Ján Jakubík Regular representations of semisimple MV-algebras by continuous real functions

Mathematica Slovaca, Vol. 51 (2001), No. 3, 269--274

Persistent URL: http://dml.cz/dmlcz/136806

### Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.



This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz



Math. Slovaca, 51 (2001), No. 3, 269-274

# REGULAR REPRESENTATIONS OF SEMISIMPLE *MV*-ALGEBRAS BY CONTINUOUS REAL FUNCTIONS

#### Ján Jakubík

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. In this paper we define the notion of the regular representation of an MV-algebra  $\mathcal{A}$  by continuous real functions and we prove the existence of such representation in the case when  $\mathcal{A}$  is semisimple.

## 1. Introduction

A homomorphism  $\varphi$  of an MV-algebra  $A_1$  into an MV-algebra  $A_2$  is said to be *regular* if, whenever  $x \in A_1$ ,  $X \subseteq A_1$  and  $x = \sup X$ , then  $\varphi(x) = \sup \varphi(X)$ , and if the corresponding dual condition is also satisfied.

Analogously we define a regular homomorphism of a lattice ordered group  $G_1$  into a lattice ordered group  $G_2$ .

This terminology is in accordance with [10], where it was used for the case of Boolean algebras.

For a topological space M we denote by  $F_{cb}(M)$  the set of all continuous bounded real functions on M. Under the addition and the partial order defined componentwise,  $F_{cb}(M)$  is an abelian lattice ordered group with the strong unit  $u_M$ , where  $u_M(t) = 1$  for each  $t \in M$ .

By applying the notation from [2] we can construct the MV-algebra

$$\Gamma(F_{cb}(M), u_M).$$

We denote this MV-algebra by  $A_1(M)$ .

The underlying set of  $A_1(M)$  is the set of all  $f \in F_{cb}(M)$  such that  $0 \leq f(t) \leq 1$  for each  $t \in M$ .

Key words: MV-algebra, regular representation, Dedekind completion, divisible hull.

<sup>2000</sup> Mathematics Subject Classification: Primary 06F35.

Supported by grant VEGA 2/6087/99.

#### JÁN JAKUBÍK

Let A be an MV-algebra. If there exists a topological space M and an isomorphism  $\varphi$  of A into  $A_1(M)$ , then we say that  $\varphi$  is a representation of A by continuous real functions.

It is obvious that for each topological space M,  $A_1(M)$  is a semisimple MV-algebra. Hence an MV-algebra A has a representation by continuous functions only if A is semisimple.

Let A be a semisimple MV-algebra; we denote by  $A^D$  and  $A^d$  the *Dedekind* completion or the divisible hull of A, respectively. Then A is a subalgebra of  $A^{dD}$ . (For the terminology, cf. Section 2 below.)

If  $X_1$ ,  $X_2$  and Y are sets with  $X_1 \subseteq X_2$  and  $\varphi$  is a mapping of  $X_2$  into Y, then we denote by  $\varphi|_{X_1}$  the corresponding restriction to the set  $X_1$ .

In the present paper we prove:

- ( $\alpha$ ) Let A be a semisimple MV-algebra. There exists a compact Hausdorff topological space M such that:
  - (i) the space M is extremal (i.e., the closure of each open subset of M is open);
  - (ii) there exists an isomorphism  $\varphi_1$  of the *MV*-algebra  $A^{dD}$  onto the *MV*-algebra  $A_1(M)$ ;
  - (iii) the mapping  $\varphi = \varphi_1|_A$  is a regular representation of A by continuous real functions.

For proving  $(\alpha)$ , we apply a well-known result on vector lattices (namely, [11; Theorem V. 3.1]).

Again, let M be a topological space. Assume that  $A_2$  is a subalgebra of  $A_1(M)$ . An isomorphism  $\psi$  of an MV-algebra A into  $A_2$  is said to be *separating* if, whenever  $t_1$  and  $t_2$  are distinct elements of M, then there exists  $x \in A$  such that

 $\varphi(x)(t_1) > 0$  and  $\varphi(x)(t_2) = 0$ .

The following result is contained in the monograph [2; Section 3.6]:

- ( $\beta$ ) For any *MV*-algebra *A* the following conditions are equivalent:
  - (i) A is semisimple;
  - (ii) there exists a compact Hausdorff space M and a separating isomorphism of A into  $A_1(M)$ .

For proving  $(\beta)$ , deep results on free *MV*-algebras have been used.

We remark that if M,  $A_1(M)$  and  $A_2$  are as above and if  $\psi$  is a separating isomorphism of A into  $A_2$ , then  $\psi$  need not be regular (cf. the example in Section 2 below).

Further, we remark that a related result is proved in [4; Theorem 2.5] (in this theorem it is assumed that the MV-algebra under consideration is semisimple and divisible).

### 2. Preliminaries and auxiliary results

For lattice ordered groups we apply the notation and terminology as in [1] and [3].

We recall briefly some relevant notions from the theory of MV-algebras.

An MV-algebra  $\mathcal{A}$  is defined to be a nonempty set A with binary operations  $\oplus$ , \*, a unary operation  $\neg$  and unary operations 0, 1 on A such that the conditions (M1)-(M8) from [5] are satisfied; cf. also [6]. (For a formally different but equivalent definition cf., e.g., [9].)

If no misunderstanding can occur, then we write A instead of A.

We will apply in an essential way the following results (\*) and (\*\*) (cf. [9]):

(\*) Let G be an abelian ordered group with a strong unit u. Let A be the interval [0, u] of G. For  $a, b \in A$  we put

$$a \oplus b = (a+b) \wedge u$$
,  $\neg a = u - a$ ,  
 $a * b = \neg (\neg a \oplus \neg b)$ ,  $1 = u$ .

Then the algebraic system  $\mathcal{A} = (A; \oplus, *, \neg, 0, 1)$  is an *MV*-algebra.

The *MV*-algebra from (\*) will be denoted by  $\Gamma(G, u)$ .

(\*\*) For each MV-algebra  $\mathcal{A}$  there exists an abelian lattice ordered group G with a strong unit u such that  $\mathcal{A} = \Gamma(G, u)$ .

In view of (\*\*) the lattice operations  $\vee$  and  $\wedge$  are defined on A; the corresponding lattice will be denoted by  $\ell(A)$ .

The MV-algebra A is said to be complete if the lattice  $\ell(A)$  is complete.

Let A and G be as above. A is called *semisimple* if the lattice ordered group G is archimedean. (Other equivalent definitions have been used in the literature; also, instead of "semisimple" the term "archimedean" has been applied. Cf., e.g., [7].)

Let A be an MV-algebra,  $a \in A$ ,  $a_i = a$  (i = 1, 2, ..., n). We denote

$$a_1 \oplus a_2 \oplus \cdots \oplus a_n = n \cdot a;$$

as usual, we write

$$a_1 + a_2 + \dots + a_n = na,$$

where + is the group operation in G.

The *MV*-algebra A will be called *divisible* if for each  $b \in A$  with  $b \neq 0$  and each positive integer n there exists  $a \in A$  such that

 $\begin{array}{ll} (\mathbf{i}_1) & n \cdot a = b, \\ (\mathbf{ii}_1) & a < 2 \cdot a < 3 \cdot a < \dots < (n-1) \cdot a < b. \end{array}$ 

#### JÁN JAKUBÍK

Now let H be an archimedean lattice ordered group. The Dedekind completion of H will be denoted by  $H^D$ . For the definition and the properties of the divisible hull  $H^d$  of H cf., e.g. [8].

In [6], it has been proved that if  $A = \Gamma(G, u)$ , then A is complete if and only if the lattice ordered group G is complete. This is the reason for defining, for each semisimple MV-algebra A, the Dedekind completion  $A^D$  of A by putting

$$A^D = \Gamma(G^D, u) \,. \tag{1}$$

Further, from the construction of  $G^d$  (cf., e.g., [8]) it follows that u is a strong unit of the lattice ordered group  $G^d$  and that  $G^d$  is archimedean. From the conditions  $(i_1)$  and  $(ii_1)$  we easily obtain that A is divisible if and only if G is divisible. In view of this fact we define

$$A^d = \Gamma(G^d, u) \,. \tag{1'}$$

**2.1. LEMMA.** Let  $G_2$  be an abelian lattice ordered group with a strong unit u. Further, suppose that  $G_1$  is a lattice ordered group which is regularly embedded into  $G_2$  and that u belongs to  $G_1$ . Put

$$A_1 = \Gamma(G_1, u) , \qquad A_2 = \Gamma(G_2, u) .$$

Then  $A_1$  is regularly embedded into  $A_2$ .

P r o o f. This is an immediate consequence of (\*).

**2.2.** LEMMA. Let A be a semisimple MV-algebra. Then A is regularly embedded into  $A^D$ .

Proof. This is a consequence of Lemma 2.1, of relation (1) and of the well-known fact that G is regularly embedded into  $G^D$ .

**2.3.** LEMMA. Let A be a semisimple MV-algebra with  $A = \Gamma(G, u)$ . Then

- (i)  $A^d$  is a divisible MV-algebra;
- (ii) A is regularly embedded into  $A^d$ .

Proof. The assertion (i) is an immediate consequence of the fact that  $G^d$  is divisible. Further, G is regularly embedded into  $G^d$  (cf. [8]). Hence, in view of 2.1, A is regularly embedded into  $A^d$ .

From 2.2 and 2.3 we conclude:

**2.4. LEMMA.** Let A be a semisimple MV-algebra. Then A is regularly embedded into  $A^{dD}$ .

2.5. EXAMPLE. Let  $\mathbb{R}$  be the set of all reals with the usual topology. Let  $G_1$  be the set of all bounded real functions on  $\mathbb{R}$ ; assume that the operation + and the partial order on  $G_1$  are defined componentwise. Finally, let  $u \in G_1$  such that u(t) = 1 for each  $t \in \mathbb{R}$ . Then we can construct the MV-algebra  $\Gamma(G_1, u) = A_1$ .

Under the notation as in Section 1, let

$$A_2 = \Gamma\bigl(F_{\rm cb}(\mathbb{R}), u\bigr) \,.$$

Then the identity mapping on  $A_2$  is a separating isomorphism of  $A_2$  into  $A_1$ , but this isomorphism fails to be regular.

2.6. EXAMPLE. As above, let  $A = \Gamma(G, u)$ . By the definition of a divisible MV-algebra we applied the conditions  $(i_1)$  and  $(ii_1)$ ; we already remarked above that A is divisible if and only if G is divisible. On the other hand, if A is assumed to satisfy only the condition  $(i_1)$ , then G need not be divisible. In fact, let  $G = \mathbb{Z}$  (= the set of all integers, the operation + and the linear order being defined in the natural way). Put u = 1. Then  $(i_1)$  holds, but G fails to be divisible.

## **3. Proof of** $(\alpha)$

Assume that A is a semisimple MV-algebra. There exists an archimedean lattice ordered group G with a strong unit u such that

$$A=\Gamma(G,u)\,.$$

Denote

$$G_1 = G^{dD} \,. \tag{2}$$

Then  $G_1$  is an archimedean lattice ordered group and u is a strong unit of  $G_1$ . Put

 $A_1 = \Gamma(G_1, u) \, .$ 

In view of 2.4, A is regularly embedded into  $A_1$ .

From (2) and from [8] we conclude that  $G_1$  is a vector lattice. Since  $G_1$  has a strong unit, by applying [11; Theorem V. 3.1] we get that there exists a Hausdorff compact space M such that M is extremal and that there exists an isomorphism  $\varphi_0$  of  $G_1$  onto the vector lattice  $F_{\rm cb}(M)$ .

Put  $\varphi_1 = \varphi_0|_{A_1}$ . Thus  $\varphi_1$  is an isomorphism of the *MV*-algebra  $A_1$  onto the *MV*-algebra  $A_1(M)$  (we apply the notation as in Section 1).

Denote  $\varphi = \varphi_1|_A$ . Hence  $\varphi$  is an isomorphism of A into the MV-algebra  $A_1(M)$ .

We already mentioned that A is regularly embedded into  $A_1$ . Therefore the isomorphism  $\varphi$  is regular. This completes the proof of  $(\alpha)$ .

#### JÁN JAKUBÍK

#### REFERENCES

- BIRKHOFF, G.: Lattice Theory (Rev. ed.). Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., New York, 1948.
- [2] CIGNOLI, R.—D'OTTAVIANO, I. M. I.—MUNDICI, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic. Studia Logica Library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
- [3] CONRAD, P.: Lattice Ordered Groups. Math. Res. Library, Tulane University, New Orleans, 1970.
- [4] DI NOLA, A.—SESSA, S.: On MV-algebras of continuous functions. In: Non-classical Logics and Their Application to Fuzzy Subsets (U. Höhle, E. P. Klement, eds.), Kluwer Academic Publishers, Dordrecht, 1996, pp. 22-31.
- [5] GLUSCHANKOV, D.: Cyclic ordered groups and MV-algebras, Czechoslovak Math. J. 43 (1993), 249-263.
- [6] JAKUBÍK, J.: On complete MV-algebras, Czechoslovak Math. J. 45 (1995), 473-480.
- [7] JAKUBÍK, J.: On archimedean MV-algebras, Czechoslovak Math. J. 48 (1998), 575-582.
- [8] JAKUBÍK, J.: Complete distributivity of lattice ordered groups and of vector lattices, Czechoslovak Math. J. (To appear).
- [9] MUNDICI, D.: Interpretation of AFC\*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63.
- [10] SIKORSKI, R.: Boolean Algebras (2nd ed.), Springer-Verlag, Berlin-Goettingen-Heidelberg-New York, 1964.
- [11] VULIKH, B. Z.: Introduction to the Theory of Semiordered Spaces, Gos. Izd. Fiz.-Mat. Lit., Moskva, 1961 [English translation: Introduction to the Theory of Partially Ordered Spaces, Groningen, 1967]. (Russian)

Received February 1, 2000 Revised June 2, 2000 Matematický ústav SAV Grešákova 6 SK-040 01 Košice SLOVAKIA E-mail: musavke@mail.saske.sk