone}(\tau)$ is a clone substitution. Then for each f_{i} we choose a term $\sigma\left(f_{i}\right) \in W_{\tau}(X)$ such that $\sigma\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}=\varphi\left(f_{i}^{\mathcal{F}_{\tau}(X)}\right)$. It is clear that $\sigma:\left\{f_{i} \mid i \in I\right\} \rightarrow W_{\tau}(X)$ is a hypersubstitution, and the image of this hypersubstitution is the clone substitution φ. Clearly, φ defines; σ uniquely.
(ii): We are going to show that the mapping $\hat{\varphi}$: clone $(\tau) \rightarrow$ clone (V) defined by $t^{\mathcal{F}_{T}(X)} \mapsto \hat{\sigma}[t]^{\mathcal{F}_{V}(X)}$ is an homomorphism $\hat{\varphi}$ of clone (τ). Because of the bijection $t \mapsto t^{\mathcal{F}_{V}(X)}$ for every $t \in W_{\tau}(X)$ mentioned above the mapping φ is well-defined.

Since $e_{i}^{n \cdot \mathcal{F}_{\tau}(X)}=t^{\mathcal{F}_{\tau}(X)}$ for $t=x_{i} \in W_{\tau}\left(X_{n}\right)$, we have

$$
\varphi\left(e_{i}^{n, \mathcal{F}_{\tau}(X)}\right)=\varphi_{n}\left(x_{i}^{\mathcal{F}_{\tau}(X)}\right)=\hat{\sigma}\left(x_{i}\right)^{\mathcal{F}_{V}(X)}=x_{i}^{\mathcal{F}_{V}(X)}=e_{i}^{\mathcal{F}_{V}(n)} .
$$

K. DENECKE - K. GŁAZEK

Thus projections are mapped to projections. Now, for $t \in W_{\tau}\left(X_{n}\right), t_{1} \ldots \ldots t_{n} \in$ $W_{\tau}\left(X_{m}\right)$, it is easy to prove by induction on the complexity of term definition of t and by the axioms (C1) and (C2), that

$$
\begin{equation*}
\left.\hat{\varphi}\left(s_{m}^{m}\left(t^{\mathcal{F}_{\tau}(X)}, t_{1}^{\mathcal{F}_{\tau}(X)}, \ldots, t_{n}^{\mathcal{F}_{\tau}(X)}\right)\right)=S_{m}^{n}\left(\hat{\varphi}\left(t^{\mathcal{F}_{\tau}(X)}\right), \hat{\varphi}\left(t_{1}^{\mathcal{F}_{\tau}(X)}\right) \ldots \dot{\mathcal{Y}}^{(} t_{n}^{\mathcal{F}_{\tau}(X)}\right)\right) . \tag{*}
\end{equation*}
$$

Note that Proposition 3.4. (i) expresses the well-known fact that hypersub)stitutions of type τ and clone substitutions of clone (τ) are essent ially the same thing if the generating family of clone (τ) consists of the basic operations of the free algebra $\mathcal{F}_{\tau}(X)$. The reason for that is the natural bijection betwern terms of type τ and the term operations of the absolutely free algebra $\mathcal{F}_{\tau}(X)$ on countably many generators.

Since clone (V) is the quotient algebra clone $(\tau) / \mathrm{Id} V$, where Id V has to be regarded as a heterogeneous fully invariant congruence on clone (τ). there is a natural homomorphism

$$
\operatorname{nat}_{V}: \text { clone }(\tau) \rightarrow \text { clone }(V)
$$

The homomorphisms from Proposition 3.4. (ii) are compositions of the extensions of clone substitutions corresponding to hypersubstitutions (which exist since clone (τ) is free with $\left(F^{\mathcal{F}_{\tau}(X)(n)}\right)_{n \in \mathbb{N}^{+}}$as free generating system) and nat,..

As a consequence of Proposition 3.4, we have:
Corollary 3.5. The monoid $\left(\operatorname{Hyp}(\tau) ; \circ_{h}, \sigma_{\mathrm{id}}\right)$ is isomorphic to the monoid
 where φ_{id} is the identical clone substitution of clone (τ).

Proof. By Lemma 2.3.(i), we have a bijection between $\mathrm{Hyp}_{\mathrm{y}}(\tau)$ and Subst $_{\left\langle\left(F^{\mathcal{F}}(n)\right)_{n \in!+}\right\rangle}$. Further we have $\varphi_{\mathrm{id}}\left(f_{i}^{\mathcal{F}_{\tau}(X)}\right)=f_{i}^{\mathcal{F}_{-}(X)}$ $f_{i}\left(x_{1}, \ldots, x_{n_{1}}\right)^{\mathcal{F}_{\tau}(X)}=\sigma_{\text {id }}\left(f_{i}\right)^{\mathcal{F}_{T}(X)}$, and if $\sigma_{1}, \sigma_{2} \in H_{y p}(\tau)$. thell $\left(\sigma_{2} \circ_{h} \sigma_{2}\right)\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}=\hat{\sigma}_{1}\left[\sigma_{2}\left(f_{i}\right)\right]^{\mathcal{F}_{\tau}(X)}=\hat{\varphi}_{1}\left(\sigma_{2}\left(f_{i}\right)^{\mathcal{F}_{\tau}(X)}\right)=\hat{\psi}_{1}\left(\hat{\tau}_{2}\left(f_{i}^{\mathcal{F}_{F}(X)}\right)\right)=$ $\left(\varphi_{1} \circ_{s} \varphi_{2}\right)\left(f_{i}^{\mathcal{F}_{\tau}(X)}\right)$.

If $M \subseteq \operatorname{Hyp}(\tau)$ is a submonoid of the monoid of all hypersubstitutions of trpe τ, then by Proposition 3.4, there is a subset $Q \subseteq \operatorname{Subst}_{\text {clone }(\tau)}$ corresponding to M. Now we are asking whether a similar proposition is true for clone(I^{\prime}) if I is an M-solid variety of type τ.

Lemma 3.6. Let V be an M-solid variety of type τ, and let clone(I') be the clone of all term operations of the V-free algebra $\mathcal{F}_{1}(X)$. Then to $1 / \mathrm{it}$ corresponds a set of clone substitutions of clone (V).

M-SOLID VARIETIES AND Q-FREE CLONES

Proof. $\left\{f_{i}^{\mathcal{F}_{V}(X)} \mid i \in I\right\}$ is a generating system of clone (V). For any $\sigma \in M$ we define a mapping

$$
\varphi_{V}^{\sigma}:\left\{f_{i}^{\mathcal{F}_{V}(X)} \mid i \in I\right\} \rightarrow \operatorname{clone}(V)
$$

by $\varphi_{1}^{\sigma}\left(f_{i}^{\mathcal{F}_{V}(X)}\right)=\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}\left(\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}\right.$ is the term induced by $\sigma\left(f_{i}\right)$ on the V-free algebra $\mathcal{F}_{V}(X)$). We show that φ_{V}^{σ} is well-defined: Assume that $f_{i}^{\mathcal{F}_{1} \cdot(X)}=f_{j}^{\mathcal{F}_{V}(X)}$, then $f_{i}\left(x_{1}, \ldots, x_{n_{\imath}}\right) \approx f_{j}\left(x_{1}, \ldots, x_{n_{j}}\right) \in \operatorname{Id}(V)$ (here $\operatorname{Id}(V)$ denotes the set of all identities satisfied in V.) Since V is M-solid for every $\sigma \in M$, we have

$$
\hat{\sigma}\left[f_{i}\left(x_{1}, \ldots, x_{n_{\imath}}\right)\right] \approx \hat{\sigma}\left[f_{j}\left(x_{1}, \ldots, x_{n_{j}}\right)\right] \in \operatorname{Id}(V)
$$

and by definition of the extension $\hat{\sigma}$, we have

$$
\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}\left(x_{1}^{\mathcal{F}_{V}(X)}, \ldots, x_{n_{i}}^{\mathcal{F}_{V}(X)}\right)=\sigma\left(f_{j}\right)^{\mathcal{F}_{V}(X)}\left(x_{1}^{\mathcal{F}_{V}(X)}, \ldots, x_{n_{j}}^{\mathcal{F}_{V}(X)}\right)
$$

and thus

$$
\begin{aligned}
& S_{n}^{n_{i}}\left(\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}, e_{1}^{n_{i}, \mathcal{F}_{V}(X)}, \ldots, e_{n_{i}}^{n_{i}, \mathcal{F}_{V}(X)}\right) \\
= & S_{n}^{n_{J}}\left(\sigma\left(f_{j}\right)^{\mathcal{F}_{V}(X)}, e_{1}^{n_{j}, \mathcal{F}_{V}(X)}, \ldots, e_{n_{j}}^{n_{i}, \mathcal{F}_{V}(X)}\right) .
\end{aligned}
$$

By axiom (C3), it follows $\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}=\sigma\left(f_{j}\right)^{\mathcal{F}_{V}(X)}$, and by definition of φ_{V}^{σ}, we have $\varphi_{V}^{\sigma}\left(f_{i}^{\mathcal{F}_{V}(X)}\right)=\varphi_{V}^{\sigma}\left(f_{j}^{\mathcal{F}_{V}(X)}\right)$. Since $\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}$ is an n_{i}-ary operation from clone (V), the mapping φ_{V}^{σ} can be regarded as a family $\varphi_{V}^{\sigma}=\left(\left(\varphi_{V}^{\sigma}\right)_{n}\right)_{n \in \mathbb{N}^{+}}$. For projections in $\left\{f_{i}^{\mathcal{F}_{V}(X)} \mid i \in I\right\}$ we have

$$
\begin{aligned}
\varphi_{V}^{\sigma}\left(e_{i}^{n_{i}, \mathcal{F}_{V}(X)}\right) & =\sigma\left(e_{i}^{n_{i}}\right)^{\mathcal{F}_{V}(X)}=\hat{\sigma}\left(e_{i}^{n_{i}}\left(x_{1}, \ldots, x_{n_{i}}\right)\right)^{\mathcal{F}_{V}(X)} \\
& =\hat{\sigma}\left(x_{i}\right)^{\mathcal{F}_{V}(X)}=x_{i}^{\mathcal{F}_{V}(X)}=e_{i}^{n_{i}, \mathcal{F}_{V}(X)}
\end{aligned}
$$

This shows that φ_{V}^{σ} is a clone substitution of clone (V). If, conversely, φ_{V}^{σ} is a clone substitution of clone (V), then it defines a hypersubstitution σ with $\sigma\left(f_{i}\right)^{\mathcal{F}_{V^{\prime}}(X)}=\varphi_{V}^{\sigma}\left(f_{i}^{\mathcal{F}_{V}(X)}\right)$ for every $i \in I$.

To prove that φ_{V}^{σ} is well-defined, we needed that if two operation symbols induce the same term operations of $\mathcal{F}_{V}(X)$, then their images under a hypersubstitution σ also have these properties. We define:

DEFINITION 3.7. A hypersubstitution σ of type τ is called meaningful for the variety V of type τ from $f_{i}^{\mathcal{F}_{V}(X)}=f_{j}^{\mathcal{F}_{V}(X)}$, it follows that $\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}=$ $\sigma\left(f_{j}\right)^{\mathcal{F}_{1} \cdot(X)}$.

Now let Q_{M} be the set of clone substitutions of clone (V) corresponding to the submonoid M of $\operatorname{Hyp}(\tau)$ by Proposition 3.4. (i). Then we obtain the following characterization of M-solidity:

Theorem 3.8. For a submonoid $M \subseteq \operatorname{Hyp}(\tau)$ the variety V of type τ is M-solid if and only if each $\sigma \in M$ is meaningful for V, and for $Q_{M}=\left\{\psi_{1} \cdot\right\}$ $\sigma \in M\}$ the algebra clone (V) is Q_{M}-free with respect to itself with Q_{M}-basis $F^{\mathcal{F}_{V}(X)}$.

Proof. Assume that V is M-solid. By Lemma 3.6, every $\sigma \in M$ is meaningful for V. Let $\varphi:\left\{f_{i}^{\mathcal{F}_{V}(X)} \mid i \in I\right\} \rightarrow \operatorname{clone}(V)$ be an element of Q_{M} (the set of all clone substitutions of clone (V) corresponding by Lemma 3.6 to $M I$). By definition of φ, there is a hypersubstitution $\sigma \in M$ such that for every $i \in I$ we have $\varphi\left(f_{i}^{\mathcal{F}_{V}(X)}\right)=\sigma\left(f_{i}\right)^{\mathcal{F}_{V}(X)}$. We are going to show that φ can be extended to a clone endomorphism of clone (V). Clearly, $\left\{f_{i}^{\mathcal{F}_{V}(X)} \mid i \in I\right\}$ is a generating system of clone (V). The mapping clone $(\tau) \rightarrow \operatorname{clone}(V): t \mapsto t^{\mathcal{F}_{V^{\prime}(X)}}$ is obviously a surjective homomorphism with the kernel $\operatorname{Id}(V)$. For any $\sigma \in M$. $\sigma[\operatorname{Id}(V)]$ is the kernel of the homomorphism clone $(\tau) \rightarrow \operatorname{clone}(V): t \mapsto \hat{\sigma}[t]^{\mathcal{F}_{V^{\prime}(X)}}$ considered in Proposition 3.4. (ii). Since V is M-solid, every identity of V is an M-hyperidentity, that means, $\operatorname{Id}(V) \subseteq \sigma[\operatorname{Id}(V)]$. By the general homomorphism theorem, there exists an homomorphism clone $(V) \rightarrow$ clone $(V): t^{\mathcal{F}_{V^{(}(X)}} \mapsto$ $\hat{\sigma}[t]^{\mathcal{F}_{V}(X)}$, and this homomorphism extends φ. So, clone (V) is $Q_{M_{-}}$-free with respect to itself, and $\left(F^{\mathcal{F}_{V}(X)(n)}\right)_{n \in \mathbb{N}^{+}}$is a $Q_{M^{-}}$free independent generating system.

Conversely, we assume that clone (V) is Q_{M}-free freely generated by the $Q_{M^{-}}$independent set $\left(F^{\mathcal{F}_{V}(X)(n)}\right)_{n \in \mathbb{N}^{+}}$. That means, every $\varphi \in Q_{M}$ can be extended to a clone endomorphism of clone (V). Since every $\sigma \in M$ is meaningful for V from $f_{i}^{\mathcal{F}_{V}(X)}=f_{j}^{\mathcal{F}_{V}(X)}$, we obtain $\varphi\left(f_{i}^{\mathcal{F}_{V}(X)}\right)=\sigma\left(f_{i}\right)^{\left.\mathcal{F}_{1} \cdot X\right)}=$ $\sigma\left(f_{j}\right)^{\mathcal{F}_{V}(X)}=\varphi\left(f_{j}^{\mathcal{F}_{V}(X)}\right)$.

If $t \approx t^{\prime} \in \operatorname{Id}(V)$, then $t^{\mathcal{F}_{V}(X)}=t^{\mathcal{F}_{V}(X)}$, and applying the extension of we get $\hat{\varphi}\left(t^{\mathcal{F}_{V}(X)}\right)=\hat{\varphi}\left(t^{\mathcal{F}_{V}(X)}\right)$, and thus $\hat{\sigma}\left[t^{\prime}\right]^{\mathcal{F}_{V}(X)}$, i.e., $\hat{\sigma}[t] \approx \hat{\sigma}\left[t^{\prime}\right] \in \operatorname{Id}\left(I^{\prime}\right)$. This is true for any $\sigma \in M$ and $t \approx t^{\prime}$ is an M-hyperidentity.

Examples

In [8], all clones generated by a single unary operation f^{A} which are free with respect to itself, i.e., Q-free with respect to itself for $Q=\mathrm{Hyp}_{\mathrm{p}}(1)$ were determined. By Theorem 3.8, these clones can be regarded as clones of term operations of algebras of type $\tau=(1)$ which generate solid varieties. An algebra $\mathcal{A}=\left(A ; f^{\mathcal{A}}\right)$ of type $\tau=(1)$ is called a mono-unary algebra (or 1-unoid). Instead of $f^{\mathcal{A}}$, we will write f. As usual, we define powers f^{k} of f by $f^{(0)}(x):=x$ and $f^{k}(x)=f\left(f^{k-1}(x)\right), k \geq 1$. Every variety of mono-unary algebras is defined
either by an identity of the form

$$
f^{k}(x) \approx f^{l}(x) \quad(k, l \in\{0,1,2, \ldots\})
$$

or by an identity of the form

$$
\left.f^{k}(x) \approx f^{k}(y) \quad(k \geq 1) \quad \text { (see, e.g., [13] }\right)
$$

Identities of the second form cannot be hyperidentities since, by the substitution $f \mapsto \mathrm{id}_{A}$, we get $x \approx y\left(\mathrm{id}_{A}\right.$ denotes the identity function on $\left.A\right)$.

For $f: A \rightarrow A$ let $\operatorname{Im} f:=\{f(a) \mid a \in A\}$ be the image of f, and let $\lambda(f)$ denote the least non-negative integer m such that $\operatorname{Im} f^{m}=\operatorname{Im} f^{m+1}$.

In [8], it was proved:
LEMMA 4.1. ([8]) The clone $\langle f\rangle_{\mathcal{O}_{A}}$ generated by a single unary function defined on A is free with respect to itself if and only if $\left|\operatorname{Im} f^{\lambda(f)}\right|>1$ (i.e., if $\langle f\rangle_{\mathcal{O}_{A}}$ contains no constant operation).

Let σ_{x} be the hypersubstitution $\sigma_{x}: f \mapsto x$. Then every hypersubstitution different from σ_{x} is called a pre-hypersubstitution of type $\tau=$ (1). All prehypersubstitutions of type $\tau=(1)$ form a monoid M, and we can consider pre-hyperidentities and presolid varieties ([4]). By Theorem 3.8, the clone of a presolid variety is Q_{M}-free with the set $\{f\}$ consisting of the only (unary) fundamental operation f as Q_{M}-independent generating set. In this case, we will speak of pre-free clones and pre-independent sets. Now we have:

Proposition 4.2. Every clone $\langle f\rangle_{\mathcal{O}_{A}}$ generated by a single unary operation defined on A is pre-free relative to itself with $\{f\}$ as pre-independert generating set.

Proof. We show that every algebra $\mathcal{A}=\left(A ; f^{A}\right)$ with one unary fundamental operation is presolid (generates a presolid variety). Obviously, $\left(A ; \mathrm{id}^{A}\right)$ is solid and thus, presolid. Assume that $f^{A} \neq \mathrm{id}^{A}$. If \mathcal{A} satisfies an identity of the form $f^{k}(x) \approx f^{l}(x)$, then by the hypersubstitution $f \mapsto f^{m}, m \geq 1$, we obtain $\left(f^{m}\right)^{k} \approx\left(f^{m}\right)^{l} \in \operatorname{Id} \mathcal{A}$, and if \mathcal{A} satisfies an identity $f^{k}(x) \approx f^{k}(y)$, we get $\left(f^{m}\right)^{k}(x) \approx\left(f^{m}\right)^{k}(y) \in \operatorname{Id} \mathcal{A}$.

REFERENCES

[1] ACZÉL, J.: Proof of a theorem of distributive type hyperidentities, Algebra Universalis 1 (1971), 1-6.
[2] BELOUSOV, V. D.: Systems of quasigroups with generalized identities, Uspekhi Mat. Nauk 20 (1965), 75-146 [Translation: Russian Math. Surveys 20 (1965), 75-143]. (Russian)
[3] BIRKHOFF, G.--LIPSON, J. D.: Heterogeneous algebras, J. Combin. Theory 8 (1970), 115133.

K. DENECKE - K. GłAZEK

[4] DENECKE, K.: Pre-solid varieties, Demonstratio Math. 27 (1994), 741750.
[5] I)ENECKE, K. : Hyperidentities and Clones. Manuscript (250 pages), Potsdam, 1995.
[6] IDENECKE, K.-KOPPITZ, J. : Presolid varieties of commutative semigroups. Tatra MIt. Math. Publ. 5 (1995), 35-41.
[7] DENECKE, K.-LAU, D.-PÖSCHEL, R.--SCHWEIGERT, D. : Hyperidentities. hyperequational classes and clone congruences. In: Contributions to General Algebra 7. Wien. Stuttgart, 1991, pp. 97-118.
[8] DENECKE, K.-- LAU, D.--PÖSCHEL, R.--SCHWEIGERT. D. : Solidifyable clones. In: General Algebra and Applications, Berlin, 1993, pp. 4169.
[9] DENECKE, K.-LAU, D. PÖSCHEL, R. SCHWEIGERT, D. : Free clomes and sohd varieties. In: General Algebra and Discrete Mathematics, Berlin, 1995. pp. 1169 .
[10] DENECKE, K. REICHEL, M.: Monoids of hypersubstitutions and M-sohd varieties. Min: Contributions to General Algebra 9, Wien, Stuttgart, 1995, pp. 117126.
[11] G£AZEK, K.: Independence with respect to family of mappings in abstract algebras. Dissertationes Math. (Rozprawy Mat.) 81 (1971).
[12] HIGGINS, P. J.: Algebras with a scheme of operators, Math. Nachr. 27 (1963). 115 1:32
[13] JACOBS, E.--SCHWABAUER, R.: The lattice of equational classes of algebras with ons unary operation, Amer. Math. Monthly 71 (1964), 151155.
[14] LAWVERE, F. W.: Functorial semantics of algebraic theories, Proc. Nat. Acad. Aci. U.S.A. 50 (1963), 869-872.
[15] MARCZEWSKI, E. : Independence with respect to a family of mappings. Colloq. Math. 20 (1968), 11-17.
[16] NEUMANN, W. D.: On Mal'cev conditions, J. Austral. Math. Soc. 17 (1977). 376 (384.
[17] SCHWEIGERT, D. : Hyperidentities. In: Algebras and Order, Dordrecht, 1993. pp. 405 F : 0166.
[18] TAYLOR, W.: Characterizing Mal'cev conditions, Algebra Universalis 3 (1973). 351 397.
[19] TAYLOR, W.: Hyperidentities and hypervarieties, Aequationes Math. 23 (1981). 111 127.
[20] TAYLOR, W. : Abstract clone theory. In: Algebras and Order, Dordrecht. 1993, pp. 507 530.

Received May 16, 1995
Revised June 5, 1996

* Institut für Mathematik Universität Potsdam Am Neuen Palais D-14415 Potsdam GERMANY
** Uniwersytet Wroctawski Instytut Matematyczny pl. Grunwaldzki 2 PL-50-384 Wroctaw POLAND
and
Technical University of Ziclona Ciora Instytut Matematyki Podgórna 50 PL-65-246 Zielona Góra POLAND

[^0]: AMSSubject Classification (1991): Primary 08B20, 08A40.
 Key words: hyperidentity, solid variety, M-solid variety, clone.
 The research of the second author was partially supported by a DAAD grant.

