
Mathematica Slovaca

Elżbieta Sadowska
Almost midconvex and almost convex set-valued functions

Mathematica Slovaca, Vol. 50 (2000), No. 4, 453--461

Persistent URL: http://dml.cz/dmlcz/136786

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/136786
http://project.dml.cz


Mathematica 
Slovaca 

©2000 
. * . . - . _ , . /^r\r\r\\ M A «p- AS* Mathematical Institute 
Math. Sl0VaCař 50 (2000), NO. 4, 453-461 Slovák Academy of Sciences 
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SET-VALUED FUNCTIONS 

ELŽBIETA SADOWSKA 

(Communicated by Michal Zajac ) 

ABSTRACT. Let X be a topological vector space and D be a convex and open 
subset of X. Let Y be a separable normed space. Denote by ^ and £s2 proper 
linearly invariant a-ideals in X and X x X, respectively, satisfying certain con
ditions (a) and (b). Given a set-valued function F: D —> cc(Y) such that 

m±mcF(?L±y) ^ , . in D,D, 

we claim that there exists a unique midconvex set-valued function G: D —> cc(Y) 
such that 

F(x) = G(x) 3^-a.e. in D. 

A similar result is obtained for almost convex set-valued functions. 

This paper is devoted to 5-almost midconvex and S-almost convex set-
valued functions. We will answer the question if every almost midconvex (convex) 
set-valued function is equivalent to a midconvex (convex) one. This problem was 
considered for single-valued functions by M. K u c z m a and R. G e r (cf. [4], 
[3] and [2]). Earlier such a question was raised for additive functions by P. Erdos 
in I960. A positive answer was given by N. G. de Bruijn and W. B. Jurkat; some 
generalization was also obtained by J. L. D e n n y and R. G e r (cf. [4], [2] and 
the references given there). 

We shall use definitions and notations introduced by M. K u c z m a in [4]. 
Nevertheless we will recall some definition and lemmas. 

Let X be an arbitrary set and let 2X denote the set of all subsets of X. 
A non-empty family 3 C 2X is said to be a -ideal, if it satisfies conditions 

(i) AeSAB CA = > 5 G 3 , 
oo 

(ii) / 4 n G 3 , rceN, ==> |J 4 n e 3 . 
7 1 = 1 
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If a a -ideal S additionally satisfies the condition 

(iii) X i 3 , 

then it is called proper. 

Let 5 b e a proper a -ideal. We say that a condition depending on x G X is 
satisfied 3-almost everywhere in X (3-a .e . in X ) , if there exists a set .4 G 3 
such that the given condition is satisfied for all x £ X \A. 

We say that a a -ideal defined on a (not necessarily commutative) group 
(X, +) is linearly invariant, if it satisfies the condition 

(iv) V x G X VAeQ x-AeZ. 

In the sequel the phrase "a proper linearly invariant a -ideal" will be abbre

viated to "a p.l.i. cr-ideaV. 

LEMMA A . ([4]) / / (X, +) is a group and 3 C 2X is a linearly invariant 
a -ideal, then for all x G X and A G 3 we have: 

- A e 3 , X + A G 3 , A + .XG3. 

Let us define, for an arbitrary set A C X x X and x G X', the set 

A[x]:={yeX: (x,y) e A} . 

Let S x be a cr-ideal in X and let S 2 be a cr-ideal in X" x X . We say that 
cr-ideals &-_ and S 2 are conjugate, if for any set A G 3 2 

A[x] G ^ 3 1 -a.e. in X . 

Now let X be a topological vector space. In the sequel we will be considering 
cr-ideals S 1 and S 2 in X and X x X, respectively, satisfying conditions 

(a) A G 9?! A a G R =-=> aA e 9 X , 
(b) Ae%=> T(A)e%: 

where T : X x X - » X x X is given by the formula T(x, y) :-= \(x + y, x — y), 
x,y G X . 

LEMMA B . ([4]) Le£ 3 fe a p./.i. a-ideal in X satisfying condition (a). 1/ 
F) C X is a non-empty open set, then D $_ 3». 

LEMMA C. ([4]) Fe£ X fee a topological vector space, D C X be a con
vex and open set, ^s be a p.l.i. a-ideal in X satisfying condition (a) and 
let f: D —•> [—oo, oo) and g: D -> [—00,00) 6e midconvex functions equal 
3 -a. e. in D. Then f = g in D. 

Now let us recall a result of M. K u c z m a. 
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THEOREM A . Let D be a convex and open subset of a topological vector 
space X. Let us denote by ^s1 and 5 2 p.l.i. conjugate a-ideals in X and XxX, 
respectively, satisfying conditions (a) and (b). 

If f: D —r [—00,00) is ^s2-almost midconvex, then there exists a unique 
midconvex function g: D -> [—00,00) such that f(x) = g(x) S 1 -a.e. in D. 

In fact K u c z m a ' s theorem is formulated for X = W1 and for real-valued 
functions, but it can be proved for any topological vector space X and functions 
with values in [—00, 00), in the same wray (see also R. G e r [2; Theorem 3] and 
its proof for e = 0). 

Let y be a topological vector space. We will denote by n ( y ) the family of all 
non-empty subsets of the set Y, by ccl(y) the family of all convex and closed 
elements of n( l r ) and by cc(y) the family of all convex and compact elements 
of n ( y ) . 

A set-valued function F: D —> n ( y ) is called midconvex if 

F(x) + F(y) _ (Ң*), x,y Є D. 

If 3 2 is a (7-ideal in X x X and the above condition holds 3 2 -a.e. in D x D, 
then F is called Q2 -almost midconvex. 

Using the quoted above theorem we can prove the following result. 

THEOREM 1. Let X be a topological vector space and D be a convex and 
open subset of X. Denote by <^s1 and $s2 two conjugate p.l.i. a-ideals in X and 
X x X, respectively, satisfying conditions (a) and (b). 

If a set-valued function F: D -> ccl(R) is ^s2-almost midconvex then there 
exists a unique midconvex set-valued function G: D -> ccl(M) such that 

F(x) = G(x) 3^-a.e. in D. (1) 

P r o o f . Let us consider two functions / : D -> [—00,0c) and g: 
D -> (—00, 00] defined by the formulas 

. . f inf F(x), if F(x) is bounded below, 
f(x) := < 

(̂  — 00 , if F(x) is unbounded below, 
and 

s u p F ( x ) , if F(x) is bounded above, 
g(x) := 

+00 , if F(x) is unbounded above. 

Since F is 3 2 -almost midconvex, the functions / and g are such that 

f(x) + f(y) > f (x + y\ d g(x) + g(y) < (x + v 

Э2-a,e. in D x D . 

455 



ELZBIETA SADOWSKA 

Thus by K u c z m a ' s theorem there exist amidconvexfunction r : D —> [-00,00) 
equal to / 3^-a.e. in D and a midconcave function s: D —r (—00, 00] equal to 
g Sj-a.e. in D. Let A C X be such that / (x ) = r(x) and #(x) = s(x) for all 
xeD\A. 

We will show that r(x) ^ s(x) for all x £ D. Notice that if r is equal to 
—00 at some point x G D, then it is equal to — oc everywhere in D, and if 
s(x) = +00 for some x G D, then s equals +00 for every x G D. So. when 
r = —00 or 5 E +00, then, certainly, r(x) ^ s(x), x e D. 

Now assume that both of these functions are real-valued. If x belongs to 
D \ A, then r(x) — f(x) ^ g(x) — s(x). Suppose now that there exists x0 G D 
such that r(x0) > s(x0). Certainly xQ G A. Since D is an open set, there exists 
a neighbourhood U of x0 contained in D. Without loss of generality wre may 
assume that U = x0 + V0, wmere V0 is a symmetric neighbourhood of zero 

(v0 = -v0). 
Fix an arbitrary x G (x0 + V0) \ A and take y := 2x0 — x E (x0 + V0). Since 

x ^ .A, r(x) ^ 5(x) we have 

< r K ) = r f i l l ) «rw+iw 
-s(x) + r(y) 

^ 2 

Thus 5(2/) < r(y). This means that y £ A and consequently x = 2x0 — y e 

So (x0 + V0) \ -4 C 2x0 - i G ^ and hence (x0 + F0) \ A G 3 ^ . Since 

(x0 + V0) C [(s0 + V0) \ A] U A G 3?x , 

then (:r0 T V Q J G ^ , and this is a contradiction with Lemma B. Hence the set-
valued function G(x) := {y G R : r(x) ^ H ^ s(x)} is well-defined and it is 
midconvex. 

Nowr let us take another midconvex set-valued function H: D —> ccl(S) equal 
to F 5 1-a .e . in D. Certainly it can be represented in the following way H(x) — 
{y G M : u(x) ^ y ^ v(x)} , x G F>. where u: D -± [—00, 00) is midconvex and 
v: D ^ (—oc, 00] is midconcave. Because it = r 3C

1 -a.e. in D and both of these 
functions are midconvex, then, according to Lemma C, they are equal. Similarly 
v is equal to s, so in fact H = G in D, wThich means that G is unique • 

To prove the next theorem we need the following result (cf. [1]) which forces 
us to make an additional assumption that the set-valued functions under con
sideration have values in a separable normed space. 

456 



ALMOST MIDCONVEX AND ALMOST CONVEX SET-VALUED FUNCTIONS 

THEOREM B . Let Y be a separable normed space. Then there is a countable 
set W of continuous linear functionals on Y such that if K is a non-empty, 
compact, convex subset of Y and B is a closed ball in Y disjoint from K, then 
there exists f G TV for which m a x / ( i f ) < inf f(B). 

The main result of this paper reads as follows: 

THEOREM 2. Let X be a topological vector space, D be a convex and open 
subset of X and Y be a separable normed space. Denote by 3 :

1 and S 2 p.l.i. con
jugate a-ideals in X and X x X, respectively, satisfying conditions (a) and (b). 

If a set-valued function F: D -» cc(Y) is 5 2 -almost midconvex, then there 
exists a unique midconvex set-valued function G: D —•> cc(F) such that 

F(x) = G(x) 9-,-a.e. in D. (2) 

P r o o f . It is easy to verify that for each p G F* the set-valued function 
p o F: D —)• 2R is Q2 -almost midconvex. Notice that p o F has compact and 
convex values in M, so by Theorem 1 for each p G Y* there exists a midconvex 
set-valued function Fp: D -> ccl(R) and a set Ap G S 1 such that for all x G 
D\Ap one has p o F(x) — F (x). The function Gp: D -» 2Y defined as follows 

Gp(x) ~{yeY: p(y) G Fp(x)} _ x G £ , 

has non-empty, convex and closed values. 
Let W be a countable family of continuous linear functionals on Y as in 

Theorem B . Let us consider the set-valued function G: D —> 2Y defined by 
the formula 

G(x):= p | G p (x ) , xeD. 

Pew 

Clearly, all the values G(x) are convex and closed. 
Notice that, because the set W is countable, IJ A belongs to a-ideal S x . 

pew 
We will show that 

F(x) = G(x), x G D \ | J Ap . 
pew 

Let us take an x G D \ IJ A For each y G F(x) we have p(y) G (p c F)(x) = 

Fp(x) so, by definition, y G G p (x) . Hence F(x) C Gp(x) for each p G TV and, 
as a consequence, F(x) C G(x). Now let us take y G G(x) . For every p eW we 
have p(y) G Fp(x) = ( p o F ) ( x ) . Suppose that y £ F(x). Then, because F(x) 
is compact and convex, there exists a p0

 G W a n d a constant C G R such that 
p0(y) > c> max p0(z) ^ p0(^) for all z G F ( x ) . Hence p0(y) g (p0 o F ) ( x ) , 

which is a contradiction. Thus G(x) = F(^) for ^ - a l m o s t all x from D . 
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To show that G is midconvex we shall first prove the midconvexity of G 
for arbitrarily chosen p G Y*. Let us fix arbitrary x,y G D, u G G (x) and 
v G G (y). Then, by midconvexity of F' 

/ M + I A = pfrO+Pfo) f p W + -Fp(g) l^ + H 

ед + G ( y ) op(x) + gp(ž/) 

2 C 2 C G~ 

2 / 2 2 p V 2 

that is 2$s G G p ( - * - ) . Hence G p ( z ) + G p ( y ) C <?.,(-£*). So 

' , ( ^ ) • 

for any p eW. Thus 

^ ' ^ - ( ^ ^ ( ^ 

i.e. G is midconvex. 
The next step of our proof is to show that the values of the function G are 

not empty. Suppose that there exists a point x0 G D for which G(x0) = 0. 
Because for all x G D \ \J A we have that G(x) = F(x) and the values of F 

Pew 
are not empty, there exists p G W such that x0 G A . Let us take a symmetric 
neighbourhood V of zero such that x0 + V C D. Let us choose an arbitrary 
point x G (x0 + V) \ U A, • Notice that such an element x exists because 

Pew 
otherwise x0 + V C \J A G S x , which contradicts Lemma B. Of course 

Pew 
G(x) = F(x) ^ 0. Let us take y := 2x0 - x G x0 + V. Then 

It means that G(H) = 0 and hence y G U A,- Thus ,x G 2x0 — [j A . 
pew pew 

Consequently, we have 

Xo + Vc((x0 + V)\ [JAp)u [JApc(2x0- \jAp)u [j Ap e % , 
^ pew ' Pew ^ Pew ' pew 

which contradicts Lemma B. 
Notice that all the values of G are compact. To show this let us fix an arbi

trary x0 and take a neighbourhood \\ C D of xQ. The set V2 := ^(\\ — x0) + 
x0 C D is open and non-empty, so V2 £ 5 1 . Hence there exists an x G V2 such 
that FX^r) = G(x). Let us take y = 2x — x0 G V̂  and some H G G{y). Then 

GQEQ) + ?J G(x0) + g(H) 
2 2 < ^ v * / -
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Because G(x0) is a closed subset of the compact set 2G(x) — u, it is compact 
itself. 

To verify the uniqueness of G let us consider another midconvex set-valued 
function H: D —:> cc(Y) equal to F $sl -a.e. in D. Suppose that G(x) ^ H(x) 
for some x e D. Let u G H(x) \ G(x) (or u G G(x) \ H(x)). By Theorem B, 
there is p G IV for which p(u) £ p(G(x)) (or p(u) <£ p(H(x))). Hence p(H(x)) \ 
p(G(x)) ± 0 (or p(G(x)) \p(H(x)) ^ 0) . On the other hand, for all p G Y* 
the superpositions poH and poG are midconvex and 9^-a.e. equal in D. Hence, 
by Theorem V they are equal, which gives a contradiction and ends the proof. 

G 

We say that a set-valued function F: D —> n(l r ) is convex if it satisfies 
the following condition 

XF(x) + (1 - X)F(y) C F(Xx + (1 - A)») (3) 

for all A G [0,1] and x,y G D. 

A set-valued function F : D -» n(F) is termed S 2 -almost convex if for all 
A G [0,1] there exists a set M(A) G 5s 2

 s u c"1 that condition (3) is satisfied for 
all (x,y)eD2\M(X). 

To prove the next result we will use the following theorem of R. G e r 
(cf. [2; Theorem 2] and its proof for e = 0): 

THEOREM C For each 5s2-almost convex function f: D —> [—oo,-fcxD) there 
exists a convex function g: D -> [—oc,-foo) swc/i £fta£ f = g 5sx -almost every
where in D. 

In fact it wras formulated for real-valued functions, but it can be proved for 
functions with values in [-co, +oo), in the same way. 

THEOREM 3 . Let X be a topological vector space and D be a convex and open 
subset of X. Denote by 5sx and 5s2 p.l.i. conjugate a-ideals in X and X x X. 
respectively, satisfying conditions (a) and (b). 

If a set-valued function F: D —> ccl(R) is 5s2 -almost convex, then there exists 
a unique convex set-valued function G: D -> ccl(R) such that 

F(x) = G(x) %-a.e. in D. 

P r o o f . If we define functions / and g as in the proof of Theorem 1, it is 
enough to notice that functions / and g are ^ - a l m o s t convex and 32-almost 
concave, respectively. Hence, by Theorem C, there exist a convex function r 
equal to / 3C

1 -a.e. in D and a concave function 5 equal to g 3^-a.e. in D. The 
functions r and s are midconvex and midconcave, respectively, so by Theorem A 
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they are unique and like in the proof of Theorem 1 we obtain that r(x) ^ s(x), 
x G D. Hence we infer that G: D —•> ccl(R) given by the formula 

G(x) := {y G R : r(x) ^y^ s(x)} , x G D , 

is well-defined, convex and unique function equal to F S^-a.e. in D. D 

THEOREM 4. Let X be a topological vector space, D be a convex and open 
subset of X and Y be a separable normed space. Denote by Qx and 3 2 p.Li. con
jugate a -ideals in X and X x X, respectively, satisfying conditions (a) and (b). 

If a set-valued function F: D —r cc(Y) is S 2 -almost convex, then there exists 
a unique convex set-valued function G: D —> cc(Y) such that 

F(x) = G(x) Q1-a.e. in D. 

P r o o f . The proof of this theorem is similar to the proof of Theorem 2. Let 
us notice that for each p G Y* a set-valued function poF: D —> 2 s is 92-almost 
convex. Notice that poF has compact and convex values in R, so by Theorem 3 
for each p G Y* there exists a convex set-valued function F : D -± ccl(R) and 
a set A G ^ such that for all x G D\A one has poF(x) = F (x). A function 
Gp:D->2Y defined by 

Gp(x) := {y G Y : p(y) G Fp(x)} , x G JO , 

has non-empty, convex and closed values. 

Let W be a countable family of continuous linear functionals on Y as in The
orem B. Let us consider a set-valued function G: D —r 2 y defined by the formula 

G(ar):= f | G p (x ) , xeD. 
Pew 

Clearly, all the values G(x) are convex and closed. 

Notice that because the set W is countable, |J A belongs to the a -ideal 
pew 

3C
1. Similarly as in the proof of Theorem 2 we can show that 

F(x) = G(x), x £ D \ |J Ap , 
pew 

and that the function G is convex (and of course midconvex). Hence by The
orem 2 the function G has non-empty convex and compact values and it is 
the only convex function such that F(x) = G(x) for 3X-almost all x G D. • 
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