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ABSTRACT. Let V0 C E 2 be a compac t domain whose boundary is a simple 
closed curve composed of finitely many pieces such that on each piece the radius 
of curva ture exists everywhere, is bounded and non-zero, and is continuously 
differentiable with respect to the tangen t angle. Further, let V be a plane domain 
obtained by applying a rigid mo t ion to V0 and let V(a, b) := {(x,y) G V : y > 
ax -f b}, where a, b G R. Generalizing Huxley 's famous theorem we show that 
when a is taken from a large class 1Z of irrational numbers and b is arbi trary , 
for a real parameter A 

#(AX> n Z 2 ) = A2 area£> -f O(A0-6 3) ( A -> oo ) . 

Thereby the O-cons tant depends only on the basic domain V0 and the class 7Z. 

Additionally, we are able to ex tend the applicability of the s tandard me thod 

of est imating rounding error sums of the shape 

Ф(/;u,t/;Л):= VJ ф (л/ (y) ) (Л 
UA^n^VA. 

where ip(z) = z — [z] — 1/2 and / is a real-valued function defined on an interval 
[u,v] C 1R with con t inuous derivatives up to order 3 and the proper ty that f" 
does not vanish on [u,v]. B y Huxley ' s method, ty(f;u,v;\) <C A 0 ' 6 3 under the 
additional condition that f" does not vanish on [u,v]. 

We show t h a t this condition, which has always been in terpre ted as technical, 

is superfluous. 

1. Introduct ion and statement of the main result 

Let T>0 C R2 be a compact domain whose boundary is a simple closed curve 
composed of finitely many pieces such that on each piece the radius of curvature 
exists everywhere, is bounded and non-zero, and is continuously differentiable 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11P21. 
K e y w o r d s : lattice point, planar segment, circular segment, Huxley ' s theorem, circle problem. 

173 



GERALD KUBA 

with respect to the tangent angle. Let V be a plane domain obtained by ap
plying a rigid motion to V0, i.e. V = V0 • A + v, where A is a real orthogonal 
2 x 2-matrix with determinant 1 and v e R2 is a translation vector. 

The following deep result of planar lattice point theory has been proved by 
H u x l e y (cf. [2]). 

There exists an effective constant C such that for every expansion 
factor A > 2 

\#(XVnZ2) - A2areaP| < CA^(logA)^ . 

C depends on V0, but not on the rotation matrix A or the translation 
vector v. 

With reference to this great theorem and for the sake of simplicity we will 
call any domain like VQ a Huxley domain. 

The most important Huxley domain of course is a circle and in this case 
H u x 1 e y 's theorem is the sharpest-known result concerning the famous circle 
problem. 

The aim of the present paper is to achieve an analogous result if the domain 
V is replaced by segments {(x,y) G V : y > ax + b) (a,b e^). 

There will be no problem concerning b which may be arbitrary without in
fluencing the constant C. On the other hand, the slope a of the boundary line 
y = ax + b has to be chosen carefully. Clearly, with respect to the symmetry of 
the lattice, we may assume without loss of generality 0 < a < 1. Of course, the 
desired generalization of H u x 1 e y 's theorem is impossible if a is rational. Thus 
we assume that a is irrational. Consequently, there lies at most one lattice point 
on any line y = ax + Xb and hence one may alternately consider the subdomains 
of V where y > ax + b, y < ax -f- 6, or y < ax + b. Of course, the assumption 
only that a is irrational would be insufficient. What we really have to assume 
is that a is rather badly aproximable by rationals. Then the numbers a which 
must not occur are only few from a measure-theoretic standpoint. 

Let DN(a) := DN((na)n=1 N) denote the discrepancy of the irrational a 
(cf- [4]). 

For a constant H > 1 let diH be the set of all irrationals a G [0,1] such that 
the inequality DN(a) < HN~* holds for every N G N. 

The famous theorem of Thue-Siegel-Roth implies that for every algebraic ir
rational a and arbitrarily small e > 0 there is a Ha £ with DN(a) < Ha £N~l+£ 

for all NGN. Hence for every algebraic a G [0,1] \ Q there is a if with a G $lH . 
(For instance, \ /2 - 1, \ /3 - 1 G !R4 by [4; Theorem 3.4].) But the sets $lH are 
far away from being small. Since (for every N G N) DN is a continuous function 
on [0,1] \ Q and ^H = f] DN

X ([0,HN~i]), there is a closed set AH C [0,1] 
fVGN 
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such that ?RH = AH \ Q, whence the set $iH is always measurable. Further, 
[0? 1] \ U ^H IS a Let>esgue null set because, by a well-known result due to 

Hen 
Khintchine (cf. [4]), DN(a) < N'1^ (N -> oo) for almost all a G R. Conse
quently, since $lH C ?RH, if H < H', the Lebesgue measure of the set [0,1] \ $lH 

is arbitrarily small when H is sufficiently large.1 

Now the main result of the present paper is the following theorem. 

THEOREM 1. Let A be the set of all real orthogonal 2 x 2-matrices with de
terminant 1 and, for H > 1. $lH := {a G [0,1] \ Q : (VjV G N)(DN(a) < 
HN~&)} . Further let V0 C R2 be a Huxley domain. Then there exists an ef
fective constant C depending only on V0 and H such that for every expansion 
factor A > 2. for every a G K ^ . for every b G R, for every A G A, and for 
every v G 1R2 

| # (AP(a , 6; A, v) n Z2) - A2 a reaP(a , 6; A, v)\ < C\%(log A ) ^ ? 

where 
P(a ,b ;A, v) := {(x,y) eV0-/\ + v: y>ax + b}. 

2. Preparation of the proof 

Let the rounding error function I/J be defined by 

i)(z) = z - [z] - 1/2 ( z G R ) , 

where [ ] are the Gauss brackets. The following two lemmata provide good 
estimates of rounding error sums that we need in order to prove Theorem 1. 

LEMMA 1. Let H > 1 and a G 3ftH. Then for A > 2 and arbitrary u,v,b G IR 
we have 

^i)(an + b) <2H(l + \u\ + \v\)\i . 
uX<n<vX 

P r o o f . By Koksma's inequality (cf. [3; Theorem 5.1]) we have for every 
b G K, every N G N, and every sequence (xn)neN of real numbers 

Iv 

n=\ 

2 > O n + ò) <2NDN{(xn)n=KtN). 

1 Nevertheless, every set ?RH is nowhere dense in [0,1] \ Q and thus in R, too. This is t rue 
because if C is the set of all Liouville numbers, which is dense in R \ Q, then ?RH D C = 0 
since DN(a) = Q,(N~e) ( N -> oo) for every e > 0 and all a E C. 
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Consequently, 

I>(±c <2HNІ zan -+- b) 
1 n=l 

which immediately implies the assertion. • 

The next lemma follows by combining H u x l e y [2; Theorems 18.2.1, 18.2.2]. 

LEMMA 2. Let CX,C2 > I be constants and let M, M1. T be positive real 
parameters satisfying M < M' < 2M and T% < M < CXT^ . Further, let F(t) 
be a three times continuously differentiable function on 1 < t < 2 satisfying 
1/C2 < \F^(t)\ < C2 for 1 < t < 2 and r = 1,2,3. Then there exists a 
constant C3 depending only on Cx and C2 such that if T > 2, then 

£ *{&{%)) 
M<m<M' 

-.23 , , m Ч ҘL5 
146 <ąт-*(ЊgT)т-4 

The following lemma is a generalization of H u x l e y ' s main theorem cited 
in Section 1. 

LEMMA 3. Fix fc, / E N and let V0 and T-L0 be two Huxley domains. Then 
there exists an effective constant C0 such that for every rotation matrix A G . 4 
and all translation vectors i/, i/ l 5 . . . , vk £ IR2 the following is true. If T-L is a 
Huxley domain with 

dU C d(V0 • A + v) U d(U0 + vx) U • • • U d(U0 + vk) 

such that dT-L is the union of at most I smooth pieces,2 then the inequality 

| # ( A H n Z 2 ) - A2arearY| < C 0A^(logA)™ 

holds for every expansion factor A > 2. 

P r o o f . Since the number of the smooth pieces Ct of H is bounded by /, 
we can take over H u x l e y ' s original proof ([2; pp. 389-393]) word for word. 

The final lemma guarantees that the sets 3tH are always bounded away from 
0 and 1. • 

2 At the first sight this additional assumption seems superfluous. But consider the fol
lowing counterexamp le. Define convex domains T>0 and ri0 such tha t dV>0 is parametr ized 
by r(ip) = 1 (0 < (p < 2TT) and dri0 is parametrized by r((p) = 1 (1/ir < (p < 2ir) and 
r((p) = 1 -f cp8 sin(l/(p) (0 < (p < 1/TT). Then both domains are Huxley domains since T>0 is a 
circle and ri0 has a sufficiently smooth boundary where the radius of curvature o smoothly 
pendulates within the range 8/9 < g < 8 /7 . But neither V0 n 7i0 nor T>0 U 7L0 is a Huxley 
domain because dV0 mee ts dri0 non-tangentially at (p = l/(nir) (n G N). Now, for arbi trary 
NGN, consider the domain ri which is bounded by the curve r((p) (0 < cp < 2TT) with 
r((p) = 1 + (p8 sin(l/(p) when 27rn < l/(p < (2n+ l)n (n = 1 , . . . , N) and r((p) = 1 otherwise. 
Then K is a Huxley domain with dri C dVQUdri0 , but the minimal numbe r of smooth pieces 
of dri equals 2N . 
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LEMMA 4. For H > 1 let N G N such that N > (2H)* . Then $lH C 
I-1- l - -M 

P r o o f . Note that, by assumption, IV > 6 and let a G $lH. Since there is 
nothing to show i f ^ < a < l — -̂  suppose firstly that a < jj. Then we have 
na G [0,7Va] C [0,1] for every n = 1,2,... ,IV and hence, by the definition of 
the discrepancy and with IM denoting the indicator function of the set M, 

Iv 
l-Na = M I ľ Һo,Na](Пa) - N a 

n = l 

<DN(a)<HN-i < i 

whence a > ^v. If on the other hand a > 1 - ^-, then the same argument 
applied to 1 — a instead of a yields a < 1 - -^ since DN(1 — a) = DN(a). • 

3. Lattice points in segments of a circle 

For fixed r > 0 and arbitrary a G $lH (H > 1), define circular segments 

<r(a,ci;r) := {(x,y) GR2 : (x2 + y2 <r2) A (y < ax + d)} , 

where — ry/l + a2 < d < — r, so that a(a, d\ r)° 7-- 0 and the slope of any tangent 
to the circular piece of the boundary of a is always positive (and finite). 

Then we can write 

a(a,d',r) := {(x,y) G E2 : (xx < x < x2) A (f(x) <y< g(x))} , 

where g(x) := ax + d, f(x) := —\Jr2 — x2 and 0 < xx < x2 < r such that 
f(xx) = g(xx) and f(x2) = g(x2). Then the slope of the tangents mentioned 
above is given by the first derivative of the function / . 

We are going to apply Lemma 2 in order to derive a formula for the number 
of lattice points in the domains Aa(a, d; r ) . Thereby it is inevitable to make an 
assumption like the following. 

(*) There are constants c1. c2, 0 < cx < c2 < 00; such that cx < f'(x) < c2 

(x1 < x < x2). 
Note that the bounds for the first derivative of / yield new bounds for the higher 
derivatives. Actually, (*) implies rc3 < xx < x2 < rc4 with 

Co := — , a n d 

Then via f"(x) = (T(a;))3r-2/x3 and f'"(x) = 3(f'(x))5r2/x4 we obtain the 
coarse but immediate estimations 

0 < 4 L < T ' < - r - < o o and 0 < 4 ^ < / " ' < - f t - < °° • (**) c\r ~ c\r cir2 ~ J ~ c\ri 
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PROPOSITION 1. Under the above premises, and assuming (*); we have for 
a, P G [0,1] and as A —> oo; 

#(Aa(a,d;r)n(cY + Z)x (/? + Z)) = A2areaO-(a, d; r) + o(A^(log A)i^) , 

where the O-constant depends on r. c1; c2, and H. 6w_ no£ on a . /3. d. or 
a E 3f-#. 

P r o o f . Let A > 2 + r + 32/(rc3)5 so that then A2r > 2 and As > 2/x1 

and Xxx/2 < Xxx — a. We have 

AO-(a,d;r) = {(x,y) G R2 : (Xxx <x< Xx2) A (Xf(x/X) <y< Xg(x/X))} . 

Consequently, 

#(Acr(a, d; r) n (a + Z) x ((3 + Z)) 

E #{™<-Z: -/? + V ( ^ ) <m<-/? + Ag(^)j 
A__i— a < n < A _ 2 — a: 

= E ( [ - / ? + M ^ ) ] + [ / ^ - A / ( ^ ) ] + I) 
Axi — a<n<A .C2 — ct 

— 5(A,x l5x2, a) — _>1(A,__1,x2, ct) — _/2(A, _c1,a;2, a ) , 

where 

^ - ^ . a ) : - E A W Z L X 2 ) - / ( I l + r)) ' 
A.Ti— c-<n<Ax2— Q 

Ф 1 (Л, а : 1 1 x 2 1 a) := £ ,&(/3-Л/(---+--)) , 
Aæi—a<n<Лаľ2—Q: 

Ф2(Л,x1>а:21a):= £ Ą-ß + Лff(--+--)) . 
A_?i — o:<n<A . r2— c_ 

We apply Lemma 1 to the last sum and obtain 

_>2(A,x1,x2,cY) < A« < A^ (A -> oo), 

where the <C -constant depends only on xx 5 _c2, and H, hence only on r, c x, 
c2 , and H. 

The first sum can be handled by applying the Euler summation formula 
(cf. [3]). Then we have 

\X2—OC 

S(\,xltx2,a)=\ J ( ^ ( 2 - + ^ ) - / ( - _ + - - ) ) dti 
\x±— a 

\x2 — ot 

\xi-a. 
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Obviously, the first integral equals 

X2 

X2 / (g(u) - f(u)) du = A2 areacг(a, d\ r), 

Xl 

and, via (*) and | f ip(u) du | < | and the second mean value theorem, the 
V 

absolute value of the second is not greater than (a + c2)/8 < 1 + c 2 . 

Thus it remains to estimate ^ ( A , x1? x2, a). Let M 0 := Xxx — a, and choose 
J G N with 2 J ~ 1 M 0 < Ax2 - a < 2JMQ. Now, define a dyadic sequence M- = 
2->M0 (j < J) and put Mj := [Xx2 - a] + 1. Then 

*1(A>x1>5_2>a)--X: £ ^ ^ ( - g - ) ) , 
j=0 Mj<m<Mj + 1

X 3 3 ' 

where for j = 0 , 1 , . . . , J — 1, 

M, M- /M,u + a\ 
F^^^-X^-fi^-^—j (l<u<2). 

Now set T. := AM̂ - (0 < j < J) in order to apply Lemma 3 to each of the J 
inner sums. Then we have 

f f > W = _(i)>>(_fc__f) (n€N). 

Since for 0 < j < J, M. G \Xxx - a, Ax2 - a] C \Xxxj2, Xx2] C A[rc3/2, rc4], 
via (*) and (**) it is easy to find a constant C2 = C2(r, c1,c2) > 1 such that 
1/C2 < \FJjn)\ < C2 for n = 1,2,3 and j = 0 , 1 , . . . , J- 1. Further, since 

1 ^ i 

As > 2/xlt the inequality T? < M- < CXT? is true for every j if we set 
Cx : =1 + VF. 

Therefore, by Lemma 2 (note that A3 > rA2 > T- > 2) 

J-i \ 
23 \ _ 315 

146 ^ ( A ^ a ^ a ^ c J ^T/3J(log(rA2))^ 

< C3 • 5 • (A2JM0)73 . i i . (logA)ni < 69r^C3A?t(logA)T^ . 

This finishes the proof of Proposition 1. • 
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4. Proof of Theorem 1 

NOTATION. For compact M C R2 let d iamM = sup{ |P - Q\ : P,Q G M) 
denote the diameter of M. Further, for abbreviation, if a, b G K let 

M(a:b) := {(x,y) G Ai : H > ax + b} , 

JM+(a,b) := {(x,y) G M : H > ax + b} . 

Finally, if P, Q G R2 let [P, Q] denote the straight line segment with endpoints 

P,Q, 
[P, Q] = {tQ + (l-t)P: 0 < * < 1} . 

Now let a G $lH and b G R. In order to prove Theorem 1 we put V = X>0 - A -V i/ 
so that V(a,b) = V(a, b; A, v). Since there is at most one lattice point on a 
straight line with slope a, we may exclude the trivial case V+(a, b) = 0. 

Since V(a, b) may not be connected, we consider its (finitely many) com
ponents. Some of them may be singletons, but at least one component has a 
non-empty interior provided that D + (a , b) ^ 0. Clearly there is a M G N de
pending only on V0 such that for the number n = n(a,b , A, v) of all com
ponents of V(a,b) we always have n < M. Then we can write V(a,b) = 
£1 U • • • U£m UJ7, where £1,..., £m are pairwise disjoint, compact and connected 
sets with non-empty interior, T is a finite set of points on the line y = ax + b 
with T fl (£x U • • • U £m) — 0, and m + \T\ = n. Then we observe that there 
exists a constant K G N depending only on V0 such that for every i = 1 , . . . , m 
we have 

k{ 

£i\V+(a,b)=\J[Pj,Qj], 
3 = 1 

where [P-, Q-] (j = 1 , . . . , ki) are pairwise disjoint subsets of the line y = ax + b 
and 0 < fc- < K. (Note that k- > 0 for every i = 1 , . . . , m if m > 2. If m = 1 
and kx = 0, then there is nothing to show because this case is equivalent to 
V(a,b) — V, so that then Theorem 1 equals H u x l e y ' s original Theorem.) 

Thus the boundary of every set £i is put together by a piece of the boundary 
of V and k{ straight line segments [P^, Qj]. Hence every set £i becomes a Huxley 
domain Vi, i.e. V^a.b) = £{, if the segments [P-.Q-] are all replaced by suit
able circular arcs connecting P . and Q-. The pairwise disjoint Huxley domains 
F>15..., Dm which allow the representation V(a,b) = V1(a,b)U- •UF)

m(a,b)U.7r 

may be chosen in the following way. With respect to Lemma 4 we choose a small 
positive constant cH depending only on H such that 3?^ c [cH, l — cH]. Further 
we fix 

2 
r := diamF>0 

CH 
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and, for i = 1,..., m and j = 1 , . . . , k{, choose suitable i/-• G M2 and d-• < 0 

with 1 < d2Jr2 < 1 + a2 such that 

ki 

Vi\Vf(a,b)=\J(cj(a,dij]r) + viJ) (z = l , . . . , m ) , 
J=I 

where the circular segments (cr(a, d{J;r) + i/-•) (i = 1 , . . . , m, j = 1 , . . . , ki) are 
pairwise disjoint. 

Note that this can be done in a way that the radius r is fixed as above. 
The freedom we need for fitting the circular segments arises from the freedom 
to choose the d{J 's. Actually, for every i = 1 , . . . , m and j = 1,... ,k{ we have 

/ d l diamX>0 > diam cr(a, d-; r) = 2 r y 1 y 
1 + a2 ' 

so that we always can find a d-• with the corresponding segment fitting because 

2r \ / 1 -- = . — diam Vn> 2 diam Vn . 

V l + a2 vf+^Ctf ° " ° 
So the boundary of any domain Vi is always put together by first taking a piece 
of the boundary of the basic domain V0 and k{ pieces of one unique circle, and 
then applying rigid motions to all pieces. Hence, for every i = 1 , . . . , m we can 
apply Lemma 3 with k = iv", I = K + /i, where \x is the minimal number of 
smooth pieces of dV0, U0 = {(x,y) G R2 : x2 + y2 < r 2 } , U = V{, and 
vJ (j = l , . . . , k ) suitable to make up the circular segments a(a,d{J;r) + v{J 

(j = 1 , . . . , k{) out of the one disc H0. 
Thus we obtain 

|#(A2>. HZ 2 ) - A 2 areaP- | < C 0 A ^ ( l o g A ) ^ (A > 2) , (4.1) 

where the constant C0 depends only on K, V0 and W,0, which actually means 
that it depends only on V0 and H. 

Next we show that Proposition 1 can be applied to all segments a(a, d{J;r). 
Let cr = cr(a, d - ; r ) and let yx and (p2 denote the circle tangent angles in the 
left and right vertex of cr, respectively. Further let (p0 denote the angle of the 
straight line bounding the segment cr. (All angles are to be considered relative 
to the horizontal.) Then, by the definition of the universal radius r and with 
5 := diam a and c := cH , 

25 S fi 
r> — > c - 2 s i n ( § ) 2 c o s ( f - f ) ' 
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whence 

<Pi + f ~ ^o = a rccos (—) > 1L _ | . 

Then, since tan <£0 = a and c < a < 1, we have 

t a n ^ > (/O1 > arctana - -^ > -2-a - - | > ^-. 

On the other hand, for the second angle ip2 we have 

^2 = ^o + (^o ~ ^ i ) < -Vo ~ 2arc tana < 2arctan( l - c), 
whence 

2(1 - c) 2 
tan <p2 < r-j < - . z 1 - (1 - c)z c 

As a consequence, if AC is the slope of any tangent to the circular piece of the 
boundary of the segment a, then 

0 < -^ - < tc< — < oo. 
3 - - cH 

Thus, by Proposition 1, we have for every i = 1 , . . . , m, j = 1 , . . . , ki and 
A > 2 , 

|#(A(O-(a,d-.;r) + u > Z 2 ) - A 2 axeaa (a ,d y ; r ) | < C 4 A ^ ( l o g A ) ^ , (4.2) 

where the constant CA depends only on r and cH, i.e. only on V0 and H. 
Now, always having in mind that #{(x,H) € Z 2 : y = ax + \b} < 1, we 

have for every A > 2, 
771 

#(AP(a,6)nZ2)=Y2#(AI?+(a,6)nZ2)+7 (7 G{0,1}) 

and 

\V+(a,b) =Wi\\J A(O-(a,d. j ;r) + i^.) ( i = 1 , . . . , m ) , 

so that by (4.1) and (4.2), Theorem 1 follows. 

5. Lattice points in Huxley sectors 

Let V be a Huxley domain, E G R2 an arbitrary point, and i/, iv G R2 

planar vectors. Then we consider the sector V(E\ v, iv) given by 

V(E;v, w) := { _ Y G D : ( 3 ^ , t 2 > 0)(X = E + txv + t2w)} . 
Clearly, we have to place restrictions on the vectors v and w in order to achieve a 
satisfying generalization of our result on segments of Huxley domains to sectors. 
For H > 1 define 

VH:={(v1,v2)e{R\{0})2: ( K M | G ^ ) V ( I V ^ i l ^ H ) } -
Now, the main result of this section is the following theorem. 
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THEOREM 2. Let VQ C R 2 be a Huxley domain and H > 1. Then there exists 
a constant C such that for all points E G R2 , for all vectors i/, w G VH. for 
every rotation matrix A G A, for all a,(3 G [0,1] ; for every expansion factor 
A > 2. and with V = VQ • A ; 

\#(XV(E] i/, iv) n (a + Z) x (/? + Z)) - A 2 areaD(£; v, iv)| < C"A^(log A ) ^ . 

P r o o f . Let, for abbreviation, T := ( a+Z) x (/3+Z). Clearly, we may assume 
that the vectors v and w are linearly independent. Further, we may assume that 
the point E lies in the interior of the domain V, because otherwise we obtain 
the result by applying once or twice Theorem 1 together with a possible help 
of suitable reflections. Then we have V(E\ v, iv)° ^ 0 . We may assume without 
loss of generality that the domain V(E\ v, w) is connected, because otherwise we 
consider its components. Now, following the ideas in Section 4, it is not difficult 
to find a Huxley domain P* such that 

k 

V*\V(E]v)w)=\Jai, 
i=i 

where av...^ak are pairwise disjoint compact segments of circles with one 
universal radius r , and the straight line segments ak nV(E; i/, iv) always being 
parallel to i/ or iv. The number k is clearly bounded by a constant depending 
only on VQ. Since v, w G VH, we have, by applying Theorem 1 to the basic 
domain x2 + y2 < r2 and with a possible help of suitable translations and 
reflections, for every segment ai 

# ( A r / . n r ) = A2area6T. + o ( A ^ ( l o g A ) i ^ ) (5.1) 

with the O-constant depending only on H and r . (Note that Proposition 1 only 
would not imply (5.1) because it is insufficient for arbitrary segments of circles.) 

Now we apply Lemma 3 with %Q = {(x,y) G R2 : x2 + y2 < r2} and 
U = V\ This yields 

#(AP* n r ) = A2area£>* + o(A^(logA)^) . (5.2) 

Further we have, 

k 

#(A2>(£; v, iv) n r) = # ( A P * n r) - ]T #(AO-, n r) + 0 ( i ) . (5.3) 
2 = 1 

Now by inserting the right hand sides of (5.1) and (5.2) into (5.3) we reach our 
goal since 

k 

areaP* — V^ areacr^ = areaX>(£'; v, tv). 
i=l 
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A natural application of Theorem 2 is one to sectors of circles. Let H > 1 and 
define for i t > 2 and K > 0 with K G $lH or 1/K G $lH, 

S(R;K) := {(x,y) G M2 : (x > 0) A (0 < y < KX) A (x2 + H2 < i t 2 )} . 

Then, by symmetry and Theorem 2 with V0 = {(x,y) G M2 : x2 + H2 < i t 2 } , 
E = (0,0), i/ = (l ,f t) , and w = (1,— K) , we derive (with the O-constant 
depending only on H) 

#(s(i?;K)nZ2) = ^ | ^ / i 2 + I i ? + o ( ^ ( l o g J R ) M ) . (*) 

Note that this result goes beyond the scope of the problem N o w a k [5] deals 
with since there are considered only sectors x2 + y2 < R2, a < y/x < (3 with 
0 < a < (3. • 

Further, (*) implies the following nice corollary related to the circle problem. 

COROLLARY 1. For a natural number k, k not a square, define the arithmetic 
function 

Ak(n):=#{(x,y)efP : (x2 + y2 = n) A (y2 < kx2)} ( n G N ) . 

Then as N —•> co ; 

1 v ^ A / N arctan\/fc 1 . / . . . . s o . , ^^^^\ 

] v E A » 2 — w N " + 0 r "^g^)1 4 6) ' 

£/je O-constant depending on k. 

An analogous result related to the divisor problem is the next, which we close 
this section with. 

COROLLARY 2. For algebraic irrationals a, (3, 0 < a < (3, define the arith
metic function 

BaiP(n):=#{(x,y)eN2 : (x • y = n) A (a<y/x<(3)} ( n G N ) . 

Then as N —> co. 

Iv 

IV 
^ E - W » ) = | l o g ( | ) +o(H-«(logN)f») , 

? г = l 

£/ie O -constant depending on a and /?. 
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6. Application to fractional part sums 

In this final section we consider sums 

Ъ(f;u,v;\):= £ 1>(v(j)) 
u\<n<v\ 

where A is a large real parameter and / is a real-valued function defined on an 
interval [u: v] C 1R with continuous derivatives up to order 3 and the property 
that / " does not vanish on [u, v]. (See N o w a k [6] for recent results concerning 
such sums.) By H u x l e y ' s method ([2; Theorems 18.2.1, 18.2.2]), 

* ( / ; u , i j ; A ) < A ^ ( l o g A ) ^ ( A - > o o ) (0 ) 

under the additional condition that f" does not vanish on [w, v]. 
This condition has always been interpreted as technical (cf. N o w a k [6]) and 

indeed it is superfluous as shown by the following theorem, which we conclude 
this article with. 

THEOREM 3. Fix a,/3 E K and f: [a,/?] -> R. and assume that f is 
three times continuously differentiable on (an open neighborhood of) [a,/?] with 
f" T-: 0 there. 

Then the inequality (0 ) holds uniformly in u, v (a < u < v < (3). 

P r o o f . Fix K = V2+ [\f'(a)\] + [|/'(/?)|] . Then K > 1, | / ' ( a ) | , \f'(P)\ and, 
by [4; Theorem 3.4], 1/K G UH with H = 4 + [K]. Further, for u,v e [a, /?], 
u < v, define linear functions gu, gv, 

9U(X) = f(u) ~ K ( x " u)' 9v(x) = f(v) + K{X-V) (xeR), 

so that gu(u) = f(u) and gv(v) = f(v). Then there is a unique (and easily 
computable) x0 G ]u,v[ such that gu(x0) = gv(x0) < f(x0). Let guv := 
m<ix{gu,gv}. Then gUiV(x) < f(x) for all x G ]u,v[ and gUiV(u) =- / (w) , 

9u,vW = f(v)-
Note that Q(f) := {(x,f(x)) : a < x < (5} can be read as a piece of the 

boundary of a Huxley domain because for the radius of curvature Q we have 

( l - r t a n 2 r ) § f"(a) 

" / " ( / ' ^ ( t a n r ) ) | / " ( a ) | ' 

where r is the tangent angle (relative to the horizontal). 
Now consider the sectors 

S(f-K,u,v):={(x,y)eR2 : (u < x < v) A (gUfV(x) < y < f(x))} 

(a < u < v < (5). 
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Obviously, S(f\K,u1,v1) D S(f;K,u2,v2) if a < ux < u2 < v2 < vx < (3. 
Then, with the help of a suitable fixed Huxley domain V with dV D G(f) and 
V D S(f;K,a,/3), we obtain, by applying Theorem 2 with E = ( ^ o ' ^ ^ o ) ) > 
v = ( - 1 , K) , w = (1, K) , and H = 4 + [K] , 

#(AcS(/; K, ix, t>) n Z2) = A2 area<S(/; K, U, V) + o ( A ^ ( l o g A)TW) ( A -> oo ) . 

(6.1) 
Note that the O-constant depends on G(f) but not on u or vl 

On the other side, 

#{XS(f;K,u,v)nZ2) = £ A ( / ( | ) - .?„,„ ( ^ ) ) - * ( / ; « , « ; A) 

- £ *K(5)) - E <-*».(S)) • 
An<n<Axo Axo<n<Av 

Consequently, by applying the Euler summation formula to the first sum and 
Lemma 1 (with a = v 2 — 1 and a = 2 — V2, respectively) to the last two sums, 
we derive 

#(\S(f;n,u,v)nZ2) = A2areacS(/ ;K,^, i ; )-*(/ ; iz ,U ;A) + 0 ( A ^ ) (A -» oo) 
(6.2) 

with the O-constant depending on a , /?, and H. 

Thus Theorem 3 follows by comparing (6.1) and (6.2). • 

Final remark. The exponent —3/8 in the definition of the sets ?RH is a kind 
of house number and intentionally not chosen optimal. (Theorems 1 and 2 obvi
ously remain unchanged when —3/8 is replaced by any fixed number —6 with 
77/208 < 9 < 3/8.) We have chosen - 3 / 8 because it is a nice exponent and 
it leaves space for possibly further improvements of H u x l e y ' s method which 
would automatically improve the bounds in Theorems 1 and 2. Actually, in the 
meantime a further improvement has been announced. In a yet unpublished 
paper [1] H u x l e y shows that the bound A7i(logA)i46 can be sharpened to 

ioy 18627 

A 208 (log A) "8320". Consequently, Theorems 1 to 3 are still true with the sharper 
bound (and a fortiori with the bound A 0 6 3 ) . Further improvements of our re
sults, without reducing the sets $lH, are of course only possible up to a bound 
A5/8, but anyhow the exponent 5/8 is so small that it certainly lies far beyond 
the scope of H u x l e y ' s method. 
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